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SUMMARY

A new generalized damage model for quasi-incompressible hyperelasticity in a total Lagrangian finite-strain
framework is presented. A Kachanov-like reduction factor .1 �D/ is applied on the deviatoric part of the
hyperelastic constitutive model. Linear and exponential softening are defined as damage evolution laws, both
describable in terms of only two material parameters. The model is formulated following continuum damage
mechanics theory such that it can be particularized for any hyperelastic model based on the volumetric–
isochoric split of the Helmholtz free energy. However, in the present work, it has been implemented in an
in-house finite element code for neo-Hooke and Ogden hyperelasticity. The details of the hybrid formula-
tion used are also described. A couple of three-dimensional examples are presented to illustrate the main
characteristics of the damage model. The results obtained reproduce a wide range of softening behaviors,
highlighting the versatility of the formulation proposed. The damage formulation has been developed to be
used in conjunction with mixing theory in order to model the behavior of fibered biological tissues. As an
example, the markedly different behaviors of the fundamental components of the rectus sheath were repro-
duced using the damage model, obtaining excellent correlation with the experimental results from literature.
Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since Kachanov [1] first introduced the concept of effective stress through the use of a reduction fac-
tor associated with the amount of damage in a material, many authors have developed formulations
based on this concept of elastic degradation to model damage or degradation in materials. Over the
years, these formulations have been consolidated and are now regarded as indisputable knowledge
in the context of continuum damage mechanics [2–5]. This phenomenological approach is based on
a rigorous mathematical and thermodynamic basis and has proved to be a simple and effective tool
in numerical modeling. Although initially formulated in an infinitesimal strain framework and as
isotropic, it has been extended to include anisotropy (e.g., [6, 7]), has been combined with plastic-
ity (e.g., [8–10]) and viscoelasticity (e.g., [11]), and has been formulated for application to specific
materials such as concrete (e.g., [12, 13]), composites (e.g., [14]), or biological tissues (e.g., [15]),
among others.
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The first damage models developed in a finite-strain context were proposed more than two
decades ago, being the work of Simo [16], one of the most renowned. These are generally based
on the multiplicative decomposition of the deformation gradient into a volume-preserving or vol-
umetric part and an isochoric or deviatoric part, with damage affecting only the latter. Like the
formulations by Miehe [17], de Souza [18], and other authors [19], these models were motivated by
the stress-softening effect known as Mullins effect, which is characteristic of rubber-like materials.
More recently, damage models based on the decoupled volumetric–deviatoric response have been
formulated to model the behavior of fibered soft biological tissues [20, 21].

All these formulations use damage criteria and evolution laws, which are defined to particu-
larly suit the specific material behavior being modeled. In this work, a new generalized softening
finite-strain model is proposed, which includes linear and exponential damage evolution laws that
have been translated from an infinitesimal strain framework [22] into the present finite-strain one.
The novelty of this formulation is that, on the one hand, both proposed evolutions of the damage
variable are based on solely two measurable material properties and, on the other hand, the formula-
tion can be particularized for any decoupled volumetric–deviatoric hyperelastic constitutive model
desired. Thus, the result is a general-purpose formulation that is versatile enough to model dis-
parate material behaviors without requiring reformulation of the damage model or complex material
parameter adjustments.

The ultimate aim, however, is to use this damage model in conjunction with mixing theory to
represent the behavior of fibered soft biological tissues. The original theoretical framework of mix-
ing theory was initially developed by Truesdell and Toupin [23]. It was later generalized, receiving
the name of Series–Parallel Mixing Theory (S–P) [24], to take into account the incompatibility
of deformations between its component materials and allowing, thus, the representation of com-
plex behavior of composite materials, in this case a biological tissue, by means of the interaction
between the simple constituent materials, each defined by its own constitutive law. In this way, the
same damage model can be used to account for very different behaviors of the tissue components
by particularizing the formulation to suit each component’s needs.

The paper is organized as follows: Section 2 describes the new generalized damage formulation.
This is then particularized for a neo-Hooke and an Ogden hyperelastic model and implemented in
the in-house finite element code PLCd [25] using hybrid formulation, as described in Section 3.
Examples for both particularizations are given in Section 4 with the aim of illustrating the main
characteristics of the implemented formulation and the versatility of the model proposed. Finally,
experimental data by Martins et al. [26] is numerically reproduced to show how the damage model
proposed, in conjunction with mixing theory, allows for representing fibered soft biological tissues
in which fiber and matrix have markedly different behaviors. The conclusions of the work are then
stated in Section 5.

2. GENERALIZED DAMAGE MODEL DEFINITION

The multiplicative split of the deformation gradient typically used to represent the behavior of
hyperelastic materials [27] results in a decoupled volumetric–isochoric Helmholtz free energy func-
tion, ‰. Then, assuming that damage only affects the deviatoric part of the deformation [28], the
Helmholtz free energy is of the form

‰ .C; D / D ‰vol.J /C .1 �D/ Q‰0
�eC � (1)

where Q‰0 is the undamaged isochoric or deviatoric part of the free energy and‰vol is its undamaged
volumetric part, both given in the reference configuration. The Jacobian determinant J is related
to the right Cauchy–Green strain tensor, C, through J D .det C/1=2. The tilde in eC indicates that
it is the deviatoric or volume-preserving part of C, given by eC D J

�2=3C. The functions chosen
for ‰vol and Q‰0 must be such that ‰vol.J / D 0 and Q‰0

�eC� D 0 hold if and only if J D 1 andeC D I, respectively.
Expression (1) introduces an internal scalar damage variableD 2 Œ0; 1�, which defines a reduction

factor .1 �D/ similar to the one first proposed by Kachanov [1].
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2.1. Thermodynamic basis and damage dissipation

For an isothermal case with uniform temperature distribution and other standard arguments [16], the
Clausius–Duhem inequality in the reference configuration is reduced to

� P‰ C S W
PC
2
> 0 (2)

where S is the second Piola–Kirchhoff stress tensor. Considering ‰ D ‰ .C; D /, the
expression becomes

�

 
@‰

@D
PD C 2

@‰

@C
W
PC
2

!
C S W

PC
2
> 0 (3)

Then, introducing the free energy defined in (1) and rearranging, the internal dissipation in the
reference configuration, „, is obtained

„ D Q‰0 PD C

"
S � 2

 
@‰vol

@C
C .1 �D /

@ Q‰0

@C

!#
W
PC
2
> 0 (4)

This inequality must hold true for any strain increment; therefore, the term in brackets must be null
and the expression of the dissipation is reduced to

„ D Q‰0 PD > 0 (5)

2.2. Constitutive equation

Setting the term in brackets in (4) to zero yields the following finite-strain version of the Kachanov
effective stress concept.

S D Svol C .1 �D /eS 0 with Svol D �pJC�1 and eS 0 D 2@ Q‰0
@C

(6)

Here, the hydrostatic pressure p D @ ‰vol=@J has been introduced and the relation
@J=@C D JC�1=2 is used.

2.3. Evolution of the damage internal variable

The evolution of the damage variable is given by

PD D P�
@F
@�

(7)

where P� is a non-negative scalar named damage consistency parameter used to define the loading,
unloading, and reloading conditions through the Kuhn–Tucker conditions

P� > 0 I F 6 0 I P� F D 0 (8)

The damage surface F D G.�/�G .�max/ D 0 delimits the start of the non-linear behavior, where
G.�/ is a damage evolution law given in terms of the norm, � , andG .�max/ is a scalar function of the
damage threshold, �max. The proposed model allows using different energy-based norms; however,
the criterion proposed by Simo and Ju [3] has been used in this work to define the norm as follows

� D

q
2 Q‰0 (9)
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The linear and exponential explicit scalar functions proposed in [22, 29] as damage evolution laws
in an infinitesimal strain context have been translated to a finite-strain framework to define G.�/.
The advantage of these laws is that they are based on only two material parameters with a direct
physical sense that can be experimentally determined. Most evolution laws proposed up to date in
finite-strain damage formulations [16, 30–33] either require a considerable amount of parameters or
rely on parameters that do not have a direct physical meaning, or both.

2.3.1. Linear softening. The damage variable D is defined as a scalar function with linear
arguments

D D G.�/ D
1 �

Sd
0

�

1CH
(10)

where Sd0 and gd
f

are the material properties initial damage threshold stress and fracture energy per
unit volume, respectively. H is a parameter related to the dissipation obtained by imposingZ t1

t0

„dt D gdf (11)

Introducing (5) and (10) into (11) yieldsZ t1

t0

„dt D

Z t1

t0

Q‰0 PD dt D

Z �1

�0

Q‰0.�/
@G.�/

@�
d� D

Z G.�1/

G.�0/

Q‰0.�/ dG.�/ (12)

Considering the Simo and Ju criterion in (9), (12) can be further developed as follows by introducing
derivation by partsZ t1

t0

„dt D

Z G.�1/

G.�0/

1

2
�2 dG.�/ D

1

2
�2 dG.�/

ˇ̌̌̌�1
�0

�

Z �1

�0

G.�/� d� (13)

The damage variable has been defined for the interval D 2 Œ0; 1�, therefore8̂̂<̂
:̂
G .�0/ D 0

G .�1/ D 1 )

1 �
Sd0
�1

1CH
D 1 ) �1 D �

Sd
0

H

(14)

Then, (13) results in

Z t1

t0

„dt D �

�
Sd0
�2

2H
(15)

And, considering (11), the parameter H is obtained

H D
�
�
Sd0
�2

2gd
f

(16)

Finally, for the purpose of evaluating the tangent constitutive tensor defined later in Subsection 2.4,
the differentiation of this evolution law with respect to the energy norm is

@G.�/

@�
D

�Sd0
�2 .1CH/

(17)
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2.3.2. Exponential softening. The damage variable D is defined as a scalar function with exponen-
tial arguments

D D G.�/ D 1 �
Sd0
�

exp

"
A

 
1 �

�

Sd0

!#
(18)

The parameter A is obtained in a similar manner to the parameter H in the linear softening
law. Up to (13), the procedure is identical. Then, the damage variable, defined for the interval
D 2 Œ0; 1�, is now 8<:

G .�0/ D 0

G .�1/ D 1 ) 1 �
Sd
0

�1
exp

�
A

�
1 � �1

Sd
0

��
D 1

(19)

Because exp

�
A

�
1 � �1

Sd
0

��
> 0 is always true, it becomes obvious that �1 !1 for G .�1/ D 1.

Thus, operating on (13) with these values of G.�/ and � yieldsZ t1

t0

„dt D
�
Sd0

	2 � 1
A
C
1

2

�
(20)

And, considering (11), the parameter A is finally obtained

A D

"
gd
f�

Sd0
�2 � 12

#�1
(21)

The evaluation of the tangent constitutive tensor, performed in the following subsection, requires
the differentiation of the evolution law with respect to the energy norm, which in this case is

@G.�/

@�
D
Sd0 C A�

�2
exp

"
A

 
1 �

�

Sd0

!#
(22)

2.4. Tangent constitutive tensor

The material tangent constitutive tensor is known to be

Ctan D 4
@2‰

@C˝ @C
(23)

Introducing the decoupled definition of the Helmholtz free energy in (1) and considering the defini-
tion in (6) with D D G.�/, the material elastic-damage tangent constitutive tensor obtained is split
into a volumetric and a deviatoric part

Ctan D Ctanvol C
eCtan with

8̂̂<̂
:̂
Ctanvol D 2

@Svol
@C

D 2p
@
�
JC�1

�
@C

C 2JC�1 ˝ p
@p

@CeCtan D 2 @
@C



.1 �D/eS 0� D .1 �D/eC0tan � @G.�/

@�
eS 0 ˝ eS 0

(24)

where eC0tan D 2@eS 0=@C is the deviatoric part of the undamaged hyperelastic model and
@G.�/=@� is defined in (17) and (22), for linear and exponential softening, respectively.

3. NUMERICAL IMPLEMENTATION

The proposed model has been integrated in the in-house finite element code PLCd [25],
which is capable of solving large-strain non-linear three-dimensional solid mechanics problems.
The code, developed in Fortran, uses a Pardiso solver [34] and a Full Newton algorithm to solve the
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problems. The model has been implemented in a total Lagrangian framework, particularizing the
Helmholtz free energy in (1) for a neo-Hooke and an Ogden hyperelastic models. Any split quasi-
incompressible hyperelastic model could be used (Yeoh, Mooney-Rivlin, Arruda-Boyce, Fung, etc.),
but Neo-Hooke was chosen for its simplicity and exclusive dependence on physical parameters and
Ogden was chosen for its capability of reproducing the stress–stretch J-curve characteristic of soft
biological tissues. To overcome the numerical issues arising from incompressibility, a mixed u=p
formulation is used to solve the equilibrium equations.

3.1. Hybrid finite element formulation used

The u=p formulation implemented [35] is based on the classical displacement finite element method
but includes an additional unknown variable, the pressure p, which is interpolated separately from
the displacement variable u. These elements are typically referred to as hybrid elements. The solid
hexahedron with linear displacement and constant pressure (Q1P0) has been used in this work
because it is the simplest functional available element of this type [36, 37]. Then, the equations of
motion for a typical element are"

Kuu Kup

Kpu Kpp

#
�

"
u

p

#
D

"
Fe

0

#
�

"
Fintu

Fintp

#
(25)

where Fe is the vector of nodal forces corresponding to the external loads and the K matrices and
internal forces, Fint , are given by

Kuu D

Z
V0

BTL W C
tan

W BL dV0 C

Z
V0

BTNL � S � BNL dV0 (26)

Kup D �

Z
V0

BTNL � J C�1 dV0 D KT
pu (27)

Kpp D �

Z
V0

1

�
dV0 (28)

Fintu D

Z
V0

BTL � S dV0 (29)

Fintp D �

Z
V0

�
@‰vol

@J
C Qp

�
1

�
dV0 (30)

Here, BL and BNL are the classical linear and non-linear strain-displacement transformation tensors,
respectively; Qp is the pressure obtained by independent interpolation, and � is the bulk modu-
lus. Note that the bulk modulus, a material parameter of the constitutive model, works here as
numerical penalizer.

Because there is a single pressure value per element, the equations of motion in (25) are
condensed at elemental level and the equation to solve is reduced to

K � u D Fe � Fint with K D
�
Kuu �KupK�1ppKT

up

�
and Fint D

�
Fintu �KupK�1ppF

int
p

�
(31)

The complete u=p formulation algorithm implemented in PLCd is schematically described
in Figure 1.
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Figure 1. Scheme of the u=p or hybrid formulation implemented in the in-house code PLCd.

3.2. Model particularization for neo-Hookean hyperelasticity

The volumetric and deviatoric parts of the Helmholtz free energy in (1) particularized for an
isotropic quasi-incompressible neo-Hookean model [36, 38] are
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8<:‰vol D
�

2
.J � 1/2

Q‰ D C1
�
QIC � 3

� (32)

where C1 is a material parameter given in terms of the shear modulus, �, as C1 D �=2; and � is
the bulk modulus. QIC D IC .IIIC/

�1=3 is the modified volume-preserving first invariant of the right
Cauchy–Green strain tensor C. The first and third invariants of this tensor are IC D t r .C/ D Ci i
and IIIC D det .C/ D J 2, respectively. Through differentiation of these expressions, the complete
expressions for the constitutive equation (6) and the tangent constitutive tensor (24) are obtained as

S D Svol C .1 �D /eS 0 with Svol D �pJC�1 and eS 0 D �J�2=3 �I �
1

3
ICC�1

�
(33)

Ctan D Ctanvol C .1 �D/
eC0tan � @G.�/

@�
eS 0 ˝ eS 0

with Ctanvol D �p .IIIC/
1=2


C�1 ˝ C�1 � 2IC�1

�
C �IIICC�1 ˝ C�1

and eC0tan D 2� .IIIC/
�1=3

�
1

3
ICIC�1 �

1

3
I˝ C�1 �

1

3
C�1 ˝ IC

1

9
ICC�1 ˝ C�1

�
(34)

where the fourth-order tensor, IC�1 , is

ŒIC�1 �IJKL D
1

2

®

C�1

�
IK



C�1

�
JL
C


C�1

�
IL



C�1

�
JK

¯
(35)

3.3. Model particularization for Ogden hyperelasticity

The volumetric and deviatoric parts of the Helmholtz free energy in (1) particularized for an
isotropic quasi-incompressible Ogden model [27, 39] are8̂<̂

:
‰vol D

�

2
.J � 1/2

Q‰ D
3P
iD1

�i

˛i

�
Q�
˛i
1 C

Q�
˛i
2 C

Q�
˛i
3 � 3

	 (36)

where �i are (constant) shear moduli in the reference configuration and ˛i are dimensionless
constants, and both must satisfy the following consistency condition

2� D

3X
iD1

�i˛i with �i˛i > 0 for i D ¹1; 2; 3º (37)

Through derivation of these expressions, the complete expression for the constitutive equation (6)
is obtained

S D Svol C .1 �D /eS 0 with Svol D �pJC�1 and eS 0 D 3X
AD1

ˇAMA (38)

where ˇA is related to the deviatoric principal stretches as follows

ˇA D

3X
iD1

�i

0@ Q�˛iA � 13
3X

pD1

Q�˛ip

1A (39)

and the tensorMA is given by

MA D �
�2
A NA ˝NA (40)
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whereNA is the eigenvector of the right Cauchy–Green deformation tensor: C D
3P

AD1

�2ANA˝NA.

Further derivation results in the complete expression for the tangent constitutive tensor in (24):

Ctan D Ctanvol C .1 �D/
eC0tan � @G.�/

@�
eS 0 ˝ eS 0

with Ctanvol D �p .IIIC/
1=2


C�1 ˝ C�1 � 2IC�1

�
C �IIICC�1 ˝ C�1

and eC0tan D 3X
AD1

3X
BD1

�ABMA ˝MB C 2

3X
AD1

ˇA
@MA

@C

(41)

Here, the fourth-order tensor IC�1 is already defined in (35), �AB is related to the deviatoric
principal stretches as follows

�AB D

8̂̂̂̂
<̂
ˆ̂̂:

3P
iD1

�i˛i

 
1

3
Q�
˛i
A C

1

9

3P
pD1

Q�
˛i
p

!
if A D B

3P
iD1

�i˛i

 
�
1

3
Q�
˛i
A �

1

3
Q�
˛i
B C

1

9

3P
pD1

Q�
˛i
p

!
if A ¤ B

(42)

and the derivative
@MA

@C
is given by

@MA

@C
D

1

DA



i � I˝ IC IIIC�

�2
A

�
C�1 ˝ C�1 � IC�1

��
C

1

DA

�
�2A .I˝MA CMA ˝ I/ �

1

2
PDA�A .MA ˝MA/

�
�

1

DA



IIIC�

�2
A

�
C�1 ˝MA CMA ˝ C�1

�� (43)

where the fourth-order identity tensor i is

Œi � ijkl D
1

2

�
ıikıjl C ıilıjk

�
(44)

and the scalar DA and its derivative are²
DA D 2�

4
A � IC�

2
A C IIIC�

2
A

PDA D 8�
3
A � 2IC�A � 2IIIC�

�3
A

(45)

The numerical integration in PLCd at Gauss point level of the generalized finite-strain damage
model presented in Subsections 3.2 and 3.3 is outlined in Figure 2. The term

�
�IIICC�1 ˝ C�1

�
in the volumetric component of the tangent constitutive tensor of (34) and (41) is not included in the
definition of the tangent tensor at constitutive level, because this term is already implicitly accounted
for separately at element level in the implementation of the hybrid element schematized in Figure 1.

4. NUMERICAL EXAMPLES

The main characteristics of the generalized damage model proposed in the previous sections
are presented here by means of two representative three-dimensional examples. A homogeneous
state under uniaxial tension is reproduced with the aim of illustrating the basic constitutive
characteristics of the damage formulation for both the neo-Hookean and the Ogden particulariza-
tions of the formulation.
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Figure 2. Numerical integration at a Gauss point of the finite-strain damage model implemented in the
in-house code PLCd.

Then, a membrane with a hole at its center is subjected to a tensile load in order to show how two
different particularizations of the same formulation can result in very different damage initiation
and evolution behaviors for a same specimen.

Finally, the experimental stress–stretch curve of a fibered soft biological tissue, the rectus
sheath [26], is numerically reproduced. The damage formulation particularized for Ogden hypere-
lasticity is used to model the behavior of the tissue’s constituents, whose overall response is obtained
by means of the mixing theory. The aim is to show how this modeling approach allows accounting
for considerably different damage-softening behaviors of the constituents of a composite material
such as fibered soft tissue.
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4.1. Homogeneous uniaxial tension

An 8-noded hexahedral element with a single pressure point (Q1P0) is subjected to a displacement-
driven pure tensile load state. Uniaxial tensile loading, unloading, and reloading is imposed for both
particularizations of the damage formulation to show how the choice of hyperelastic model has a
direct influence on the response of the damage formulation. The stress–stretch response obtained for
the neo-Hookean particularization is given in Figure 3, while Figure 4 shows the result obtained for
the Ogden particularization. The linear damage evolution law given in (10) has been used in both
cases, in addition to the specific material properties shown in the respective figures.

Both materials show a non-linear elastic response from the initial point O to point A, where
damage initiates. From A to B, loading continues, but damage softening occurs. The gray dotted line
corresponds to the response of the undamaged (hyperelastic) material. In the neo-Hookean-based
damage model, stress decreases as stretch increases once damage is initiated (point A), as opposed
to the Ogden-based damage model, in which stress continues to grow with stretch, although with a
much lower stiffness than the one of the undamaged model. At point B, unloading starts and stress
decreases with the decreasing stretch, up to point O, where loading is imposed again. The reloading

Figure 3. Second Piola–Kirchhoff stress versus stretch for loading, unloading, and reloading considering the
linear damage evolution law with the neo-Hookean particularization of the damage formulation (left) and

the material parameters used (right).

Figure 4. Second Piola–Kirchhoff stress versus stretch for loading, unloading, and reloading considering
the linear damage evolution law with the Ogden particularization of the damage formulation (left) and the

material parameters used (right).
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path (O-B) is the same as the unloading one, with a stiffness lower than the original undamaged one
(curve O-A). When reloading reaches the stretch value at which maximum damage had occurred
previous to the unloading phase (point B), softening continues as if the unloading and reloading had
not taken place. At point C, unloading up to point O and reloading is imposed once more, exhibiting
the same behavior as the first unloading–reloading phase (B-O-B).

As can be observed in these results, the damage model proposed is based on an accumulative dis-
continuous damage variable which can increase but never decrease, as imposed by the Kuhn–Tucker
conditions. This model is analogous to the infinitesimal strain model proposed by Oller [22] but
translated into a finite-strain framework in which large non-linearity is present, as made clear by the
stress–stretch curves plotted in Figures 3 and 4 . Note that the generalized damage model can result
in disparate softening behaviors, depending on the value of stiffness and amount of non-linearity
displayed by the original undamaged hyperelastic model chosen as basis for the generalized damage
model. These dissimilarities are further enhanced depending on the combination of material param-
eter values used. The effect of changing the initial damage threshold stress Sd0 and the maximum
dissipated fracture energy gd

f
values, as well as the type of damage evolution law selected, is illus-

trated in Figure 5 for the neo-Hookean particularization of the damage formulation and in Figure 6
for the Ogden one. In both figures, the gray solid line represents the undamaged (hyperelastic)
response, while the dotted lines show the response of the damage model for different combinations
of material parameters, where Sd is the initial damage threshold stress, Sd0 , and Gf is the maximum

Figure 5. Results for the neo-Hookean particularization of the damage formulation for an initial damage
threshold stress Sd D 10 kPa and different fracture energy values, Gf. Second Piola–Kirchhoff stress versus
stretch considering the linear softening law (top left) and the corresponding evolution of the damage variable,
D (bottom left). Second Piola–Kirchhoff stress versus stretch considering the exponential softening law (top

right) and the corresponding evolution of the damage variable, D (bottom right).
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Figure 6. Results for the Ogden particularization of the damage formulation for different fracture energy,
Gf, and initial damage threshold stress, Sd, values. Second Piola–Kirchhoff stress versus stretch considering
the linear-softening law (top left) and the corresponding evolution of the damage variable, D (bottom left).
Second Piola–Kirchhoff stress versus stretch considering the exponential softening law (top right) and the

corresponding evolution of the damage variable, D (bottom right).

dissipated fracture energy per unit of area, that is, Gf D gd
f
L0. Here, L0 is the element’s charac-

teristic length in the reference configuration [12, 29]. These figures show the stress–stretch curves
obtained under uniaxial loading when using the linear and the exponential damage evolution laws
and, subsequently, the corresponding evolution of the internal damage variable, D.

It is interesting to observe how the use of the exponential damage evolution law in the neo-
Hookean particularization of the model translates into a more markedly non-linear softening
behavior in the stress–stretch response. Yet, the opposite effect is observed in some of the stress–
stretch responses of the Ogden particularization, for example, the one obtained for Sd D 20 kPa and
Gf D 35 kN/m. This is due to the interaction of the exponential softening with the highly non-linear
original undamaged (hyperelastic) curve.

4.2. Membrane with a hole

The membrane with a hole at its center depicted in Figure 7 is subjected to the indicated
displacement-driven displacements u. Due to the symmetry in the specimen, only a quarter of the
membrane has been discretized using 360 8-noded hexahedral elements with a single pressure point
(Q1P0). Symmetry conditions are imposed, thus, nodes belonging to the symmetry y � ´ plane
shown in Figure 7 have motion restricted in the x�direction, while nodes belonging to the symme-
try x � ´ plane have motion in the y�direction restricted. A total of 500 accumulative incremental
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Figure 7. Geometry (r D 100mm, h D w D 200mm, and t D 20mm) and loading of the membrane with a
hole as described in [40] (left); and mesh and boundary conditions imposed on the quarter of the membrane

which has been discretized (right).

displacements are imposed in the y�direction on the nodes of the top part of the specimen, with the
other directions left unrestrained.

The example is run for both the neo-Hookean and Ogden particularizations of the damage for-
mulation. In the former, the material properties used are those defined in Figure 3, except for the
fracture energy which is set to Gf D 600 kN/m; while the latter uses the material properties defined
in Figure 4, except for the initial damage threshold stress and the fracture energy which are set to
Sd D 3 kPa and Gf D 1200 kN/m, respectively.

The mechanical response of the membrane with neo-Hookean-based damage formulation is illus-
trated in Figure 8 (top left) by means of the vertical reaction versus stretch curve. The vertical
reaction plotted is the total resultant reaction force in the y�direction of the quarter of the speci-
men. It can be observed how the initial response of the curve follows the undamaged (hyperelastic)
load path, depicted as a gray dotted line in the figure, up to approximately a displacement value of
u D 15 mm. This point corresponds to the initiation of damage in the specimen, whose progres-
sion results in a considerable reduction of the overall structural stiffness. Figure 8 (bottom) shows
the distribution of the damage variable, D, in the specimen for the displacement values u D 20, 28,
and 47 mm.

Damage initiates in the bottom corner of the quarter hole and progresses horizontally in the out-
ward direction, localizing for the lower band of elements. This localization allows verifying that
energy dissipation is being computed correctly following the calculations described in the Appendix.
As these elements where damage has localized are increasingly damaged, loosing, thus, the stiffness
of their deviatoric part, they become largely deformed. However, the quasi-incompressible character
of the hybrid elements requires that the adjacent band of elements deform to accommodate the nar-
rowing of the highly damaged elements in the lower band. This, in turn, generates higher deviatoric
stresses in these adjacent row of elements, which result in damage initiation.

The convergence curves for each load increment, plotted in Figure 8 (top right), show adequate
convergence of the solution. Note that a tolerance of 10�7 has been used.

The vertical reaction of the membrane with Ogden-based damage formulation is plotted versus
the stretch in Figure 9 (top left). In this case, the value of the vertical reaction continues increasing
once damage initiates in the structure at approximately u D 20 mm, albeit at a considerably slower
rate than the expected load path of the corresponding undamaged (hyperelastic) model, depicted as
a gray dotted line. This effect is analogous to the one observed in the stress versus stretch curves
of Figure 6, where the stiffness increase of the undamaged model is much higher than the decrease
induced by damage softening on the deviatoric part of the stress. However, damage softening is
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Figure 8. Neo-Hookean-based damage model with an initial damage threshold stress Sd D 10 kPa and
fracture energy Gf D 600 kN/m. Vertical reaction versus stretch response (top left) and convergence curves
of each load step (top right). Damage distribution, D, of this specimen corresponding to the imposed
displacement values, u, of 20 mm (bottom left), 28 mm (bottom center) and 47 mm (bottom right). Real

deformation (�1) is plotted.

still occurring because the damaged response exhibits lower stiffness than the original undamaged
hyperelastic model. Thus, the damage formulation proposed is capable of representing a wide range
of damage-softening behaviors including both positive and negative slopes in the load-displacement
or stress–stretch response.

As in the neo-Hookean-based model, damage also initiates in the bottom corner of the quarter
hole but now progresses differently, as seen in Figure 9 (bottom). In this case, damage does not
localize in a band of elements, instead, it propagates vertically at first and, then, outward, resulting
in a much larger zone of the structure affected by damage. Note that the displacements imposed in
this model are three times as large as those imposed in the neo-Hookean-based one, therefore, stress
induced by them will also be larger and probably increases faster than the damage propagation rate
that would be required for localization in the lower band of elements.

The convergence curves for each load increment, plotted in Figure 9 (top right), show adequate
convergence of the solution. Note that a tolerance of 10�7 has been used.

4.3. Damage in fibered soft biological tissue

The damage formulation proposed in this paper has been developed with the aim of representing
the behavior of fibered soft biological tissues by means of mixing theory. This theory provides the
behavior of a composite material as the composition of the individual components according to their
particular morphology and mechanical properties. For a more detailed description of the theoretical
basis of mixing theory see, for example, reference [41] or [42].

Because mixing theory is, in fact, a constitutive equation manager, it allows for disparate material
behaviors of its individual components, each representable by a completely different constitutive
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Figure 9. Ogden-based damage model with an initial damage threshold stress Sd D 3 kPa and fracture
energy Gf D 1200 kN/m. Vertical reaction versus stretch response (top left) and convergence curves of each
load step (top right). Damage distribution, D, of this specimen corresponding to the imposed displacement
values, u, of 27 mm (bottom left), 44 mm (bottom center) and 76 mm (bottom right). Real deformation (�1)

is plotted.

equation. To the best knowledge of the authors, the constitutive models used up to date to represent
damage in fibered soft tissues integrate the contribution of the fibers and matrix at strain-energy
function level [30–33, 43]. The mixing theory approach manages the contribution of fiber and
matrix at stress level. This allows for more flexibility in composing the overall behavior of the tissue
because the fiber and matrix can be easily modeled with different constitutive equations if required.
In addition, the simple constituent models used have a solid and established thermodynamical basis,
which allows for better tracing of the individual component’s thermo-mechanical behavior.

In this context, the proposed damage model can be used to represent damage in either fiber or
matrix, or in both. Then, the contribution of each component to the composite tissue is determined
by their volumetric participation (v). As an example, the experimental data obtained by Martins
et al. [26] is used to illustrate how the manifestly different behaviors of fiber and matrix can be
represented by means of the damage model proposed, particularized for Ogden hyperelasticity, and
in the framework of mixing theory.

The work by Martins et al. provides experimental stress–stretch curves obtained from a uni-
axial tensile test of a rectus sheath sample in the longitudinal and transversal directions. Using
Matlab’s Curve Fitting Toolbox [44], an initial estimate of the material parameters of fiber and
matrix were obtained, which were then adjusted in the numerical reproduction of the sample to bet-
ter fit the experimental curve. The material parameters used are given in Figure 10, together with
the stress–stretch curve numerically obtained using mixing theory and the Ogden-based damage
formulation implemented in the in-house code PLCd. Due to lack of information, the fiber contri-
bution to the composite was estimated as 20% of the composite, based on information available
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Figure 10. Cauchy stress versus stretch of the composite and its individual components modeled
with the Ogden-based damage formulation and mixing theory to reproduce the experimental data by

Martins et al. [26] (left) and the material parameters used (right).

in literature. A different proportion of fiber and matrix in the composite would obviously lead to
a completely different stress response of the fiber in order to fit the composite response with the
experimental data.

5. CONCLUSIONS

A new generalized damage model for quasi-incompressible hyperelasticity in a total Lagrangian
finite-strain framework has been presented and discussed. The damage model is based on the decou-
pled volumetric–isochoric definition of quasi-incompressible hyperelastic formulations. These
require the use of hybrid elements, in which an additional variable, pressure, must be computed
from the equations of motion in addition to the displacements.

A Kachanov-like reduction factor is applied on the deviatoric part of the hyperelastic constitu-
tive model. Linear and exponential softening have been defined as damage evolution laws, both
translated from an infinitesimal strain context to the present finite-strain framework. Other soften-
ing laws could be considered to model particular materials. However, the evolution laws presented
here have the advantage of a straightforward formulation and being easily adaptable to model dif-
ferent material behaviors because they are defined only by the material properties initial damage
threshold stress, Sd0 , and maximum dissipated fracture energy per unit volume, gd

f
. Also, the pop-

ular Simo and Ju damage criterion has been used, but any other energy-based criterion could be
easily introduced.

The generalized damage model has been particularized for two types of hyperelastic formulation,
neo-Hooke and Ogden hyperelasticity, and implemented in the in-house finite element code PLCd.
Examples have been presented in order to illustrate the main characteristics of the proposed damage
model. The damage variable used has been shown to be accumulative and discontinuous, as imposed
by the Kuhn–Tucker conditions.

The damage formulation particularized for Ogden hyperelasticity has been used to fit experimen-
tal data of fibered soft biological tissue [26] by means of mixing theory. This theory describes the
behavior of a composite material as the composition between the individual components. In this
case, both fiber and matrix have been modeled with the aforementioned damage formulation. How-
ever, the constituents in mixing theory can be modeled with any desired constitutive equation, which
allows for a wide range of possible material behaviors and, thus, a large variety of overall composite
responses. Although the damage model presented in this paper is isotropic, further work includes
introducing anisotropy at a composite level through the mixing theory formulation.
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The damage-softening approach presented is robust and versatile. It can be easily adapted to any
desired hyperelastic formulation as long as it is defined with split volumetric and deviatoric parts. In
addition, it is able to reproduce a wide range of softening behaviors, as made clear in the numerical
examples. However, one must bear in mind that the non-linear nature of the undamaged formulations
influences greatly the final softening behavior of the damage model. Unlike in the infinitesimal
strain context, the linearity or exponentiality of the damage evolution law does not directly dictate
the shape of the softening curve in the present model.

Furthermore, the use of quasi-incompressible elements makes it difficult for damage to local-
ize in a band of elements as is common in infinitesimal strain damage models. Damaged elements
loose part of their stiffness, stretching in the loading direction. Due to incompressibility, the nar-
rowing of these elements require the adjacent elements to deform accordingly, inducing higher
deviatoric stresses in them which, in turn, results in damage. Note, however, that Q1P0 elements
have been used, which require fine meshing due to the lack of compliance with the inf-sup condition.
Improving the u=p elements will predictably result in better results, especially in terms of dam-
age localization and evolution in complex geometries. In any case, the fact that damage is applied
only on the deviatoric part of the model means that, for a completely damaged structure, there will
always remain a volumetric quasi-incompressible undamaged part.

APPENDIX A: CALCULATION OF THE DISSIPATION

The total dissipation value of the structure, Wf , is numerically obtained by means of expression (5)
as follows

Wf D

Z
V

Z t1

t0

„dt dV (A.1)

When damage localizes in a band of elements, this can be compared with an estimate of the same
value calculated in terms of the fracture energy, taking into account (11), and the final volume of the
elements in the damaged band as

Wf D

Z
V

gdf dV D g
d
f Vf (A.2)

where the maximum dissipated fracture energy per unit volume, gd
f

, is related to the material prop-
erty Gf , which is the maximum dissipated fracture energy per unit area, through the element’s
characteristic length in the reference configuration, L0 : gd

f
D Gf =L0. The final volume can be

computed as Vf D Af lf , where Af is the final cross-section area of the band of elements where
damage has localized and lf is the final length of these elements in the direction perpendicular to
Af . Finally, defining a final damage stretch as �f D lf =L0, the expression for the total dissipation
results in

Wf D �fAfGf (A.3)
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