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We present a general method to construct translation-invariant and SU(2) symmetric antiferro-
magnetic parent Hamiltonians of valence bond crystals (VBCs). The method is based on a canonical
mapping transforming S = 1/2 spin operators into a bilinear form of a new set of dimer fermion
operators. We construct parent Hamltonians of the columnar- and the staggered-VBC on the square
lattice, for which the VBC is an eigenstate in all regimes and the exact ground state in some region
of the phase diagram. We study the depart from the exact VBC regime upon tuning the anisotropy
by means of the hierarchical mean field theory and exact diagonalization on finite clusters. In both
Hamiltonians, the VBC phase extends over the exact regime and transits to a columnar antiferro-
magnet (CAFM) through a window of intermediate phases, revealing an intriguing competition of
correlation lengths at the VBC-CAFM transition. The method can be readily applied to construct
other VBC parent Hamiltonians in different lattices and dimensions.

Quantum magnets host a wealth of phases and exotic
phenomena. The complex interplay between spin interac-
tions and lattice topology may eventually prevent the sta-
bilization of magnetic order. In particular, frustrated an-
tiferromagnetic spin-1/2 interactions may favor the par-
tition of the system into nearest-neighbor (NN) spin sin-
glets, so-called valence-bonds (VB), covering the lattice
in a periodic pattern or VB crystal (VBC) [1]. Eventu-
ally, VBs may resonate and recover translational invari-
ance by forming a resonating-VB (RVB) spin liquid, as
has been conjectured to occur in high-Tc cuprates [2, 3].
Particularly interesting is the zero-temperature quantum
phase transition from the former state to an ordered AF
phase [4], a transition that can be experimentally probed
upon tuning external pressure [5] or magnetic field on
various materials [6]. Under certain specific conditions,
it has been argued that a class of VBC-AF transitions
in two-dimensions (2D) are driven by the deconfinement
of fractional excitations at a critical point [7], contrary
to what is generally expected within Landau theory. To
test these ideas, a family of antiferromagnetic Heisen-
berg Hamiltonians with additional four- and six-spin in-
teractions favoring VBC order and amenable to quan-
tum Monte Carlo (QMC) computations has been intro-
duced during the last decade [8–10]. These models, so-
called J−Q models, show unusual scaling behavior at the
VBC-AF transition point [10–14] and, in some cases, a
weak VBC signal [8, 11]. In order to furnish this putative
new class, it would be desirable to enlarge the number
of Hamiltonians hosting VBC-AF transitions. In par-
ticular, antiferromagnetic Hamiltonians hosting an exact
VBC ground-state (GS) shall provide a convenient test
bed where the VBC phase is unambiguously defined.

There exist few parent Hamiltonians of VBC states.
The paradigmatic models in 1D and 2D those of
Majumdar-Gosh [15] and Shastry-Sutherland [16], re-
spectively. More recently, 2D parent Hamiltonians of dif-

ferent VBCs have been constructed [17, 18] by using sums
of local projectors, so-called Klein models [19]. How-
ever, this method may lead to a GS manifold of various
degenerate VBC patterns [20], a feature that has been
otherwise exploited to construct parent Hamiltonians of
short-range RVBs [21–23], important for their potential
applications to topological quantum computation [24].

In this Letter, we present a general method to con-
struct SU(2) symmetric and translation-invariant VBC
parent Hamiltonians based on a canonical mapping that
exactly identifies a VBC state with the vacuum of a
new set of dimer fermions (DF). Starting with a generic
anisotropic AF Heisenberg Hamiltonian as an Ansatz,
this mapping guides our search for additional translation-
invariant interactions that, summed to the Ansatz, make
the vacuum an exact eigenstate of the sum. As an exam-
ple, we construct parent Hamiltonians of the staggered-
and the columnar-VBC (SVBC and CVBC) on the
square lattice, finding that anisotropic four-spin inter-
actions are required to exactly stabilize the VBC in both
cases. Interestingly, the SVBC parent Hamiltonian hosts
an exact GS within a finite region of the phase diagram,
differently from other parent Hamiltonians where the ex-
act GS is found on a single point [15, 17, 18, 20]. Upon
tuning the anisotropy, the VBC transits to a columnar
AFM (CAFM) phase characterized by a finite magneti-
zation at the columnar wave vector (0, π) through a win-
dow of intermediate phases (IPs) characterized by the
strong competition of correlations at different character-
istic lengths (see Fig. 1).

Dimer fermion mapping.— Consider a lattice where a
quantum spin S = 1/2, described by the operator Saj
(a = x, y, z), resides on each vertex, j, of a lattice of size
N . We choose a VBC pattern on this lattice, defining
a superlattice where in each vertex, r, resides a dimer,
i.e. a pair of NN spins. Each site of the lattice can thus
be referred to by its position within a dimer, α, and the
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FIG. 1. Schematic representation of the SVBC (a) and CVBC
(b) states and their respective parent Hamiltonians, together
with their phase diagrams, (c) and (d). Green ovals represent
dimers, thick solid lines represent the Heisenberg interaction
among NN spins along the x (black) and y (red) directions,
second-NN spins (dotted blue), and a subset of fourth-NN
spins (dashed green). Pairs of orange waved- and spring-lines
represent anisotropic four-spin interactions.

position of the dimer in the superlattice, i.e. j ≡ r, α
(α = 1, 2). Considering the Majorana representation of
spins [25], Saj = − i

2

∑
b,c ε

abcηbjη
c
j , where εabc is the Levi-

Civita tensor and the Majorana fermions, ηaj = ηa†j , obey

anticommutation relations {ηai , ηbj} = δabδij , we define a
dimer fermion (DF) as the linear combination of two
Majorana fermions of a dimer,

fa†r =
1√
2

(
ηar,1 + iηar,2

)
, far = (fa†r )†. (1)

The DFs obey the usual fermionic anticommutation rela-
tions, {far , f b†r′ } = δabδrr′ . Inverting the relation (1), we
can express the spin operators in terms of DFs,

Sar,1 =
1

2

∑
b,c

εabc
(
T bcr + ∆bc

r

)
, (2)

Sar,2 =
1

2

∑
b,c

εabc
(
T bcr −∆bc

r

)
, (3)

where we have defined the fully antisymmetric number-
conserving and non-conserving DF operators,

T abr = − i

2

(
fa†r f br − f b†r far

)
, (4)

∆ab
r = − i

2

(
fa†r f b†r − f brfar

)
. (5)

The operators (4) and (5) are indeed the generators of
the SU(2)⊗SU(2)'SO(4) algebra of a dimer [26]. Notice
that the mapping (2)-(3) relating S=1/2 spin operators
and DFs is canonical without the need of any additional
constraint, contrary to other slave-particle mappings.

In the DF representation, the dimer Hilbert space is
doubled with respect the physical one, existing two equiv-
alent copies of the singlet (|s〉) and the triplet states. By
applying the total spin operator, S2

r = (Sr,1 +Sr,2)2, and
its third component, Szr = (Szr,1 + Szr,2), to the eight DF
states of the dimer we can identify the vacuum and dou-
ble occupied DF states, on the one hand, and the fully
and single occupied states, on the other, with two equiv-
alent copies of the singlet and triplet states (see Supple-
mental Material [27] for details). Without loss of general-
ity, the VBC state can be identified with the DF vacuum,

|VBC〉 =
∏
r

|s〉r = |0〉 . (6)

A direct consequence of the DF mapping (2)-(3) is that
the Heisenberg (HB) interaction among two spins, Bij =
SiSj , maps to a one-body DF operator,

Dr = −3

4
+

1

2
nr(3− nr), (7)

where nr =
∑
a f

a†
r far , when it acts on the two spins

comprising a dimer (i = r, 1; j = r, 2). Alternatively,
Bij maps to a two-body DF operator when it acts on
two different dimers (i ∈ r, j ∈ r′ 6= r),

Cαα
′

rr′ =
1

2

∑
a,b

(T abr T abr′ + V αα
′
T abr ∆ab

r′

+ V α
′α∆ab

r T
ab
r′ +Wαα′∆ab

r ∆ab
r′ ), (8)

where V αα
′

and Wαα′ refer to the elements of the 2×2
matrices,

V =

(
1 −1
1 −1

)
and W =

(
1 −1
−1 1

)
,

encoding the information about the position of the two
spins within their respective dimers.
VBC parent Hamiltonian construction.— Once a VBC

pattern is chosen in the lattice of interest, we propose a
general SU(2) symmetric AFM ansatz Hamiltonian, H0.
For the sake of simplicity, let us restrict ourselves to the
construction of the SVBC on the square lattice, although
the same steps can be followed in other cases. In this case,

H0 =
∑
j

(JxBj,j+x̂ + JyBj,j+ŷ) . (9)

where we refer by x̂ and ŷ to the unit vectors defining
the square lattice. We rewrite (9) in terms of DFs by
directly applying the DF mapping (2)-(3),

HDF
0 = Jx

∑
r

(
Dr + C21

r,r+e1

)
+Jy

∑
r

(
C21
r,r+e2 + C12

r,r+e3

)
, (10)

where e1, e2 and e3 refer to the basis vectors of the tri-
angular superlattice defined by the SVBC (Fig.1).
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The terms preventing the DF vacuum to be an eigen-
state of (10) are the ∆∆ terms of the inter-dimer opera-
tors (8), as Cαα

′

rr′ |0〉 = Wαα′
∑
a,b ∆ab

r ∆ab
r′ |0〉 . Therefore,

we need to search for additional translation-invariant and
SU(2) symmetric terms (Had) such that they annihilate
the ∆∆ terms in (10), and make the DF vacuum an eigen-
state of the total Hamiltonian, H = H0+Had, with eigen-
value ε = −3JxN/8. In constructingHad, we make use of
the symmetry properties of the inter-dimer operator (8),

C11
rr′ |0〉 = C22

rr′ |0〉 = −C12
rr′ |0〉 = −C21

rr′ |0〉 . (11)

In particular, by adding a second-NN Heisenberg term,
J2
∑
〈〈ij〉〉Bij , with J2 = Jy/2, we can annihilate the

∆∆ terms along the e2 and e3 directions of the triangu-
lar superlattice (see Fig. 1). The remaining ∆∆ terms
along the e1 direction can be annihilated by adding an
anisotropic four-spin interaction, Qx

∑
〈ijkl〉BijBkl, with

Qx = 2Jx/3, where 〈ijkl〉 refers to a plaquette of the
square lattice. Finally, the SVBC is then an eigenstate
of

H =
∑
j

(JxBj,j+x̂ + JyBj,j+ŷ)

+
Jy
2

∑
〈〈ij〉〉

Bij +
2Jx
3

∑
〈ijkl〉

BijBkl. (12)

In order to assess whether the DF vacuum is not just
an eigenstate but the exact GS in any regime, the total
Hamiltonian is expressed as a translation-invariant sum
of local Hamiltonians shifted by the DF vacuum eigen-
value, i.e. H = ε +

∑
j Hj . The local Hamiltonian of

(12) is straightforward and thus given in the Supplemen-
tal Material. If the local Hamiltonian Hj is semi-positive
definite, the DF vacuum is the exact GS. In particu-
lar, the SVBC is the exact GS of (12) within the range
−4/3 ≤ Jy/Jx ≤ 2/3.

Notice that, alternatively to the four-spin interaction,
we may have added a second-NN HB interaction along
the x-direction to annihilate the ∆∆ terms along the e1
direction. However, the resulting local Hamiltonian is
not semi-definite positive.

Following the same steps, one can show that the CVBC
is the exact GS of

H =
∑
j

(JxBj,j+x̂ + JyBj,j+ŷ) + J2
∑
〈〈ij〉〉

Bij

+J4
∑
〈〈〈ij〉〉〉

Bij + Q̃x
∑
〈ijkl〉

BijBkl, (13)

for the particular point Jy = 0, when the couplings are

fixed to J2 = Jy, J4 = Jy/2, and Q̃x = Jx/3, and
where the third term accounts for HB interactions among
fourth-NN spins, and the fourth term accounts for four-
spin interactions in tilted plaquettes (see Fig. 1).

Phase diagram.— As the four-spin AF interactions
present in (12) and (13) pose sign-problems to state-
of-the-art QMC simulations [28], we study the depart

from the exact VBC GS by combining exact diagonal-
ization (ED) on finite clusters with periodic boundary
conditions and hierarchical mean field theory (HMFT)
in the Gutzwiller approximation [29–31]. From the tech-
nical standpoint, both methods involve the diagonaliza-
tion of finite clusters of N sites, and their combined use
provide complementary information about the thermo-
dynamic limit.

The HMFT-Gutzwiller consists in using an homo-
geneus product of cluster states as an Ansatz for the
GS in the thermodynamic limit. Its variational deter-
mination reduces to perform ED on a cluster with open
boundary conditions and a set of self-consistently defined
mean-fields acting on its boundaries that allow for the
breakdown of symmetries and stabilization of different
long-range orders. As a consequence, the sizes attained
with HMFT are smaller than those of ED. For appro-
priate choices of the cluster shape —romboid and dia-
mond for the SVBC, and square for the CVBC— the
HMFT wave function contains the exact VBC state (see
Supplemental Material for details). In addition, it al-
lows for the systematic computation of observables di-
rectly in the thermodynamic limit. In particular, the
energy is an upper bound to the exact one. We charac-
terize VBC and CAFM phases by computing the mag-
netization Mk = 1

N

∑
j e

ikrj 〈Szj 〉, at different wave vec-
tors and the dimerization along the x and y directions,
Dν = 1

N

∑
j(−1)jν 〈SjSj+ν̂〉, where ν = x, y [4].

Upon tuning the anisotropy in the antiferromagnetic
regime, we find for both Hamiltonians that the VBC
phase extends beyond the exact GS regime and transits
to a CAFM phase characterized by a vanishing singlet-
triplet gap (ED) consistent with a strong columnar
magnetization M(0,π) ∼ 0.4 (HMFT) through a region
where various IPs appear when using large cluster sizes
(HMFT) (see Figs. 2 and 3). In Fig.2 we show the scaling
of the GS phase diagram of the SVBC parent Hamilto-
nian (12) as computed with ED (N = 8, 16, 32, 36) and
HMFT (N = 4, 8, 16, 24), together with HMFT results
on energies and order parameters (M and D). Both the
ED (Fig.2a) and HMFT (Fig.2b) scalings of the phase di-
agram show that the SVBC boundary tends towards the
near the isotropic regime. Within HMFT and small clus-
ter sizes (N = 4, 8), we find a first order SVBC-CAFM
transition. For bigger cluster sizes (N = 16, 24), the di-
rect SVBC-CAFM transition is replaced by a window
of IPs: one within 16-HMFT and two (IP1 and IP2)
within 24-HMFT. Interestingly, the IPs energies tend
to smoothen the intersection of the SVBC and CAFM
linear energies found with the smaller clusters (Fig.2c).
The IP1 is characterized by suppression of dimer or-
der, Dx ' −0.16 (Fig.2d) while the IP2 is character-
ized by suppression of columnar magnetization. Note
that these IPs are numerically converged only when re-
stricting the variational space to cluster configurations
with

∑
j〈Szj 〉 = 0, and that the transition IP2-CAFM
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FIG. 2. Scaling of the GS phase diagram of the SVBC parent
Hamiltonian (12) as computed with (a) ED and (b) HMFT.
Inset (a): Singlet-triplet gap computed with ED at Jy/Jx =
1.4. (c) Energy per site (units of Jx) computed with HMFT
for different cluster sizes of romboid shape. (d) Magnetization
M and dimerization D as computed with 24-HMFT.

takes place at a tiny region not fully converged even with
this cutoff, both features signaling the presence of strong
quantum fluctuations in this window.

In Fig. 3 we show the scaling of the GS phase dia-
gram of the CVBC parent Hamiltonian (13) as computed
with ED (N = 8, 16, 32) and HMFT (N = 4, 16, 24) ob-
taining a similar picture. Interestingly, in this case the
HMFT phase diagram is quite stable from 2×2 to 4×4,
and a single IP with slightly suppressed CAFM order and
negligible dimerization appears in a small window when
computing with the largest cluster, 6×4-HMFT. Same as
for the SVBC parent Hamiltonian, this IP is only con-
verged by applying the previously described cutoff to the
variational space.

Summary and conclusion.— We have presented a sys-
tematic method to construct translation-invariant SU(2)
symmetric VBC parent Hamiltonians based on a canon-
ical mapping identifying a VBC state with the vacuum
of a new set of dimer fermions (DFs). This mapping
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FIG. 3. Scaling of the GS phase diagram of the CVBC parent
Hamiltonian (13) as computed with (a) ED and (b) HMFT.
Inset (a): Singlet-triplet gap computed with ED at Jy/Jx = 1.
(c) Energy per site (units of Jx) computed with HMFT for
different cluster sizes of square shape. (d) Magnetization M
as computed with 6×4-HMFT.

guides our search for translation-invariant interactions
that added to an anisotropic AF Heisenberg Hamiltonian
render the VBC to be an exact eigenstate, and the exact
GS when the related local Hamiltonian is semi-positive
definite. We have constructed the parent Hamiltonians of
a staggered- and a columnar-VBC (SVBC and CVBC) on
the square lattice, both containing frustrating four-spin
AF interactions. ED and HMFT-Gutzwiller calculations
show a common phase diagram where the VBC extends
over the exact regime and transits to a columnar AF
(CAFM). A window of strongly fluctuating intermediate
phases (IPs) appear at the VBC-CAFM transition when
computing with large clusters in HMFT. Their subtle
numerical convergence signal that this window might be
governed by unusual characteristic length scales exceed-
ing the cluster sizes used, and excludes a direct VBC-
CAFM first order transition. Greater system sizes, which
lie beyond the limit of current computer capabilities, are
needed to unveil the ultimate nature of this region. Hints



5

about the eventual proximity to an RVB state may be ob-
tained by computing entanglement entropies, something
which is beyond the scope of this work. The method here
presented can be applied to other 2D and 3D lattices of
current experimental interest where quantum paramag-
nets are observed, such as the kagome [32], for which
sign-problem free QMC [33, 34] and tensor network [35]
calculations on RVB states have been already developed.
Particularly promising in understanding quantum para-
magnets would be the construction of Hamiltonians that
may interpolate from a VBC to an RVB state.
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Supplemental Material

THE DIMER FERMION MAPPING

The vacuum and doubly occupied DF states, and the fully and singly occupied DF states, comprise two equivalent
copies of the dimer Hilbert space. We can classify them by applying the total spin, S2

r = (Sr,1 + Sr,2)2, and third
component, Szr = (Szr,1 + Szr,2), written in terms of DFs to each of the eight fermionic states of a dimer.

The total spin of a dimer is,

S2
r = 2Sr,1Sr,2 + S2

r,1 + S2
r,2, (S1)

The first term of the right-hand side is indeed twice the intra-dimer Heisenberg (HB) interaction, Dr = Sr,1Sr,2,
which can be written in terms of DFs by directly applying the mapping (2)-(3),

Sr,1Sr,2 =
1

4

∑
a

∑
b,c

∑
b′,c′

εabcεab
′c′
(
T bcr + ∆bc

r

) (
T bcr −∆bc

r

)
. (S2)

Taking into account the properties of the Levi-Civita tensor,
∑
a ε

abcεab
′c′ = δbb

′
δcc
′ − δbc′δcb′ , that T bcr ∆bc

r = 0 =
∆bc
r T

bc
r , and using the antisymmetry properties of the T (4) and ∆ (5) DF operators,

Sr,1Sr,2 =
1

2

∑
b 6=c

(
T bcr T

bc
r −∆bc

r ∆bc
r

)
. (S3)

Substituting the number conserving (T ) and non-conserving (∆) operators in terms of DFs and making use of the
anticommutation relation of DFs,

Sr,1Sr,2 = −1

8

∑
b6=c

[
1− 2

(
f b†r f

b
r + f c†r f

c
r

)]
− 1

2

∑
b 6=c

f b†r f
b
rf

c†
r f

c
r . (S4)

Finally, taking into account the three fermionic species,

Sr,1Sr,2 = −3

4
+

1

2
nr (3− nr) . (S5)

Following similar steps, one can show that S2
r,1 = 3/4 and S2

r,2 = 3/4 are satisfied when written in terms of DFs.
Therefore, Eq. (S1) has the final form,

S2
r = nr(3− nr), (S6)

where nr =
∑
a f

a†
r far . The vacuum, singly, doubly, and fully occupied DF states are eigenstates of (S6) with

eigenvalues 0,2,2, and 0, respectively.
The third component of the dimer spin, Szr = (Szr,1 + Szr,2), can be equivalently obtained by directly applying the

DF mapping (2)-(3),

Szr = 2T xyr . (S7)

Writing explicitly the number-conserving operator T in terms of DFs,

Szr = −i(fx†r fyr − fy†r fxr ). (S8)

Applying the third component to the vacuum and doubly occupied states

Szr |000〉 = 0, (S9)

Szr |011〉 = −i |101〉 , (S10)

Szr |101〉 = i |011〉 , (S11)

Szr |110〉 = 0 (S12)
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where we have used |nx, ny, nz〉 with na = fa†fa (a = x, y, z) to refer to the dimer states in terms of the DF occupation
basis. Collecting the eigenvalues of the total spin (S6) and its third component we can unambiguously identify the
vacuum with the singlet, |s〉 = (1/

√
2)(|↑↓〉 − |↓↑〉),

|000〉 = |s〉 , (S13)

and |110〉 with the non-magnetic triplet, |t0〉 = (1/
√

2)(|↑↓〉+ |↓↑〉),
|110〉 = eiφ |t0〉 , (S14)

where φ is a phase to be determined below.
Diagonalizing the subspace defined by (S10) and (S11) we can identify the other two triplet states, |t+〉 = |↑↑〉 and

|t−〉 = |↓↓〉, by

|t+〉 =
eiϕ+

√
2

(−i |101〉+ |011〉), (S15)

|t−〉 =
eiϕ−√

2
(i |101〉+ |011〉). (S16)

where ϕ+ and ϕ− are phases that will be determined in the following by applying the non-conserving number operator
∆ in terms of spin operators to the vacuum –i.e. the singlet state. In particular, by noticing that |110〉 = 2i∆xy

r |000〉
and that (Szr,1 − Szr,2) = 2∆xy

r we have that

|110〉 = i(Szr,1 − Szr,2) |s〉 = i |t0〉 . (S17)

Comparing with (S14), then φ = π/2. Following analogous arguments and recalling that Sx = (S+ + S−)/2 and
Sy = (S+ − S−)/2i where S± stand for the ladder operators of the SU(2) group,

|101〉 =
1√
2

(|t+〉+ |t−〉), (S18)

|011〉 = − i√
2

(|t+〉 − |t−〉). (S19)

Finally, inverting the relations we have

|s〉 = |000〉 , (S20)

|t0〉 = −i |110〉 , (S21)

|t+〉 =
1√
2

(|101〉+ i |011〉), (S22)

|t−〉 =
1√
2

(|101〉 − i |011〉). (S23)

Equivalently, the fully and singly occupied states comprise a second equivalent copy of the singlet and triplet states.

LOCAL HAMILTONIANS OF THE SVBC AND CVBC PARENT HAMILTONIANS

The parent Hamiltonian of a VBC can be written as a translation-invariant sum of local Hamiltonians shifted by
the DF vacuum eigenvalue, H = ε+

∑
j Hj , where ε = −3JxN/8. In particular, the local Hamiltonian corresponding

to the SVBC parent Hamiltonian (12) is

Hj =
3

8
Jx +

Jx
2
Bj,j+x̂ +

Jy
2
Bj,j+ŷ + J2(Bj,j+x̂+ŷ +Bj+x̂,j+ŷ) +QBj,j+x̂Bj+ŷ,j+x̂+ŷ, (S24)

that has a zero eigenvalue for −4/3 ≥ Jy/Jx ≥ 2/3 when the second-NN HB and four-spin interaction strengths are
fixed to J2 = Jy/2 and Q = 2Jx/3 respectively, as indicated in the main text.

The local Hamiltonian of the CVBC parent Hamiltonian (13) is

Hj =
3

8
Jx +

Jx
4
Bj,j+x̂ +

Jy
3
Bj,j+ŷ +

J2
2

(Bj,j+x̂+ŷ +Bj+x̂,j+ŷ)

+J4(Bj,j+2x̂+ŷ +Bj+ŷ,j+2x̂) + Q̃x(Bj,j+x̂Bj+x̂+ŷ,j+2x̂+ŷ +Bj+x̂,j+2x̂Bj+ŷ,j+x̂+ŷ), (S25)

that has zero eigenvalue for Jy = 0 when the interactions are fixed to J2 = Jy, J4 = Jy/2, and Q̃x = Jx/3, as indicated
in the main text.
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HIERARCHICAL MEAN FIELD THEORY AND EXACT DIAGONALIZATION

In the HMFT-Gutzwiller approach, the ansatz wave function is taken to be an uncorrelated product of cluster
states,

|Ψ〉 =
∏
R

|Φ〉R , (S26)

where R represents the position of each cluster in the superlattice. In this work, we use an homogeneus ansatz, i.e.
all clusters to be equivalent, and thus we may drop the superlattice index, i.e. |Φ〉R = |Φ〉. The determination of the
cluster state, |Φ〉 =

∑
α Uα |α〉 with α representing cluster spin configurations in the Sz basis, is obtained through

variational optimization of the energy, which reduces to perform ED on a single cluster with open boundary conditions
(OBC) an a set of self-consistently defined mean-fields acting on the boundaries. It contains therefore unbiased
information about competing orders with characteristic correlation lengths lying within the cluster dimensions. The
self-consistently defined mean-fields allow for the explicit breakdown of symmetries and the concomitant stabilization of
long-range order. Consequently, ED on the cluster is performed without implementing symmetries of the Hamiltonian,
and therefore the cluster sizes used are smaller than in the standard ED with periodic boundary condition (PBC)
procedures, due to memory limitations. For a given cluster shape, different mean-field configurations are used to
seed the optimization procedure and the solution is obtained through comparing converged energies at each point of
the phase diagram. Increasing the cluster size allows to assess the validity of the result obtained with the inmediate
smaller cluster.

In Figure SS1 we show the romboid and diamond shaped clusters used within HMFT-Gutzwiller to study the
SVBC parent Hamiltonian ground state phase diagram. The 18-HMFT cluster is not commensurate with the CAFM,
although it is commensurate with the SVBC pattern. Similarly, the clusters used within ED are commensurate with
CAFM, AFM and VBC patterns. In particular, diamond shaped N = 8, 32, and square shaped N = 16, 36 clusters
are used to approach the SVBC parent Hamiltonian. Same clusters are used to study the CVBC, except for the
N = 36: due to the shape of the four-spin interactions in the CVBC parent Hamiltonian, the maximum size that can
be attained within ED computations is N = 32 in this case. Greater sizes commensurate with the SVBC and CVBC
states (N = 50, diamond shape) lie beyond current memory capabilities.
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FIG. S1. Schematic representation of the cluster tiling resulting from the (a) 4- , (b) 8- , (c) 16- , (d) 18-, and (e) 24-HMFT
Gutzwiller approach to the SVBC parent Hamiltonian. Clusters are schematically represented as blue shades. Labelled circles
represent spins of the central cluster that is diagonalized self-consistently with the embedding mean-field bath resulting from
the interaction with nearby clusters. All cases except for the 18-HMFT tiling (d) are commensurate with both the CAFM and
SVBC phases. The 18-HMFT tiling of the square lattice is not commensurate with the CAFM order.
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