Trophic ecology of the smallnose fanskate Sympterygia bonapartii *in the San Matías Gulf, northern Patagonia, Argentina*

María Lourdes Estalles, María Raquel Perier & Edgardo Ernesto Di Giácomo

Ichthyological Research The Ichthyological Society of Japan

ISSN 1341-8998

Ichthyol Res DOI 10.1007/s10228-015-0489-0

Your article is protected by copyright and all rights are held exclusively by The Ichthyological Society of Japan. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

FULL PAPER

Trophic ecology of the smallnose fanskate *Sympterygia bonapartii* in the San Matías Gulf, northern Patagonia, Argentina

María Lourdes Estalles^{1,3} · María Raquel Perier² · Edgardo Ernesto Di Giácomo²

Received: 15 June 2015/Revised: 19 August 2015/Accepted: 30 August 2015 © The Ichthyological Society of Japan 2015

Abstract This study quantifies and describes the diet composition and variability, and the trophic ecology of Sympterygia bonapartii (Batoidea: Arhynchobatidae) in the San Matías Gulf, northern Patagonia, Argentina. A total of 1,047 stomachs were analyzed and 98 % of them contained food. The low proportion of empty stomachs recorded and the presence of prey in different stages of digestion suggested that this skate was a continuous feeder. A total of 81 prey items were identified. However, the diet was mainly composed of crabs. Other important groups in its diet were teleost fishes, shrimps and prawns, bivalves and worms. At the species level, the crab Peltarion spinosulum accounted for the highest contribution and the anchovy Engraulis anchoita ranked second in importance. By analyzing its diet composition, it was possible to classify S. bonapartii as a benthic predator, as are other skates reaching a similar maximum size. In addition, it was placed in the functional group of species that mainly feeds on decapod crustaceans. Trophic level was estimated at 3.61, indicating that the species was a secondary consumer. Significant differences were found in the diet according to sex, size class and

María Lourdes Estalles mariluestalles@gmail.com

- ¹ Institute of Marine Biology and Fishery Science "Alte. Storni", Güemes 1030, 8520 San Antonio Oeste, Río Negro, Argentina
- ² National University of Comahue and Institute of Marine Biology and Fishery Science "Alte. Storni", Güemes 1030, San Antonio Oeste, Río Negro, Argentina
- ³ Present Address: Institute of Marine and Coastal Research, National Council of Scientific and Technological Research (IIMyC-CONICET) and National University of Mar del Plata, Funes 3350, B7602AYL Mar del Plata, Argentina

season. These differences may be due to extrinsic and intrinsic factors that could be operating together.

Keywords Elasmobranchii · Arhynchobatidae · Southwest Atlantic · Diet composition · Trophic level

Introduction

Chondrichthyes prey on a wide variety of items, ranging from plankton to whales. However, most of the species consume mainly fishes, crustaceans and molluscs (Wetherbee and Cortés 2004).

Skates (Rajiformes: Rajoidei) are the most diverse group of cartilaginous fishes and are important components of the demersal communities and food webs of temperate seas (Ebert and Bizzarro 2007; Ebert and Compagno 2007). Whereas most of them are secondary consumers, the species that reach the largest sizes ($L_T > 100$ cm) are top predators (Wetherbee and Cortés 2004; Ebert and Bizzarro 2007).

Decapods and teleost fishes are the main taxa in a skatés diet. Polychaetes and amphipods are also important. Squids, euphausiids, mysids and small crustaceans make a lower contribution to their diets, while shelled molluscs, octopi, cuttlefishes and chondrichthyan fishes are considered not important items (Ebert and Bizzarro 2007).

At the species level, the diet can vary according to sex, size, reproductive stage, season and geographic region (Wetherbee and Cortés 2004). In particular, the biological and ecological characteristics of the smallnose fanskate *Sympterygia bonapartii* suggest that its diet may be quite variable.

Sympterygia bonapartii inhabits the Southwest Atlantic Ocean from Rio de Janeiro (23° S), Brazil, to Santa Cruz (54° S), Argentina, and it is present in the chondrichthyan assemblage of the San Matías Gulf (SMG: 41°–42° S; 64°–

 65° W) (Figueiredo 1977; Menni and Stehmann 2000; Perier et al. 2011). This species exhibits sexual segregation and a seasonal reproductive cycle (Estalles 2012). These features, together with the particular environment of SMG, may be reflected in its diet, which can differ between sexes, during the ontogeny and throughout the year. The aim of this study is to describe, quantify and investigate the variability in the composition of the diet of this species and to estimate its trophic level in the SMG.

Author's personal copy

Materials and methods

Study area. San Matías Gulf is the largest gulf in northern Patagonia and constitutes a unique ecosystem in the Argentine Sea (Fig. 1). Its central region is approximately 200 m deep, with maximum depressions of 219 m. The gulf is separated from the adjacent continental shelf by an 80 m-deep sill. This area is the mouth of the gulf, which is approximately 120 km wide. The mouth geometry restricts the water exchange between the SMG and the adjacent continental shelf, turning it into a semi-closed basin (Perier and Di Giácomo 2002).

Sampling. Samples of Sympterygia bonapartii (Fig. 2) came from three sources: bottom trawl research surveys, an onboard observer program and local fish-processing plants. Research surveys were conducted during spring (October to December) from 2004 to 2007. They were carried out along the area of the SMG at a depth range of 40 to 175 m. An onboard observer program provided samples of juveniles which, due to their size, would have been discarded by commercial vessels during 2007 and 2008. In addition, a monthly sampling of skates coming from commercial landings was performed at local fish-processing plants from April 2007 to December 2009.

Fig. 1 Spatial location of the study area, the San Matías Gulf and other important references. *AUCFZ* the Argentine–Uruguayan Common Fishing Zone ($34^{\circ} 30' - 39^{\circ} 30'$ S); *SMG* San Matías Gulf ($41^{\circ} - 42^{\circ}$ S; $64^{\circ} - 65^{\circ}$ W); *SJG* San Jorge Gulf ($44^{\circ} 55'$ S $65^{\circ} 31'$ W- $47^{\circ} 06'$ S $65^{\circ} 51'$ W)

Fig. 2 Dorsal view of *Sympterygia bonapartii*. **a** Male of 585 mm of total length and **b** female of 412 mm of total length. *Scale bar* represents 50 mm

Minimum sample size. The minimum number of stomachs required to describe and analyse the diet was determined by plotting the number of samples analysed against the mean cumulative value of the Shannon–Wiener diversity index (H). One hundred randomizations of the original matrices were performed to prevent bias in the index value. The final curves were constructed with the mean values of H and their standard deviation (SD) (Barbini and Lucifora 2011). The number of samples was considered sufficient when the SD was <0.05 (Koen Alonso et al. 2001). A curve was estimated for the entire sample and for each of the factors assessed using the Vegan Community Ecology Package (Oksanen 2011) and the R software version 2.11.1 (R Development Core Team 2010).

Diet composition, trophic level and feeding strategy. Prior to the analysis, stomachs were dissected and preserved in 70 % alcohol. Then, their contents were washed and drained in an 800 μ m sieve.

Prey items were identified to the lowest taxonomic level possible. They were counted, weighed and measured, whenever possible, as well. Measurements were: standard length for fishes (L_S), carapace length for crabs (L_C), cephalothorax length for shrimps (CP), mantle length for cephalopods (L_M) and total length for bivalves (L_T).

Contribution by number (%N), frequency of occurrence (%FO), weight (%W) and compound index of relative importance (%IRI) were estimated for each prey item. All the parameters were expressed as percentage (Hyslop 1980; Cortés 1997).

Sympterygia bonapartii trophic level (TL) was estimated as

$$TL = 1 + \left(\sum_{j=1}^{n} Pj \times TLj\right),$$

where TL is the trophic level, P*i* the proportion of prey category *j* in the diet, n the total number of prey categories, and TL*i* the trophic level of prey category *i*. Trophic levels of prey items are shown in Table 1 (Cortés 1999; Ebert and Bizzarro 2007).

The feeding strategy of this skate and the relative importance of prey items in its diet were analysed using the graphic method of Amundsen et al. (1996). To perform the analysis, prey items were grouped into discrete categories (Table 2). The frequency of occurrence of each group was then plotted against its specific abundance (Amundsen et al. 1996). According to this graphic method, a species is considered a generalist when groups of prey occur at a frequency of occurrence <0.5 and at a specific abundance <50 %. In contrast, specialists feed on one or a few groups of prey with frequencies of occurrence close to one and specific abundances close to 100 % (Amundsen et al. 1996).

Predator-prey size relationships. These relationships were assessed using the Spearman correlation test (r) because the variables did not follow a normal distribution (Zar 1984). Correlated variables were skate L_T and L_S of teleost fishes; L_C of crabs; CP of shrimps; L_M of octopi and L_T of bivalves. Data were considered insufficient to perform a correlation test if n < 20.

Changes in diet. First, a qualitative analysis was performed to assess differences in diet composition. Skates

were divided into length-class intervals of 20 mm L_T by sex. For each interval, the contribution (%N) of each group of prey was plotted. The groups used are shown in Table 2.

Then, a quantitative analysis was performed. Differences in diet composition were assessed according to sex, size class and season. The variable analysed was the number of items in each prey group. Differences were analysed with a non-parametric multivariate analysis of variance (PERMANOVA) using Bray-Curtis distances on fourth root-transformed data (Anderson 2001, 2005). They were considered significant when P < 0.05.

Ontogenetic differences were analysed for each sex, and skates were divided into two groups. Groups were made taking into account the differences observed in the qualitative analysis performed previously. Although three groups were visually identified for each sex in the qualitative analysis, skates were divided into only two groups to comply with the sample size required for the statistical analysis. For males, "small" skates were \leq 540 mm L_T and "large" skates were >540 mm L_T. For females, "small" skates were $<580 \text{ mm } L_T$ and "large" skates were $>580 \text{ mm } L_T$.

Seasonal variations in diet composition could only be assessed in large females. For these analyses, samples were divided into three periods. Period I extended from March to June; period II from July to October; and period III from November to February. When significant differences were found, multiple comparison tests were conducted.

Results

Diet composition, trophic level and feeding strategy. A total of 1,047 stomachs were analysed and 98 % of them (n = 1,024) contained prey items. The minimum number of samples required to describe Sympterygia bonapartii diet composition was estimated at 301 stomachs; hence the sample size used in this study was enough (Fig. 3).

Table 1 Prey categories and trophic levels used to estimate	Group code	Taxa included	Trophic level
the trophic level of <i>Sympterygia</i>	FISH	Class Actinopterygii	3.24
followed Cortés (1999) and	CEPH	Class Cephalopoda	3.20
Ebert and Bizzarro (2007)	ISOP	Order Isopoda	3.18
	AMPH	Order Amphipoda	3.18
	POLY	Class Polychaeta	2.60
	CRAB	Suborder Pleocyemata: Infraorder Anomura and Brachyura	2.52
	OINV	Phyla Echinodermata and Echiura	2.50
	SHRI	Suborder Dendrobranchiata and Pleocyemata: Infraorder Caridea	2.40
	STOM	Order Stomatopoda	2.40
	CUMA	Order Cumacea	2.40
	SCRU	Order Mysida, Lophogastrida and Euphausiacea	2.25
	BIVA	Class Bivalvia	2.10

M. L. Estalles et al.

Group code	Common denomination	Taxa included					
FISH	Teleosts	Class Actinopterygii					
CEPH	Cephalopods	Class Cephalopoda					
POLY	Worms	Class Polychaeta					
BRAC	Crabs	Suborder Pleocyemata: Infraorder Anomura and Brachyura					
SHRI	Shrimps and prawns	Suborder Dendrobranchiata and Pleocyemata: Infraorder Caridea					
STOM	Stomatopods	Order Stomatopoda					
SCRU	Small crustaceans	Order Cumacea, Amphipoda, Isopoda, Mysida, Lophogastrida and Euphausiacea					
BIVA	Bivalves	Class Bivalvia					

Table 2 Prey categories used to analyze the feeding strategy and diet variations of Sympterygia bonapartii

Fig. 3 Randomized cumulative prey curve in the dietary analysis of *Sympterygia bonapartii*. Shannon–Wiener diversity index (*H*), mean value (*continuous line*) and standard deviation (*dashed lines*), as a function of the number of stomachs analyzed

A total of 81 prey items were identified (Table 3). The number of different items found in each stomach varied from 0 to 11, with three being the most frequent value (Fig. 4).

Sympterygia bonapartii diet was mainly composed of crabs (Crustacea: Infraorder Brachyura). Fishes in the Class Actinopterygii ranked second in importance. Other important prey items, considering the values of %IRI, were shrimps and prawns (Crustacea: Suborder Dendrobranchiata), bivalves, worms (Class Polychaeta), amphipods, and cephalopods (Table 3).

The predominance of crabs in the diet was also shown in the graphical analysis. According to this analysis, the contribution of the other groups of prey items was considerably lower (Fig. 5).

At the species level, the diet consisted mainly of the crab *Peltarion spinosulum*, followed by the anchovy *Engraulis anchoita*. Other important species were the shrimp *Pleoticus muelleri*, the common hake *Merluccius hubbsi*, the crab *Libidoclea granaria*, the bivalves *Malletia* sp. and *Solemya* sp. and the octopus *Eledone massyae* (Table 3).

The trophic level of *S. bonapartii* was estimated at 3.61, indicating that the species was a secondary consumer.

Predator-prey size relationship. A positive correlation between skate size and prey size was detected for *P. spinosulum, L. granaria* and *E. massyae.* No significant correlations were found for other species (Table 4).

Changes in diet. Changes in diet composition were observed in both sexes. Crabs were an important component throughout the ontogeny. The contribution made by teleost fishes increased with skate size. Conversely, the larger the size of the skates, the smaller was the contribution small crustaceans made to their diet (Fig. 6).

Three dietary groups were distinguished in both sexes (Fig. 6). Group 1 was composed of skates up to 480 mm L_{T} . For both sexes, small crustaceans predominated in their diet, while crabs ranked second in importance. Group 2, comprised males from 481 to 540 mm L_T and presented a diet of transition. Its diet was mainly composed of crabs and shrimps, with a high contribution of small crustaceans. For females, group 2 was composed of skates from 481 to 580 mm L_T . Its diet consisted mainly of crabs, the presence of small crustaceans remained high and teleost contribution started to increase. Group 3 was composed of males \geq 541 mm L_T and females \geq 581 mm L_T. For males, crabs and shrimps were the most important items. The contribution of teleost fishes and cephalopods became more important and the presence of small crustaceans decreased markedly. For females, crabs were the dominant group, and teleost fishes and cephalopods increased contribution. The presence of small crustaceans decreased sharply and completely disappeared from the diet of skates larger than 700 mm L_T (Fig. 6).

Quantitative analysis. The diet of males and females differed significantly (F = 7.81; d.f. = 1; d.f. = 654; P < 0.01). Females had a more diverse diet and a lower record of empty stomachs (Table 5). The diet of males had a higher contribution of shrimp and small crustaceans, and a lower contribution of teleost fishes and cephalopods. In addition, the percentage of stomatopods was nearly zero in males, while it reached approximately 4 % in females. The

Trophic ecology of Sympterygia bonapartii

Table 3 Diet composition of *Sympterygia bonapartii* expressed as percentage by number (% *N*), percentage by mass (% *M*), percentage frequency of occurrence (% *FO*) and the index of relative importance (*IRI*) and its expression in percentage (% *IRI*)

Prey		%N	%P	%F	IRI	%IRI
Phylum Annelida						
Polychaeta		5.26	4.11	36.61	343.04	3.43
	Unidentified Polychaeta	2.46	1.31	17.43	65.70	1.08
Aphroditidae	Aphroditella alta	0.47	1.39	4.18	7.77	0.13
Glyceridae	Unidentified Glyceridae	0.08	0.09	0.68	0.12	0.002
·	Glycera americana	0.05	0.07	0.49	0.06	0.001
	Glycera capitata	0.38	0.26	3.51	2.25	0.043
	Glycera magellanica	0.01	0.003	0.10	0.001	0.0002
Goniadidae	Goniada gigantea	0.01	0.01	0.10	0.002	0.0003
Sigalionidae	Leanira quatrefagesi	0.03	0.01	0.29	0.01	0.0002
Flabelligeridae		0.50	0.22	4.67	3.36	0.06
Maldanidae		1.26	0.73	11.49	22.87	0.38
Terebellidae	Artacama proboscidea	0.01	0.01	0.10	0.002	0.00003
Phylum Arthropoda						
Order Stomatopoda		2.74	0.94	11.98	44.09	0.44
Squillidae	Pterygosquilla armata armata	2.74	0.94	11.98	44.09	0.72
Order Mysida		4.26	0.03	2.63	11.28	0.11
	Unidentified Mysida	4.26	0.03	2.63	11.28	0.19
Order Amphipoda		7.22	0.14	16.16	118.94	1.19
	U/I Amphipoda	6.26	0.12	14.11	90.02	1.48
Gammaridae		0.96	0.02	2.04	2.00	0.03
Order Isopoda		3.68	0.35	17.04	68.67	0.68
	U/I Isopoda	0.26	0.02	1.85	0.52	0.01
Serolidae		0.38	0.05	2.24	0.96	0.016
	Acanthoserolis schythei	0.05	0.003	0.39	0.02	0.0003
	Neoserolis exigua	0.01	0.006	0.10	0.002	0.0003
Anth uridae		0.01	0.0003	0.10	0.001	0.0002
Cirolanidae	Unidentified Cirolanidae	2.62	0.24	11.30	32.32	0.53
	Natatolana pastorei	0.28	0.03	1.85	0.57	0.01
Idoteidae		0.03	0.001	0.19	0.006	0.0001
Chaetiliidae	Macrochiridothea sp.	0.04	0.001	0.19	0.008	0.0001
Order Cumacea		10.29	0.34	3.99	42.41	0.70
	Unidentified Cumacea	10.29	0.34	3.99	42.41	0.42
Order Lophogastrida		2.51	0.15	9.54	25.38	0.23
Eucopiidae	Eucopia sp.	2.51	0.15	9.54	25.38	0.42
Order Euphausiacea		0.97	0.02	3.02	2.99	0.03
-	Unidentified Euphausiacea	0.97	0.02	3.02	2.99	0.05
Order Decapoda	-					
Suborder Dendrobranchiata		8.72	19.36	6.57	17.53	28.14
	Unidentified Dendrobranchiata	0.06	0.01	0.19	0.01	0.0002
Penaeidae	Artemisa longinaris	0.07	0.02	0.19	0.02	0.0003
Solenoceridae	Pleoticus muelleri	9.05	3.53	28.04	352.74	5.79
Sergestidae	Peisos petrunkevitchi	0.01	0.001	0.10	0.001	0.00002
Suborder Pleocyemata						
Infraorder Caridea		2.26	0.83	14.70	45.42	0.45
Alpheidae	Alpheus puapeba	1.07	0.44	9.83	14.84	0.24
	Betaeus lilianae	0.01	0.005	0.10	0.002	0.00003
Hippolytidae	Nauticaris magellanica	0.14	0.02	1.07	0.17	0.003

M. L. Estalles et al.

Table 3 continued

Pandalidae Austropandolas grayi 0.22 0.07 0.58 0.17 0.003 Crangonidae Pontocaris baschii 0.76 0.27 4.09 4.21 0.07 Galaheidae Manida gr. 0.37 0.18 2.43 1.33 0.02 Infraorder Brachyara 0.16 0.03 0.97 0.18 0.002 Infraorder Brachyara 0.36 0.59 3.41 3.24 0.05 Majidae Unidentified Majidae 0.03 0.097 0.18 0.000 Collodes rostratus 0.02 0.001 0.19 0.004 0.000 Leizopa primoria 3.04 7.82 19.96 216.77 3.56 Majidae Libidio spinosalum 29.68 28.42 68.84 31.96 0.52 Vortunidae Coenophitamus tridentaus 1.00 0.001 0.001 0.001 0.000 Planus relicoma 0.01 0.03 0.10 0.001 0.000 0.001 0.000 0.001	Prey		%N	%P	%F	IRI	%IRI
Crangenidae Pontoscaris baschii 0.76 0.27 4.09 4.21 0.07 Infraorder Anomura Manida sp. 0.37 0.18 0.33 0.21 3.41 2.52 0.03 Galaheldae Manida gregaria 0.16 0.03 0.97 0.18 0.02 Infraorder Brachyura 36.90 43.23 8.471 678.78.11 6682 Majidae Unidentified Majidae 0.03 0.004 0.10 0.003 0.000 Colloder stratas 0.02 0.001 0.01 0.001 0.000 Majidae Libinize spranzia 3.04 7.82 9.96 216.77 3.56 Colloder stratas 0.01 0.01 0.000 0.0002 0.0002 Agiapa pentagona 0.1 0.21 0.49 0.15 0.040 Asteipa pentagona 0.01 0.001 0.001 0.000 Asteipa pentagonicas 0.01 0.001 0.001 0.001 0.001 Asteleyvitale	Pandalidae	Austropandolus grayi	0.22	0.07	0.58	0.17	0.003
Infraorie Anomura 0.37 0.18 0.41 2.52 0.03 Galatheidae Munida gregaria 0.16 0.03 0.07 0.18 0.02 Infraorder Brachyura 0.60 0.33 0.041 0.34 0.021 0.002 Majidae Unidentified Frachyura 0.05 0.34 0.34 0.03 0.000 Majidae Unidentified Majidae 0.03 0.001 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.000 Majidae Libiolocica greanina 0.01 0.011 0.010 0.002 0.002 Aclecyclidae Coenophthalmus tridentans 1.00 0.01 0.010 0.001 0.000 Aclecyclidae Planrowidse hasheri 0.01 0.003 0.10 0.001 0.000 Aclecyclidae Planrowidse hasheri 0.01 0.003 0.101 0.001 0.000 Aclecyclidae Planrowidse hasheri 0.01 0.003	Crangonidae	Pontoscaris boschii	0.76	0.27	4.09	4.21	0.07
Galatheidage Munida gr. 0.37 0.18 2.43 1.33 0.02 Infraorder Brachyura 369 43.23 84.71 6787.81 66.82 Minida gr. Unidentified Brachyura 0.36 0.59 3.41 3.24 0.002 Majidae 0.03 0.004 0.10 0.003 0.000 Caludas: rostritus 0.02 0.001 0.19 0.004 0.000 Majidae 0.01 0.001 0.001 0.000 0.001 0.000 Majidae: Libito is prinosa 0.11 0.21 0.49 0.15 0.002 0.000 Majidae: Libito is prinosa 0.1 0.11 0.10 0.000 0.002 0.000 Atcippe prentangana 0.1 0.11 0.10 0.002 0.000 Attibitae Peltarion spinosulum 29.68 28.42 68.84 3999.60 65.62 Portunidae Conophrhalms tridentatus 1.00 0.03 0.01 0.001 0.001 Patayanthidae Pilamaoles hassleri 0.01 0.003	Infraorder Anomura		0.53	0.21	3.41	2.52	0.03
Munida gregaria 0.16 0.03 0.97 0.18 0.002 Infraorder Brachyura 0.36 0.323 84.71 6.787.81 6.682 Majidae 0.36 0.001 0.10 0.003 0.000 Majidae 0.32 0.001 0.10 0.003 0.000 Leurocyclix uberculosus 1.25 0.75 0.06 18.12 0.30 Majidae 1.16 0.21 0.77 0.40 0.40 0.000 Majidae 1.16 0.21 0.49 0.15 0.002 Acchrinic grandipas 0.01 0.01 0.00 0.00 0.000 Majidae Comphynichulmus tridematus 1.00 0.98 5.94 1.1.76 0.19 Atletoxyclidae Peltarion spinosa 0.01 0.003 0.10 0.000 Atletoxyclidae Peltarion spinosa 0.72 4.25 6.43 3.196 0.52 Xanthidae Pilamonides hasteri 0.01 0.003 0.10 <t< td=""><td>Galatheidae</td><td>Munida sp.</td><td>0.37</td><td>0.18</td><td>2.43</td><td>1.33</td><td>0.02</td></t<>	Galatheidae	Munida sp.	0.37	0.18	2.43	1.33	0.02
Infraorder Brachyura 36,90 43,23 84,71 6787,81 6682 Mijdale Unidentified Majdae 0.03 0.004 0.00 0.004 Majdae 0.01 0.004 0.00 0.004 0.000 Leurocyclus tuberculosus 1.25 0.001 0.19 0.001 0.000 Majidae Libito cis prinosa 0.01 0.01 0.000 0.001 0.000 Majidae Libito cis prinosa 0.01 0.01 0.000 0.01 0.000 Majidae Libito cis prinosa 0.01 0.01 0.000		Munida gregaria	0.16	0.03	0.97	0.18	0.002
Majidae Unidentified Brachyura 0.36 0.59 3.41 3.24 0.05 Majidae Unidentified Majidae 0.03 0.004 0.003 0.000 Collodes restratus 0.02 0.001 0.19 0.004 0.000 Librio aginosa 0.01 0.07 0.10 0.01 0.000 Majidae Librioclea granaria 3.04 7.82 19.96 216.77 3.56 Acchinia grocilipes 0.1 0.01 0.01 0.002 0.000 Atelecyclidae Peltorion spinosulum 29.68 28.42 68.44 399.60 65.62 Portunidae Concophthalmus ratentatus 1.00 0.98 5.94 11.76 0.19 Platyxanthidae Platyxanthis patagonicus 0.01 0.003 0.00 0.000 Yanthidae Platyxanthis patagonicus 0.01 0.001 0.001 0.000 Yanthidae Platyxanthis patagonicus 0.01 0.001 0.000 0.000 0.001 0.000	Infraorder Brachyura		36.90	43.23	84.71	6787.81	66.82
Majidae Unidentified Majidae 0.03 0.004 0.10 0.003 0.000 Collodes restratue 0.02 0.001 0.19 0.004 0.000 Labinia spinosa 0.01 0.07 0.10 0.01 0.001 Majidae Libinia spinosa 0.01 0.01 0.01 0.01 0.002 0.000 Majidae Libinia spinosa 0.01 0.01 0.01 0.002 0.000 Atelecyclidae Petarion spinosulum 29.68 28.42 68.43 3999.60 65.62 Portunidae Comonphilamus riceinatus 1.00 0.03 0.10 0.001 0.000 Portunidae Planysanthus patagonicus 0.72 4.25 6.43 31.96 0.52 Xanthidae Planus reticulatus 0.01 0.003 0.10 0.001 0.000 Planysanthus patagonicus 0.61 0.13 5.16 3.82 0.060 Pinnixa sep 0.61 0.13 5.16 3.83 0.000 Pinnixa brevipallex 0.04 0.001 0.00 0.000		Unidentified Brachyura	0.36	0.59	3.41	3.24	0.05
Collodes rostratus 0.02 0.001 0.19 0.004 0.000 Labria spinosa 0.01 0.075 9.06 18.12 0.30 Majidae Libria spinosa 0.01 0.07 0.10 0.01 0.000 Majidae Libria openagona 0.01 0.01 0.10 0.002 0.000 Atelecyclidae Peltarion spinosulum 29.68 28.42 68.84 3999.60 65.62 Portunidae Coenophthalmus ridematus 1.00 0.98 5.94 1.17.6 0.19 Platyxambidae Platysambines patagonicus 0.01 0.003 0.01 0.001 <td>Majidae</td> <td>Unidentified Majidae</td> <td>0.03</td> <td>0.004</td> <td>0.10</td> <td>0.003</td> <td>0.0005</td>	Majidae	Unidentified Majidae	0.03	0.004	0.10	0.003	0.0005
Learocyclus taberculosus 1.25 0.75 9.06 18.12 0.00 Majidae Libiolcs granaria 0.01 0.07 0.10 0.00 0.000 Majidae Libiolcs granaria 0.01 0.01 0.01 0.002 0.000 Aclecyclidae Pettarion spinosulum 29.68 28.42 68.84 3999.60 65.62 Portunidae Conophthalmus tridentatus 1.00 0.98 5.94 1.1.76 0.19 Platyxanthidae Playxanthidae shasteri 0.01 0.003 0.10 0.001 0.000 Pinnotheridae Pinnixa sp. 0.61 0.13 5.16 3.82 0.06 Playxanthidae shasteri 0.01 0.001 0.001 0.000 0.001 0.000 Pinnotheridae Pinnixa sp. 0.61 0.13 5.16 3.82 0.06 Dindentified Bivalvia 0.06 0.04 0.04 0.041 0.001 0.000 Solemy as p 1.99 2.36 11.68 <		Collodes rostratus	0.02	0.001	0.19	0.004	0.00007
Libinia spinosa 0.01 0.07 0.10 0.01 0.000 Majidae Libidoclea granria 3.04 7.82 1.966 216.77 3.56 Rochnia gracilipes 0.1 0.01 0.01 0.002 0.000 Atelezyclidae Pettarion spinosulum 29.68 28.42 68.84 399.60 65.62 Portunidae Coenophthalmus tridentatus 1.00 0.003 0.10 0.001 0.000 Platyxanthikas patagonicus 0.72 4.25 6.43 31.96 0.52 Xanthidae Pitumoides hassleri 0.01 0.003 0.10 0.001 0.000 Pinnots ap. 0.61 0.13 5.16 3.82 0.04 0.001 0.001 0.000 Pinnotheridae Pimixa sp. 0.61 0.013 5.16 3.82 0.04 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00		Leurocyclus tuberculosus	1.25	0.75	9.06	18.12	0.30
Majidae Libidoclea granaria 3.04 7.82 19.96 216.77 3.56 Rochinia gracilipes 0.11 0.21 0.49 0.15 0.000 Atelecyclidae Petarion spinosulum 29.68 28.42 68.84 3999.60 65.62 Portunidae Coenophthalmus tridentatus 1.00 0.98 5.94 11.76 0.19 Platyxanthidae Platyxanthidae stridentatus 1.00 0.03 0.10 0.001 0.000 Xanthidae Pilumundies hassleri 0.01 0.003 0.10 0.001 0.000 Yanthidae Pilumix sp. 0.61 0.13 5.16 3.82 0.66 Yanthidae Pinnixa sp. 0.61 0.01 0.001 0.000 0.000 Phants brevipollex 0.04 0.001 0.001 0.000 0.000 Phylum Mollusca Salemya sp 1.99 2.36 11.68 50.81 0.33 Nuculidae Salemya sp 1.99 2.36 11.68 50.81 0.32		Libinia spinosa	0.01	0.07	0.10	0.01	0.00001
Rochinia gracilipes 0.1 0.21 0.49 0.15 0.002 Lacippa pentagona 0.01 0.01 0.10 0.002 0.000 Atelecyclidae Peltarion spinosulum 29.68 28.42 68.84 399.60 65.62 Portunidae Coenophthalmus tridentatus 1.00 0.038 5.94 1.1.76 0.19 Platyxanthidae Platyxanthus patagonicas 0.72 4.25 6.43 31.96 0.52 Xanthidae Platymanthis patagonicas 0.01 0.003 0.10 0.000 0.000 Pinnotheridae Pinnixa sp. 0.61 0.13 5.16 3.82 0.061 Pinnotheridae Pinnixa sp. 0.61 0.13 5.16 3.82 0.000 Phinnotheres garthi 0.04 0.04 0.39 0.031 0.001 0.000 Solenyidae Canegidaria patagonica 0.04 0.001 0.29 0.01 0.000 Muelidiae Malletia sp. 3.306 3.46 23.27<	Majidae	Libidoclea granaria	3.04	7.82	19.96	216.77	3.56
Lucippa pentagona 0.01 0.01 0.00 0.002 0.000 Atelecyclidae Peltarion spinosulum 29.68 28.42 68.84 3999.60 65.62 Portunidae Coenophthalmus tridentatus 1.00 0.98 5.94 11.76 0.19 Platyxanthidae Pilamunoides hassleri 0.01 0.003 0.10 0.001 0.000 Pinnotheridae Pilmixa sp. 0.61 0.13 5.16 3.82 0.06 Pinnotheridae Pinnixa sp. 0.61 0.01 0.001 0.000 0.000 Pinnotheridae Pinnixa brevipollex 0.04 0.04 0.39 0.03 0.000 Pytum Mollusca Unidentified Bivalvia 0.06 0.004 0.58 0.04 0.001 Solemyiae Solemya sp 1.99 2.36 11.68 5.08.1 0.83 Nuculidae Ennucula puelcha 0.01 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		Rochinia gracilipes	0.1	0.21	0.49	0.15	0.002
Atelecyclidae Peltarion spinosulum 29.68 28.42 68.84 3999.60 65.62 Portunidae Coenophthalmus tridentatus 1.00 0.98 5.94 11.76 0.19 Playxanthidae Playxanthus patagonicus 0.72 4.25 6.43 31.96 0.52 Xanthidae Pilumnoides hassleri 0.01 0.003 0.10 0.001 0.000 Pinnotheridae Pinnixa preticulatus 0.01 0.01 0.001 0.000 Pinnotheridae Pinnixa brevipollex 0.01 0.001 0.001 0.000 Pylum Mollusca Unidentified Bivalvia 0.06 0.004 0.38 30.34 0.000 Solemyidae Solemya sp 1.99 2.36 11.68 50.81 0.83 Naculidae Ennucula puelcha 0.04 0.001 0.02 0.000 Malletidas p. 3.06 3.46 23.27 151.72 2.49 Cuspidariidae Ennucula puelcha 0.04 0.001 0.00 0.000 Malletidae Malletia sp. 3.06 3.46 23.27<		Lucippa pentagona	0.01	0.01	0.10	0.002	0.00003
Portunidae Coenophthalmus tridentatus 1.00 0.98 5.94 11.76 0.19 Platyxanthidae Platyxanthidae Datyxanthidae 0.72 4.25 6.43 31.96 0.52 Xanthidae Pilumnoides hassleri 0.01 0.003 0.10 0.0001 0.000 Pinnixa sp. 0.61 0.13 5.16 3.82 0.06 Pinnixa brevipollex 0.04 0.04 0.39 0.03 0.000 Pinnixa brevipollex 0.04 0.04 0.39 0.03 0.000 Phylum Mollusca Unidentified Bivalvia 0.06 0.004 0.58 0.04 0.001 Solemyidae Solemya sp 1.99 2.36 11.68 50.81 0.83 Nuculidae Malletia sp. 3.06 3.46 2.327 151.72 2.49 Cuspidariidae Gaegiarie patagonica 0.02 0.000 0.001 0.000 Cuspidariidae Malletida sp. 3.06 3.46 2.327 151.72	Atelecyclidae	Peltarion spinosulum	29.68	28.42	68.84	3999.60	65.62
Playxanthidae Playxanthus patagonicus 0.72 4.25 6.43 31.96 0.52 Xanthidae Pilumnoides hassleri 0.01 0.003 0.10 0.001 0.000 Pilmus reticulatus 0.01 0.003 0.10 0.001 0.000 Pinnotheridae Pinnixa sp. 0.61 0.13 5.16 3.82 0.06 Pinnotheres garthi 0.01 0.001 0.001 0.001 0.000 Phy Montheres garthi 0.01 0.001 0.001 0.000 Playsanthidae Selenya sp 1.99 2.36 11.68 50.81 0.83 Nuculidae Gaugiacria patagonica 0.02 0.001 0.02 0.000 Malletidae Malletia sp. 3.06 3.46 23.27 151.72 2.49 Cuspidaria patagonica 0.01 0.001 0.02 0.000 Malletidae Malletia sp. 3.06 3.46 23.27 151.72 2.49 Cuspidaria patagonica 0	Portunidae	Coenophthalmus tridentatus	1.00	0.98	5.94	11.76	0.19
Xanthidae Pilumnoides hassieri 0.01 0.003 0.10 0.001 0.0000 Pinnotheridae Pinnixa sp. 0.61 0.13 5.16 3.82 0.06 Pinnotheridae Pinnixa sp. 0.61 0.13 5.16 3.82 0.000 Pinnotheridae Pinnixa sp. 0.61 0.13 5.16 3.82 0.000 Pinnotheridae Pinnixa sp. 0.61 0.01 0.001 0.001 0.001 0.000 Polyam Mollusca E E S.18 S.83 S2.13 S35.75 3.48 Solemyidae Solemya sp 1.99 2.36 11.68 50.81 0.000 Malletidae Malletia sp. 3.06 3.46 23.27 151.72 2.49 Cuspidarialae Cayidarinya cleryana 0.01 0.001 0.000 0.000 Petinidae Aeguipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Casidariidae Loliga sp. 0.14 0.20 1.07 0.36 0.006 Cass Cephalopoda 0.31	Platyxanthidae	Platyxanthus patagonicus	0.72	4.25	6.43	31.96	0.52
PinnotheridaePilmnus reticulatus0.010.0030.100.0010.000PinnotheridaePinnixa sp.0.610.135.163.820.06Pinnixa brevipollex0.010.0010.000.000.000Pinnixa brevipollex0.010.0010.0010.0000.000Pinnixa brevipollex0.010.0010.0010.0000.000Pinnixa brevipollex0.010.0010.0010.0000.000Pinnixa brevipollex5.185.8332.13353.753.48Class Bivalvia0.060.0040.580.040.001Solemya sp1.992.3611.6850.810.30NuculidaeEnnucula puelcha0.040.0010.290.010.000MalletidaeMalletia sp.3.063.4623.27151.722.49CuspidariidaeCuspidaria patagonica0.010.0010.0010.0000.000PetinidaeAeguipecten tehuelchus0.010.0010.0000.000Class Cephalopoda0.311.172.243.320.05OmmastrephidaeIllex argentinus0.130.801.071.000.02LoliginidaeLoligo sp.0.140.201.070.360.000Class OphiuroideaUnidentified Ophiurida0.010.0020.000.000Class CehinoideaUnidentified Echinoidea0.020.0010.0000.000Class Ech	Xanthidae	Pilumnoides hassleri	0.01	0.003	0.10	0.001	0.0002
Pinnotheridae Pinnixa sp. Pinnotheres garthi 0.61 0.13 5.16 3.82 0.060 0.0000 Phunkas brevipollex 0.04 0.04 0.03 0.030 0.0000 Phyum Mollusca Class Bivalvia 0.06 0.004 0.58 32.13 353.75 3.48 Class Bivalvia 0.06 0.004 0.58 0.04 0.001 Solemyidae Solemya sp 1.99 2.36 11.68 50.81 0.83 Nuculidae <i>Ennucula puelcha</i> 0.04 0.001 0.29 0.01 0.000 Malletidae <i>Malletia sp.</i> 3.06 3.46 23.27 151.72 2.49 Cuspidariidae <i>Cardiomya cleryana</i> 0.01 0.003 0.10 0.000 0.000 Pettinidae <i>Aequipecten tehuelchus</i> 0.04 0.001 0.39 0.02 0.000 Class Cephalopoda Illex argentinus 0.13 0.88 8.96 8.897 0.88 Ommastrephidae Illex argentinus 0.13		Pilmnus reticulatus	0.01	0.003	0.10	0.001	0.0002
Pinnixa brevipollex 0.04 0.04 0.39 0.03 0.000 Pinnotheres garthi 0.01 0.001 0.01 0.001 0.001 0.000 Phylum Mollusca 5.18 5.83 32.13 353.75 3.48 Class Bivalvia 5.18 5.83 32.13 353.75 3.48 Solemyidae Solemya sp 1.99 2.36 11.68 50.81 0.83 Nuculidae Ennucula puelcha 0.04 0.001 0.29 0.01 0.000 Malletidae Malletia sp. 3.06 3.46 23.27 151.72 2.49 Cuspidariidae Cuspidaria patagonica 0.01 0.001 0.001 0.001 0.000 Pectinidae Aquipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Class Cephalopoda I.10 8.83 8.96 88.97 0.88 Onidentified Cephalopoda 0.31 1.17 2.24 3.32 0.05 Outgidiaidae	Pinnotheridae	Pinnixa sp.	0.61	0.13	5.16	3.82	0.06
Pinnotheres garthi 0.01 0.001 0.10 0.001 0.000 Phylum Mollusca 5.18 5.83 32.13 353.75 3.48 Class Bivalvia 5.18 5.83 32.13 353.75 3.48 Solemyidae Solemy sp 1.99 2.36 11.68 50.81 0.83 Nuculidae Emucula puelcha 0.04 0.001 0.29 0.01 0.000 Malletida sp. 3.06 3.46 23.27 151.72 2.49 Cuspidarii apatagonica 0.01 0.003 0.10 0.000 0.000 Pectinidae Aequipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Cuspidarii apatagonica 0.11 0.001 0.01 0.001 0.000 Pectinidae Aequipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Class Cephalopoda 0.31 1.17 2.24 3.32 0.55 Ommastrephidae Lelone massyae 0.53		Pinnixa brevipollex	0.04	0.04	0.39	0.03	0.0005
Phylum Mollusca S.18 5.83 32.13 353.75 3.48 Class Bivalvia 5.18 5.83 32.13 353.75 3.48 Solemyidae Solemya sp 1.99 2.36 11.68 50.81 0.83 Nuculidae Ennucula puelcha 0.04 0.001 0.29 0.01 0.000 Malletidae Malletia sp. 3.06 3.46 23.27 151.72 2.49 Cuspidariidae Cuspidaria patagonica 0.02 0.06 0.19 0.02 0.000 Pettinidae Aequipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Cuss Cephalopoda 2.ygochlamys patagonica 0.01 0.001 0.001 0.000 Class Cephalopoda 1.10 8.83 8.96 88.97 0.88 Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.000 Cotopodidae Eledone masyae 0.53 6.66 4.67 33.58 0.55		Pinnotheres garthi	0.01	0.001	0.10	0.001	0.00002
Case Bivalvia 5.18 5.83 32.13 353.75 3.48 Unidentified Bivalvia 0.06 0.004 0.58 0.04 0.001 Solemyidae Solemya sp 1.99 2.36 11.68 50.81 0.83 Nuculidae Ennucula puelcha 0.04 0.001 0.29 0.01 0.000 Malletidae Malletia sp. 3.06 3.46 23.27 151.72 2.49 Cuspidariidae Cuspidaria patagonica 0.02 0.06 0.19 0.02 0.000 Cardionya cleryana 0.01 0.001 0.39 0.02 0.000 Pectinidae Aequipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Class Cephalopoda 0.31 1.17 2.24 3.32 0.05 Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Loliginidae Loligo sp. 0.14 0.20 1.07 0.36 0.000 Class Ophiuroidea Unidentified Ophiurida 0.01 0.0002 0.000 0.000	Phylum Mollusca	0					
Unidentified Bivalvia0.060.0040.580.040.001SolemyidaeSolemya sp1.992.3611.6850.810.83NuculidaeEnnucula puelcha0.040.0010.290.010.000MalletidaeMalletia sp.3.063.4623.27151.722.49Cuspidarii daeCuspidaria patagonica0.020.060.190.020.000PectinidaeAequipecten tehuelchus0.040.0010.390.020.000Qygochlamys patagonica0.010.0010.0010.0000.000Class Cephalopoda0.311.172.243.320.05OmmastrephidaeIllex argentinus0.130.801.071.000.02LoliginidaeLoligo sp.0.140.201.070.360.000Class OphiuroideaUnidentified Ophiurida0.010.00020.0010.0010.000Class OphiuroideaUnidentified Cehnioloea0.020.00040.0010.0010.000Class OphiuroideaUnidentified Cehniolea0.020.00040.0000.0000Class CehnioleaUnidentified Cehniolea0.010.0010.00010.0000Class CehnioleaUnidentified Cehniolea0.010.00020.100.0010.0000Class OphiuroideaUnidentified Cehniolea0.010.00020.100.0010.0000Class CehnioleaUnidentified Cehniolea0.010.0040.10<	Class Bivalvia		5.18	5.83	32.13	353.75	3.48
Solemyidae Solemya sp 1.99 2.36 11.68 50.81 0.83 Nuculidae Ennucula puelcha 0.04 0.001 0.29 0.01 0.000 Malletidae Malletia sp. 3.06 3.46 23.27 151.72 2.49 Cuspidarii dae Cuspidaria patagonica 0.02 0.06 0.19 0.02 0.000 Cuspidaria patagonica 0.01 0.003 0.10 0.001 0.001 0.000 Pectinidae Aequipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Class Cephalopoda 0.31 1.17 2.24 3.32 0.05 Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Class Ophiuroidea Eledone massyae 0.53 6.66 4.67 33.58 0.55 Ordiae Eledone filed Ophiurida 0.01 0.0002 0.10 0.001 0.000 Class Ophiuroidea Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.000 Class Ophiuroidea Unident		Unidentified Bivalvia	0.06	0.004	0.58	0.04	0.001
Nuculidae Ennucula puelcha 0.04 0.001 0.29 0.01 0.0000 Malletidae Malletia sp. 3.06 3.46 23.27 151.72 2.49 Cuspidariidae Cuspidaria patagonica 0.02 0.06 0.19 0.02 0.000 Pectinidae Aequipecten tehuelchus 0.01 0.001 0.39 0.02 0.000 Pectinidae Aequipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Class Cephalopoda .110 8.83 8.96 88.97 0.88 Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Cotogodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata Unidentified Ophiurida 0.01 0.002 0.00 0.000 Class Ophiuroidea Unidentified Cophiurida 0.01 0.002 0.10 0.001 0.000 Class Cephiuroidea Unidentified Actinopter sizi 0.01	Solemyidae	Solemya sp	1.99	2.36	11.68	50.81	0.83
Malletidae Malletia sp. 3.06 3.46 23.27 151.72 2.49 Cuspidariidae Cuspidaria patagonica 0.02 0.06 0.19 0.02 0.000 Cardiomya cleryana 0.01 0.003 0.10 0.001 0.001 Pectinidae Aequipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Zygochlamys patagonica 0.01 0.001 0.10 0.001 0.001 0.000 Class Cephalopoda Inidentified Cephalopoda 0.31 1.17 2.24 3.32 0.05 Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Loliginidae Loligo sp. 0.14 0.20 1.07 0.36 0.000 Octopodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.000 Class Ophiuroidea Unidentified Schinoidea 0.02 0.0004 0.00 0.000 0.000 0.000	Nuculidae	Ennucula puelcha	0.04	0.001	0.29	0.01	0.0002
Cuspidariidae Cuspidaria patagonica 0.02 0.06 0.19 0.02 0.000 Cardiomya cleryana 0.01 0.003 0.10 0.001 0.000 Pectinidae Aequipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Zygochlamys patagonica 0.01 0.001 0.001 0.001 0.001 0.000 Class Cephalopoda Into 8.83 8.96 88.97 0.88 Unidentified Cephalopoda 0.31 1.17 2.24 3.32 0.000 Cloiginidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Octopodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.000 Class Ophiuroidea Unidentified Schinoidea 0.02 0.004 0.01 0.000 0.000 Class Echinoidea Unidentified Schinoidea 0.01 0.002 0.10 0.001 0.000 Urechidae Urechis chilensis	Malletidae	Malletia sp.	3.06	3.46	23.27	151.72	2.49
Cardiomya cleryana 0.01 0.003 0.10 0.001 0.000 Pectinidae Aequipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Zygochlamys patagonica 0.01 0.001 0.10 0.001 0.001 0.000 Class Cephalopoda 1.10 8.83 8.96 88.97 0.88 Unidentified Cephalopoda 0.31 1.17 2.24 3.32 0.05 Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Loliginidae Loligo sp. 0.14 0.20 1.07 0.36 0.000 Octopodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.000 Class Ophiuroidea Unidentified Schinoidea 0.02 0.004 0.001 0.000 Class Echinoidea Unidentified Schinoidea 0.01 0.004 0.000 0.000	Cuspidariidae	Cuspidaria patagonica	0.02	0.06	0.19	0.02	0.0003
Pectinidae Aequipecten tehuelchus 0.04 0.001 0.39 0.02 0.000 Zygochlamys patagonica 0.01 0.001 0.10 0.001 0.001 0.000 Class Cephalopoda 110 8.83 8.96 88.97 0.88 Unidentified Cephalopoda 0.31 1.17 2.24 3.32 0.02 Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Loliginidae Loligo sp. 0.14 0.20 1.07 0.36 0.000 Octopodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.000 Class Ophiuroidea Unidentified Echinoidea 0.02 0.004 0.19 0.004 0.000 Class Echinoidea Urechis chilensis 0.01 0.04 0.10 0.005 0.000 Phylum Echinae Urechis chilensis 0.01 0.04 0.10 0.005 0.000 Unidentified Actinopterygii 0		Cardiomya cleryana	0.01	0.003	0.10	0.001	0.00001
Zygochlamys patagonica 0.01 0.001 0.10 0.001 0.000 Class Cephalopoda 1.10 8.83 8.96 88.97 0.88 Unidentified Cephalopoda 0.31 1.17 2.24 3.32 0.05 Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Loliginidae Loligo sp. 0.14 0.20 1.07 0.36 0.000 Octopodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.000 Class Ophiuroidea Unidentified Echinoidea 0.02 0.004 0.092 0.00 0.001 0.000 Class Echinoidea Unidentified Schinoidea 0.01 0.002 0.10 0.001 0.000 Phylum Echiura Unidentified Actinopterygii 0.01 0.04 0.10 0.005 0.000 Urechidae Urechis chilensis 0.01	Pectinidae	Aequipecten tehuelchus	0.04	0.001	0.39	0.02	0.0003
Class Cephalopoda 1.10 8.83 8.96 88.97 0.88 Unidentified Cephalopoda 0.31 1.17 2.24 3.32 0.05 Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Loliginidae Loligo sp. 0.14 0.20 1.07 0.36 0.006 Octopodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.0000 Class Ophiuroidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Class Echinoidea Unidentified Echinoidea 0.01 0.002 0.10 0.001 0.000 Phylum Echiura Urechis chilensis 0.01 0.04 0.10 0.005 0.000 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.000 Phylum Chordata <		Zygochlamys patagonica	0.01	0.001	0.10	0.001	0.00002
Unidentified Cephalopoda 0.31 1.17 2.24 3.32 0.05 Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Loliginidae Loligo sp. 0.14 0.20 1.07 0.36 0.006 Octopodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata Unidentified Ophiurida 0.01 0.002 0.10 0.001 0.09 Class Ophiuroidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.001 0.0000 Phylum Echiura 0.01 0.04 0.10 0.005 0.0000 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.000 Phylum Chordata Unidentified Actinopterygii 0.21 <td>Class Cephalopoda</td> <td></td> <td>1.10</td> <td>8.83</td> <td>8.96</td> <td>88.97</td> <td>0.88</td>	Class Cephalopoda		1.10	8.83	8.96	88.97	0.88
Ommastrephidae Illex argentinus 0.13 0.80 1.07 1.00 0.02 Loliginidae Loligo sp. 0.14 0.20 1.07 0.36 0.006 Octopodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata 0.04 0.001 0.39 0.02 0.0002 Class Ophiuroidea Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.10 0.000 Phylum Echiura Urechis chilensis 0.01 0.04 0.10 0.005 0.000 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.000 Phylum Chordata Unidentified Actinopterygii 0		Unidentified Cephalopoda	0.31	1.17	2.24	3.32	0.05
Loliginidae Loligo sp. 0.14 0.20 1.07 0.36 0.006 Octopodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata 0.04 0.001 0.39 0.02 0.0002 Class Ophiuroidea Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.0000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Phylum Echiura 0.01 0.0002 0.10 0.001 0.0002 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.0002 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.000 Phylum Chordata Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02 Datas Actinopterygii Third landiine artice artic	Ommastrephidae	Illex argentinus	0.13	0.80	1.07	1.00	0.02
Octopodidae Eledone massyae 0.53 6.66 4.67 33.58 0.55 Phylum Echinodermata 0.04 0.001 0.39 0.02 0.0002 Class Ophiuroidea Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.0000 Class Echinoidea Unidentified Echinoidea 0.02 0.004 0.19 0.004 0.000 Phylum Echiura Unidentified Echinoidea 0.01 0.0002 0.10 0.001 0.0000 Phylum Echiura Urechis chilensis 0.01 0.04 0.10 0.005 0.0000 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.0000 Phylum Chordata Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02 Datas Actinopterygii Third I and time ation ation 0.01 0.01 0.01 0.017 0.02	Loliginidae	Loligo sp.	0.14	0.20	1.07	0.36	0.006
Phylum Echinodermata 0.04 0.001 0.39 0.02 0.0002 Class Ophiuroidea Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.0000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Phylum Echiura 0.01 0.001 0.0002 0.10 0.005 0.0000 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.000 Phylum Chordata Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02 Extendeditibut Third lue diverse trie 0.01 0.016 0.017 0.002	Octopodidae	Eledone massyae	0.53	6.66	4.67	33.58	0.55
Class Ophiuroidea Unidentified Ophiurida 0.01 0.0002 0.10 0.001 0.0000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Phylum Echiura 0.01 0.001 0.0002 0.10 0.005 0.0002 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.0002 Phylum Chordata Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02 Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02	Phylum Echinodermata	2	0.04	0.001	0.39	0.02	0.0002
Class Echinoidea Unidentified Echinoidea 0.02 0.0004 0.19 0.004 0.000 Sterechinus agassizii 0.01 0.0002 0.10 0.001 0.0000 Phylum Echiura 0.01 0.01 0.04 0.005 0.0000 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.0000 Phylum Chordata Class Actinopterygii 7.75 32.91 44.21 1797.58 17.70 Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02	Class Ophiuroidea	Unidentified Ophiurida	0.01	0.0002	0.10	0.001	0.00002
Sterechinus agassizii 0.01 0.0002 0.10 0.001 0.0000 Phylum Echiura 0.01 0.04 0.10 0.005 0.0000 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.0000 Phylum Chordata Class Actinopterygii 7.75 32.91 44.21 1797.58 17.70 Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02	Class Echinoidea	Unidentified Echinoidea	0.02	0.0004	0.19	0.004	0.0001
Phylum Echiura 0.01 0.04 0.10 0.005 0.0002 Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.0002 Phylum Chordata Class Actinopterygii 7.75 32.91 44.21 1797.58 17.70 Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02		Sterechinus agassizii	0.01	0.0002	0.10	0.001	0.00002
Urechidae Urechis chilensis 0.01 0.04 0.10 0.005 0.000 Phylum Chordata Class Actinopterygii 7.75 32.91 44.21 1797.58 17.70 Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02 Detersheididae Tri d. l.e. diters triangle 0.01 0.01 0.16 0.017 0.020	Phylum Echiura		0.01	0.04	0.10	0.005	0.0002
Phylum Chordata 7.75 32.91 44.21 1797.58 17.70 Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02	Urechidae	Urechis chilensis	0.01	0.04	0.10	0.005	0.0001
Class Actinopterygii 7.75 32.91 44.21 1797.58 17.70 Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02 Detersheidide Triedeleestic 0.01 0.16 0.017 0.000	Phylum Chordata		0.01	0.01	0.10	0.000	5.0001
Unidentified Actinopterygii 0.21 0.39 1.95 1.17 0.02	Class Actinoptervgii		7.75	32.91	44.21	1797.58	17.70
		Unidentified Actinoptervgii	0.21	0.39	1.95	1.17	0.02
Batracholdidae Iriatnalassotnia argentina UUI UTP UTP UTU UUI / UUU/	Batrachoididae	Triathalassothia arcentina	0.01	0.16	0.10	0.017	0.0003
Engraulidae Engraulis anchoita 6.23 10.53 36.32 608.72 0.00	Engraulidae	Engraulis anchoita	6.23	10.53	36 32	608 72	9.99

Trophic ecology of Sympterygia bonapartii

Prey		%N	%P	%F	IRI	%IRI
Merlucciidae	Merluccius hubbsi	1.30	21.88	9.93	230.18	3.78
Serranidae	Serranus auriga	0.01	0.20	0.10	0.02	0.0003
Paralichthyidae	Paralichthys sp.	0.01	0.0002	0.10	0.001	0.0001
Moridae	Salilota australis	0.01	0.04	0.10	0.005	0.0001
Digested material		0.07	0.13	0.68	0.14	0.002
Unidentified material		0.02	0.06	0.19	0.02	0.002
Number of samples	1,047					
Empty stomachs (n)	23					

Table 3 continued

The contribution of the main groups is in bold

Fig. 4 Frequency distribution of the number of prey items recorded per stomach

Fig. 5 Graphical representation of the feeding strategy of *Symptery-gia bonapartii*. Specific abundance of groups of prey plotted against its frequency of occurrence. Crabs (*gray closed square*), teleost fishes (*crossed bars*), shrimps and prawns (*open triangle*), bivalves (*open circle*), small crustaceans (*open square*), worms (*gray diamond*), cephalopods (*closed circle*), stomatopods (*closed square*)

trophic level of females was only slightly higher than that of males (Fig. 6; Table 5).

For males, the diet composition of small and large skates was significantly different (F = 15.23; d.f. = 1; d.f. = 296; P < 0.001). Large males had a less diverse diet and a higher proportion of empty stomachs. The main differences in the diets of these groups were small crustaceans, crabs, shrimps and teleost fishes. However, despite these differences, their trophic levels were similar (Table 5).

The diet composition of small and large females also differed significantly (F = 20.21; d.f. = 1; d.f. = 634; P < 0.001). Large females had a less diverse diet and a higher proportion of empty stomachs than small females as well as a slight increment in their trophic level. The main differences were in the contribution of small crustaceans, teleost fishes and cephalopods (Table 5).

In the group of large females, the samples were sufficient to assess the probability of differences in diet composition throughout the year. Significant differences were detected among the periods analysed (F = 7.94, d.f. = 2, d.f. = 294, P < 0.001). The multiple comparison tests indicated significant differences among the three periods (period I vs II: t = 2.56; d.f. = 196; P < 0.001; period I vs III: t = 2.81; d.f. = 196; P < 0.001; period II vs III: t = 2.81; d.f. = 196; P < 0.001). From period I to III, there was an increase in the contribution of crabs and cephalopods and a decrease in the contribution of shrimps, bivalves and small crustaceans (Table 5).

Discussion

This is the first study to describe and quantify the diet of *Sympterygia bonapartii* in the SMG, northern Patagonia. Several methodologies have been applied to estimate the measurements for diet description (%W; %N; %FO and %IRI), particularly the new ones proposed by Brown et al. (2012). However, and perhaps due to high predominance of brachyurans in the diet of this skate, no marked changes were found among measurements. For that reason, this study presents the parameters most commonly used to facilitate comparisons among studies.

Table 4 Results of thecorrelation tests

Species	Mean size (mm)	SD	n	r	CI _{95%}	Р
Eledone massyae	40.36	18.11	22	0.77	0.52-0.90	0.0001*
Engraulis anchoita	81.26	20.00	109	0.14	-0.05-0.33	0.14
Libidoclea granaria	19.46	11.15	49	0.66	0.45-0.80	0.0001*
Peltarion spinosulum	15.05	8.74	429	0.47	0.39–0.54	0.0001*
Pleoticus muelleri	9.80	5.92	174	0.01	-0.14-0.16	0.89
Solemya sp.	23.99	8.37	27	0.18	-0.23-0.53	0.37

n Pairs of data analyzed, *r* Spearman correlation coefficient, $CI_{95\%}$ confidence interval of the coefficient of correlation

* significant differences

Fig. 6 Contribution by number (%) of groups of prey to the diet of *Sympterygia bonapartii* by length-class intervals of 20 mm L_T . Sample size of each interval is given at the upper section of the plot. Males (a) n = 324 and females (b) n = 698. *Vertical black lines* delimitate size groups

The diet of *S. bonapartii* diet was composed of more than 80 prey items from different groups of marine invertebrates and fishes. A low proportion of empty stomachs were recorded and the prey was usually found in different stages of digestion, which suggested that the species was a continuous feeder.

The diet consisted primarily of brachyuran crabs, while teleost fishes ranked second in importance. A similar pattern was also reported in the diet of *S. bonapartii* in the Argentine–Uruguayan Common Fishing Zone (AUCFZ) and the Buenos Aires coastal area (Barrera Oro and Maranta 1996; Paesch 2000; Barbini 2010). However, in the San Jorge Gulf, galatheid crabs and stomatopods were the most important items and teleost fishes were only found in the diet of larger skates (Sánchez and Prenski 1996). This suggests that even though crabs are the main items, the diet of *S. bonapartii* may vary between areas, probably due to prey availability in each environment.

Bivalves, in particular those with soft shells, were the other important items in the diet of S. bonapartii in the SMG. Other skates also have a high incidence of bivalves in their diet (McEachran et al. 1976). Raja ocellata, like S. bonapartii, feeds on Solemva spp. and the frequency of occurrence of bivalves in its diet is also high, reaching 40 % (McEachran et al. 1976). Nonetheless, a study analysing the diet of 14 skate species in the Benguela ecosystem revealed that bivalves were not present among the prey of these skates, while they did appear in the diet of other chondrichthyans (Ebert et al. 1991). This indicates that although bivalves are not considered an important prey item for the group of skates (Bizzarro et al. 2007; Ebert and Bizzarro 2007), there are specific cases in which their contributions are significant, particularly for those bivalves that could be easily digested.

Trophic ecology. Due to the predominance of brachyurans in its diet, *S. bonapartii* fell within the functional group that mainly feeds upon decapod crustaceans, according to the classification proposed by Ebert and Bizzarro (2007). However, this classification fails to highlight the ecological differences between sympatric skates in the SMG. It is proposed then that this functional group should be further split into species that feed mainly upon shrimp and prawns, such as *Atlantoraja platana* (see

Trophic ecology of Sympterygia bonapartii

Groups	Male	s	Fema	les	Males			Fema	les			Females > 580 mm LT						
	%N	%FO	%N	%FO	Smal	1	Large	2	Smal	l	Large	2	Perio	d I	Period II		Period III	
					< or 540 r	< or = 540 mm LT		>540 mm LT		< or = 580 mm LT		mm						
					%N	%FO	%N	%FO	%N	%FO	%N	%FO	%N	%FO	%N	%FO	%N	%FO
SHRI	17.8	43.8	8.7	35.8	12.8	43.8	30.5	43.9	8.0	43.2	9.8	29.8	13.9	37.2	9.6	27.7	4.62	22.8
CRAB	29.8	79.8	41.0	84.8	26.2	85.8	39.0	72.9	37.0	88.2	46.6	82.4	33.0	78.8	42.9	84.5	69.8	84.2
POLY	4.7	37.5	5.6	35.2	3.6	39.2	7.6	35.5	4.7	41.6	6.9	30.0	7.4	35.8	8.5	29.7	3.9	22.8
CEPH	1.0	9.1	1.2	8.7	0.7	8.5	1.9	9.7	0.4	4.7	2.2	12.0	1.4	7.8	2.7	12.9	2.7	14.9
BIVA	2.7	23.9	6.6	35.1	2.5	28.4	3.4	18.7	5.2	36.0	8.7	34.4	10.3	41.6	10.1	38.1	4.6	18.8
FISH	6.1	39.0	8.8	45.4	3.7	35.2	12.2	43.2	5.3	40.4	13.8	49.6	11.0	46.0	20.7	61.9	7.7	35.6
STOM	0.4	3.3	4.1	15.6	0.2	1.7	0.9	5.16	2.0	12.1	7.1	18.6	14.9	29.9	1.9	11.0	3.9	14.9
SCRU	37.6	39.3	24.1	29.5	50.5	55.1	4.5	21.3	37.6	45.7	5.0	16.3	8.1	26.3	3.5	11.6	2.8	9.9
N items	3572		6420		2572		1000		3774		2646		942		989		715	
N samples	331		716		177		154		322		393		137		155		101	
Minimum	131		223		116		109		182		203		89		98		86	
sample size																		
Empty	2.4		1.7		1.1		3.2		1.1		2.3		1.5		2.6		3.0	
stomachs (%)																		
$H \pm SD$	2.67	± 0.05	2.75	± 0.05	2.54	± 0.05	2.37	± 0.05	2.64	± 0.05	2.58	± 0.05	2.81	± 0.05	2.43	± 0.05	1.96	± 0.05
Trophic level	3.58		3.61		3.59		3.60		3.58		3.60							

Table 5	Diet	variations	among	factors.	Group	codes	are	shown	in	Table	1

%N Contribution in number, %FO frequency of occurrence of the main groups of prey items, *Minimum sample size* minimum number of stomachs required to perform the statistical analysis, $H \pm SD$ mean value \pm standard deviation of the Shannon–Wiener diversity index

Coller 2012), and species which feed mainly upon crabs, such as *S. bonapartii*.

In addition, *S. bonapartii* appeared to a benthic predator as other skates reaching a similar maximum size. Most of the items in its diet were epifaunal benthonic species (crabs, amphipods, cumaceans, isopods, stomatopods and octopi) and the presence of demersal and pelagic prey, such as *M. hubbsi* and *E. anchoita*, could be explained by the daily vertical migrations that these species performed. These migrations may allow *S. bonapartii* to capture them when they are close to the bottom, as postulated for other skates (Orlov 2003; Bizzarro et al. 2007; Treolar et al. 2007).

According to its trophic level, *S. bonapartii* is a secondary consumer. Given that the determination of prey categories and the values assigned to each group can have an impact on estimations, it was difficult to compare punctual values among studies. Furthermore, in this study, trophic levels did not reflect the significant differences among groups recorded by statistical analyses. However, it did agree with the estimations made for other skates reaching similar maximum size that are also considered secondary consumers (Ebert and Bizzarro 2007). **Changes in diet.** The diet varied according to sex, size class and throughout the year. The variations could be due to extrinsic and intrinsic factors that could be working together (Di Giácomo and Perier 1996). The extrinsic factors include changes in the abundance and availability of prey. Intrinsic factors are associated with predators and include morphological changes, behavioural differences and differences in energy requirements linked to reproduction (Di Giácomo and Perier 1996).

Differences in the diet of males and females could be due to the availability of prey and/or the energy requirements of reproduction. *Sympterygia bonapartii* exhibits sexual segregation (Estalles et al. 2011) and thus its diet may be reflecting differences in the distribution of prey in the environment. In addition, the higher energy requirements of female reproduction could also be reflected in their diet. This statement is supported by the fact that major differences were observed among individuals of larger sizes, most of them mature.

Changes in diet composition during ontogeny were also recorded. Numerous studies on skates reported an increase in fish consumption and the incorporation of prey of larger size as skate size increases (e.g. Holden and Tucker 1974; Ellis et al. 1996; Orlov 2003). In the present study, a decrease in the consumption of small crustaceans and an increase in the contribution of crustaceans of larger sizes, teleost fishes and cephalopods were detected. This pattern is consistent with previous studies on other rajoids and with previous studies on *S. bonapartii* (see Barrera Oro and Maranta 1996; Sánchez and Prenski 1996; Paesch 2000; Barbini 2010). An explanation is that as predators reach larger sizes, they improve their swimming capacity, which allows them to expand their niche and/or to optimize their ability to capture prey (Holden and Tucker 1974; Ellis et al. 1996). Furthermore, the increase in body size is generally correlated with an increase in mouth opening, which allows for the incorporation of larger prey (Ellis et al. 1996; Treolar et al. 2007).

In addition, ontogenetic changes could also be linked to reproduction. In both sexes, the L_T that defined size groups with significant differences was close to the $L_{T50\%}$ estimated for *S. bonapartii* in the SMG ($L_{T50\%} = 545$ mm for males and $L_{T50\%} = 594$ mm for females; Estalles 2012). This suggests a relationship between the energy expenditure of reproduction and the increase in the consumption of prey with higher energy contributions such as teleost fishes and cephalopods.

Temporal changes were also observed in the diet of S. bonapartii and they could be related to at least three factors. The first one is bias due to the origin of the samples which, in most cases, came from commercial fishing vessels. Fishing sites vary throughout the year according to the distribution of the target species of fishery, the common hake M. hubbsi or the savorin Seriolella porosa, and the establishment of seasonal closure (Di Giácomo and Perier 1992; Perier and Di Giácomo 2002; Di Giácomo et al. 2005). The second factor is the variation over the year in the abundance and availability of prey. The third factor may be differences in the energy requirements during the reproductive cycle of S. bonapartii. The only group in which temporal changes were evaluated was the one of female with an $L_T > 580$ mm. This group was composed mainly of mature females. The increase in the consumption of teleost fishes and cephalopods was detected during the mating and the egg-laying season (July to February: Estalles 2012). This could be related to an increase in energy requirements during the maturation of yolk oocytes and the formation of the egg capsules.

Acknowledgments We thank Tec. M. Camarero, Tec. G. Mora, Tec. M. Suarez and Tec. B. Rivero for helping us with the sampling. We also thank Dr. L. Orensanz, Dra. B. Dotti and Dr. G. Pastorino for their kind contribution towards the taxonomic identification of the prey; and Dr. S. Barbini and Lic. J. Pérez Comesaña for their help with the statistical analysis. We also acknowledge the local fishprocessing plants "Maritima San José", "Camaronera Patagónica", "Al Pesca" and "Calme Pesquera" for providing us with the biological material and allowing us to sample at their facilities. This research was supported by Universidad Nacional del Comahue by the grant (004/M020). This research complies with the current laws of Argentina.

References

- Amundsen PA, Gabler HM, Staldvik FJ (1996) A new approach to graphical analysis of feeding strategy from stomach contents data-modification of the Costello (1990) method. J Fish Biol 48:607–614
- Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46
- Anderson MJ (2005) PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland
- Barbini SA (2010) Ecología trófica de las rayas (Chondrichthyes, Rajidae) en el ecosistema costero bonaerense y uruguayo. PhD Thesis. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. Mar del Plata, Buenos Aires
- Barbini SA, Lucifora LO (2011) Feeding habits of the Rio skate, *Rioraja agassizi* (Chondrichthyes: Rajidae), from off Uruguay and north Argentina. J Mar Biol Assc UK 91:1175–1184
- Barrera Oro E, Maranta A (1996) Régimen alimentario estacional de Sympterygia bonapartii, Müller y Henle 1841 (Rajidae), en Mar del Plata. Boletim do Laboratorio de Hidrobiología 9:33–53
- Bizzarro JJ, Robinson HJ, Rinewalt CS, Ebert DA (2007) Comparative feeding ecology of four sympatric skate species off central California, USA. Environ Biol Fish 80:197–220
- Brown SC, Bizzarro JJ, Cailliet GM, Ebert DA (2012) Breaking with tradition: Redefining measures for diet description with a case study of the Aleutian skate *Bathyraja aleutica* (Gilbert 1896). Environ Biol Fish 95:3–20
- Coller NM (2012) Biología, ecología y explotación de la raya platana Atlantoraja platana (Günther, 1880) (Chondrichthyes, Rajidae) del golfo San Matías. PhD Thesis. Universidad Nacional de La Plata. La Plata, Buenos Aires
- Cortés E (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can J Fish Aquat Sci 54:726–738
- Cortés E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56:707–717
- Di Giácomo EE, Perier MR (1992) Abundancia, estructura poblacional y zona de desove de la merluza (*Merluccius hubbsi*) en el golfo San Matías. Frente Marítimo 12(A):47–52
- Di Giácomo EE, Perier MR (1996) Feeding habits of Cockfish, Callorhinchus callorhynchus (Holocephali: Callorhynchidae), in Patagonian waters (Argentina). Mar Freshw Res 47:801–808
- Di Giácomo EE, Perier MR, Pascual MS, Zampatti EA (2005) El mar y sus recursos: golfo San Matías. In: Massera F, Lew J, Serra Peirano G (eds) Las mesetas patagónicas que caen al mar: la costa rionegrina. Viedma, Gobierno de Río Negro, pp 409–439
- Ebert DA, Bizzarro JJ (2007) Standardized diet compositions and trophic levels of skates (Chondrichthyes: Rajiformes: Rojoidei). Environ Biol Fish 80:221–237
- Ebert DA, Cowley PD, Compagno LJV (1991) A preliminary investigation of the feeding ecology of skates (Batoidea: Rajidae) off the west coast of southern Africa. S Afr J Mar Sci 10:71–81
- Ebert DA, Compagno LJV (2007) Biodiversity and systematics of skates (Chondrichthyes: Rajiformes: Rajoidei). Environ Biol Fish 80:111–124
- Ellis JR, Pawson MG, Shackley SE (1996) The comparative feeding ecology of six species of shark and four species of ray (Elasmobranchii) in the North-East Atlantic. J Mar Biol Ass UK 76:89–106

Trophic ecology of Sympterygia bonapartii

- Estalles ML (2012) Características de historia de vida y explotación comercial de la raya *Sympterygia bonapartii* en el Golfo San Matías. PhD Thesis. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
- Estalles M, Coller NM, Perier MR, Di Giácomo EE (2011) Skates in the demersal trawl fishery of San Matías Gulf: species composition, relative abundance and maturity stages. Aquat Living Resour 24:193–199
- Figueiredo JL (1977) Manual de Peixes Marinhos do Sudeste do Brasil. I.-Introdução. Cações, raias e quimeras. Museu de Zoologia- Universidade do Sâo Paulo, Sâo Paulo
- Holden MJ, Tucker RN (1974) The food of *Raja clavata* Linnaeus 1758, *Raja montagui* Flower 1910, *Raja naevus* Müller and Henle 1841 and *Raja naevus* Lafont 1873 in British waters. J Cons Per Inter Explor Mer 35:189–193
- Hyslop EJ (1980) Stomach contents analysis- a review of methods and their application. J Fish Biol 17:411-429
- Koen Alonso M, Crespo EA, García NA, Pedraza SN, Mariotti PA, Berón Vera B, Mora NJ (2001) Food habits of *Dipturus chilensis* (Pisces: Rajidae) off Paragonia, Argentina. ICES J Mar Sci 58:288–297
- McEachran JD, Boesch DF, Musick JA (1976) Food division within two sympatric species-pairs of skates (Pisces: Rajidae). Mar Biol 35:301–317
- Menni RC, Stehmann FW (2000) Distribution, environment and biology of batoid fishes off Argentina, Uruguay and Brazil. A review. Rev Mus Argent Cienc Nat ns 2:69–109

- Oksanen J (2011) Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/ vegantutor.pdf. Accessed 8 November 2011
- Orlov AM (2003) Diets, feeding habits, and trophic relations of six deep-benthic skates (Rajidae) in the western Bering Sea. Aqua J Ichthyol Aquat Biol 7:45–60
- Paesch L (2000) Hábitos alimentarios de algunas especies de elasmobranquios en el frente oceánico del Río de La Plata. Frente Marítimo 18(A):71–90
- Perier MR, Di Giácomo EE (2002) El savorín *Seriolella porosa*, como un recurso estacional en el Golfo San Matías, República Argentina. Rev Invest Desarr Pesq 15:15–26
- Perier MR, Estalles M, Coller NM, Suarez MN, Mora GJ, Di Giácomo EE (2011) Chondrichthyans of the San Matías Gulf, Patagonia, Argentina. Rev Mus Argent Cienc Nat ns 13:213–220
- R Development Core Team (2010) R-version 2.11.1. The R Foundation for Statistical Computing, Vienna
- Sánchez F, Prenski LB (1996) Ecología trófica de peces demersales en el Golfo San Jorge. Rev Invest Desarr Pesq 10:57–71
- Treolar MA, Laurenson LJB, Stevens JD (2007) Dietary comparisons of six skate species (Rajidae) in south-eastern Australian waters. Environ Biol Fish 80:181–196
- Wetherbee BM, Cortés E (2004) Food consumption and feeding habits. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Florida, pp 225–246
- Zar JH (1984) Biostatistical Analysis. 2nd Edition. Prentice Hall, Englewood Cliffs