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The standard method for spectrum analysis is the Discrete Fourier Transform(DFT),
typically implemented using a Fast Fourier Transform (FFT) algorithm. However, certain
applications require an on-line spectrum analysis only on a subset of M frequencies of
an N-point DFT (M < N). In such cases, the use of Single-bin Sliding DFT (Sb-SDFT) is pre-
ferred over the direct application of FFT. Along these lines, the most popular algorithms are
the Sliding Discrete Fourier Transform (SDFT), the Sliding Goertzel Transform (SGT), the
Modulated Sliding Discrete Fourier Transform (mSDFT), and the S. Douglas and ]. Soh algo-
rithm (D&S). Even though these methods seem to differ, they are derived from the conven-
tional DFT using distinct approaches and properties. To better understand the advantages,
limitations and similarities each of them have, this work thoroughly evaluates and com-
pares the four Sb-SDFT methods. What is more, the direct application of these Sb-SDFTs
may lead to inaccuracies due to spectral leakage and picket-fence effects, common pitfalls
inherited by every DFT-based method. For this reason, a unified model of the Sb-SDFT
methods is proposed, whose aim is to design a frequency adaptive control loop. This fre-
quency adaptability allows to mitigate the problems associated with improper sampling
frequency. By using this unified model, the election of the Sb-SDFT algorithm is indepen-
dent of the controller design and all the methods are equivalent. Theoretical results are
validated by simulations and a DSP implementation of the four frequency adaptive
Single-bin Sliding DFT methods.
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1. Introduction rotating machines, lead to inaccurate operation of

protection and control systems, damage sensitive loads

The proliferation of advanced power electronic tech-
nologies, such as switching power supplies and adjustable
speed motor drives, among others, have led to an incre-
ment in the harmonic currents injected into power sys-
tems, causing power quality degradation. Harmonic
pollution can cause serious problems in power systems,
e.g., it can accentuate losses in distribution networks and
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and create significant interference in communication sys-
tems. In addition, the system frequency may deviate from
its nominal value due to the imbalance between power
generation and load demand. Therefore, interest lies in
measuring the harmonic components of non-stationary
signals, such as grid voltage and currents for grid monitor-
ing and implementation of preventive strategies [1-3].
Various approaches estimate the harmonic content of
electrical signals. The method most commonly used is
the Discrete Fourier Transform (DFT), implemented by
the Fast Fourier Transform (FFT) [4-6] due to its com-
putational efficiency. By transforming the measured signal


http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2015.03.011&domain=pdf
http://dx.doi.org/10.1016/j.measurement.2015.03.011
mailto:orallo@fi.mdp.edu.ar
http://dx.doi.org/10.1016/j.measurement.2015.03.011
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement

10 C.M. Orallo et al./ Measurement 69 (2015) 9-19

from the time domain to the frequency domain, FFT can
accurately track its harmonic components.

For some real-time applications, the direct application
of conventional DFT methods or more efficient FFT tech-
niques can be complex and/or involve an excessive com-
putational cost. However, certain applications require an
on-line spectrum analysis only over a subset of M frequen-
cies of an N-point DFT (M < N). For this scenario, the com-
mon practice is to utilize Single-bin Sliding DFT algorithms
(Sb-SDFT). These algorithms efficiently calculate a unique
spectral component of an N-point DFT. The Sliding
Discrete  Fourier Transform (SDFT) [7,8], the
Sliding Goertzel Transform (SGT) [9,10], the Modulated
Sliding Discrete Fourier Transform (mSDFT) [11] and the
S. Douglas and J. Soh algorithm (D&S) [12] are among the
most popular Sb-SDFT methods. These four techniques
have spectral bin output rates equal to the input data rate
on a sample-by-sample basis.

Nonetheless, since the harmonic level and the
fundamental frequency in the power system are usually
time-varying, the direct application of DFT-based methods
for spectral analysis may lead to inaccuracies due to spec-
tral leakage and picket-fence effects [13]. These unwanted
effects are related to the frequency variation and improp-
erly selected sampling time window. In order to solve this
problem, the authors present in [14] a harmonic measure-
ment method which employs the mSDFT algorithm and a
frequency adaptive mechanism. This mechanism, named
Variable Sampling Period Technique (VSPT), dynamically
adjusts the sampling period to exactly N times the
fundamental frequency, thereby avoiding the above-men-
tioned problems.

Despite the fact that Sb-SDFT methods seem to be dif-
ferent, they are derived from the conventional DFT with
distinct approaches and properties. Thus they bear great
similarities that are frequently overlooked. This paper
evaluates and compares the four selected Sb-SDFT algo-
rithms in diverse operational conditions, identifying the
similarities between them. Based on this analysis, a unified
mathematical model is proposed for the implementation of
VSPT in order to achieve a frequency adaptive system. The
purpose of obtaining a unified model is to make the choice
of an Sb-SDFT independent from the design of the control
in charge of frequency adjustment, rendering the design
and implementation process more flexible and convenient.
Moreover, it allows to change the algorithm without
redesigning the control loop. By using the unified model
proposed here, the benefits of this frequency adaptive
mechanism can be extrapolated to all the algorithms dis-
cussed in this manuscript. The model obtained, together
with its usefulness in the design process, is validated by
experimental results obtained in a DSP platform.

The paper is organized as follows: Section 2 presents a
brief review of Sb-SDFT. The steady-state characteristics
of the reviewed methods are analyzed in Section 3, while
their dynamic behaviors are presented in Section 4. In
Section 5, a scheme for frequency adaptation (VSPT) to
mitigate the inaccuracies resulting from the spectral leak-
age and picket-fence effect is introduced. A unified model
is presented to generalize this scheme to all Sb-SDFT along
with simulation results. The experimental results for the

implementation of the reviewed Sb-SDFT with VSPT, based
on the unified model, are shown in Section 6. Finally, the
conclusions of this work are drawn in Section 7.

2. Review of Single-bin Sliding Discrete Fourier
Transforms

The standard method for spectrum analysis in digital
signal processing is the Discrete Fourier Transform (DFT).
DFT converts a finite series of equally spaced samples of
a function into a series of coefficients of a finite com-
bination of complex sinusoids, ordered by their frequen-
cies. Therefore, DFT converts the sampled function from
its original time domain to the frequency domain.

The DFT of the sequence x(n) is defined as

N-1

X(k) =Y x(mWy* 1)
n=0

where X (k) is the DFT output coefficient, Wy = "V is the

complex twiddle factor, N is the sequence length, k is the

frequency domain index (0 < k < N —1) and n is the time

domain index [4].

For a number of real-time applications, the direct appli-
cation of conventional DFT methods can be complex and
demand high computational effort. Additionally, there are
applications that require spectrum analysis only over a
subset of M frequencies of an N-point DFT. In such
instances, it is convenient to use a Single-bin Sliding
Discrete Fourier Transform (Sb-SDFT) algorithm, which
computes a single complex DFT spectral bin value by
means of a sliding window.

One of the most common Sb-SDFTs, is the Sliding
Discrete Fourier Transform (SDFT). SDFT is a recursive
algorithm that performs an N-point DFT on time samples
within a sliding window on a sample-by-sample basis.
The time window is advanced one sample at a time, and
a new N-point DFT is calculated. The principle used for
SDFT is known as the DFT shifting theorem, or the circular
shift property.

SDFT can be recursively implemented to calculate Eq.
(1) for a desired k-bin, as:

Xe(n) = WX (n — 1) — x(n — N) + x(n) 2)

where X, (n) is calculated by phase shifting the sum of the
previous X, (n — 1) with the difference between the current
and delayed input sample, x(n) and x(n — N), respectively
[7,8].

SDFT is computationally efficient, as it only requires one
(complex) multiplication and two additions per time
instant. Nevertheless, the implementation of Eq. (2) as an
IIR filter in a system with finite word-length precision
brings about a rounding error in the implementation of
the WY, coefficient, resulting in accumulated errors and
potential instabilities. The latter is explained by wrong
cancellations between poles and zeroes as well as by poles
displacement outside the unit circle [15]. To achieve stabil-
ity, a damping factor (r) must be included to force the poles
and zeroes to be at a radius of r inside the unit circle. Then,
the intrinsically stable version of the SDFT is:
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Xi(n) = WX X (n = 1) = ™x(n — N) + x(n) 3)

where X,(n) is the estimated DFT output coefficient. The z-
domain transfer function for the estimated kth-bin of the
SDFT is:

1-rzN

4
1- Wizt “)

Hsper(z) =
While this system is numerically stable, it no longer com-
putes the exact value of X(k) in Eq. (1), since a small error is
induced by the damping factor. This error can be reduced
via a suitable choice of r. The stable SDFT filter is shown
in Fig. 1(a). This algorithm is implemented as an IIR filter
with a comb filter followed by a complex resonator. The
comb filter forces the filter's transient response to be
N — 1 samples in length, so the output will not reach a
steady state until the comb filter stores the new input sig-
nal waveform.

The number of multiplications required in the SDFT can
be reduced by creating a new pole/zero pair in its Hsper(z)
system function. This is achieved by multiplying the
numerator and denominator of Hsprr(z) in Eq. (4) by the

factor (l - rW;,kZ*l) yielding:

(1-wyz 1) (1 -1z )

Hser(2) = 151 cos mk/Nyz T+ 7222 ®)

where the subscript SGT means Sliding Goertzel
Transform. Like SDFT filter, SGT implementation is also
marginally stable since its poles reside on the z-domain
unit circle. To mitigate the stability drawback, a damping
factor r is used in Eq. (5), to move the singularities towards
the inside of the unit circle, thus assuring the system
stability.

The linear difference equations of this transformation
are:

v(n)=Cro(n—1)-Cao(n—2)+x(n)—rMx(n-N) (6a)

X (n) = v(n) — WXo(n—1) (6b)

where C; = 2rcos(2ntk/N) and C, = r2. The block diagram
description of SGT is shown in Fig. 1(b), where the
Standard Goertzel filter preceded by a comb filter can be
observed. The computational workload of SGT imple-
mentation is less than that of SDFT as it only has real coef-
ficients in the feedback path. Therefore, for real-time
processing involving spectral updates on a sample-by-
sample basis, the SGT method requires fewer multipliers
than SDFT does [16,9,8].

The use of a damping factor in SDFT and SGT guarantees
stability, but the filters output is no longer exactly equal to
the kth-bin of an N-point DFT in Eq. (1). The error is
reduced by making r very close to (but less than) unity.
Additionally, in [12], a technique that reduces this error
and, like SDFT and SGT, computes the kth-bin of an N-point
DFT using a simple recursive algorithm, is developed. This
technique is a periodically-time-varying system designed
to produce an )?k(n) output signal that is mathematically
equivalent to X(k) in Eq. (1) at every Nth time instant. At

z(n) T o © Xi(n)
00— —

i P v Wk | 1|

LA AT

1 & B & l

" Comb Filter  Resonator
(a)

a(n) T N T OB Xi(n)
——0+€ —e—

3 3 3 Cy |zt
e | O ——
3 N . | Cy | 271 EI'VVK/
el e
“Comb Filter _____ Resonator
Standard Goertzel Filter
(b)

x(n)y T T e T N Xk(n)
A A -
| o ewk s wk !

i s ]

! r o !

. L l . N .

| 3 —

" Comb Filter Resonator
(c)

o) ) (T TV X

VV];kn 3 Z—N : 3 Z_l :
L
Comb Filter Resonator
(d)

x(n) T T ! co Y XR(n)
. (D) () (D) .
Y T Y1
3 2N T 3 1 3
= ! L |

Comb Filter Resonator
(e)

Fig. 1. Guaranteed-stable Sb-SDFT implementation as IIR filter. (a) SDFT.
(b) SGT. (c) D&S algorithm. (d) mSDFT. (e) mSDFT, most efficient approach
in Eq. (13).

other time instants, the difference can be arbitrarily made
smaller through the proper choice of the damping factor r.
This algorithm has a simple recursive implementation that
renders it useful for approximating Eq. (1):
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Ren) = { WEX(n—1) —x(n — N) +x(n), (nmod N)=0 (a)
W',ﬁ,)w(k(n —1)—rmx(n—N)+x(n), otherwise. (b)
(7)

The algorithm described by Eq. (7) will be referred to as
the Douglas and Soh (D&S) algorithm. The filter imple-
mentation of Eq. (7), shown in Fig. 1(c), requires two multi-
plications and two additions as well as the control logics to
determine when n mod N = 0. In the figure, the change
between Eq. (7a) and (7b) is performed by switch S;.
Therefore, the switching period of S; in Fig. 1(c) is equal
to N x Ts, where T; is the sampling period, and its duty
cycle is equal to one sample. It is worth mentioning that
the effect of the nonlinear operation of D&S algorithm in
the dynamic response is negligible as it only changes its
structure every N samples.

There is a linear way of avoiding the reduction of
accuracy generated by the damping factor, without
compromising stability. SDFT implementation in Eq. (2) is
marginally-stable, however for the particular case of
k =0 (DC component estimation), it takes the following
form:

Xo(n) = Xo(n — 1) —x(n — N) +x(n)] (8)

The absence of the W¥ coefficient, which typically leads to
stability issues when it is represented with finite precision,
allows to implement the recursive expression without the
damping factor r. Therefore, the recurrence in Eq. (8) is
unconditionally stable and does not accumulate errors.
The Modulated SDFT (mSDFT) algorithm uses the DFT
modulation property to effectively shift the k component
of an input signal to the position k = 0. This is accom-
plished by the multiplication of x(n) by the modulation
sequence Wg"". This approach allows to exclude the com-
plex twiddle factor from the resonator and avoid accumu-
lated errors and potential instabilities [11]. The recursive
realization of the mSDFT is:

Xﬁ(n) :Xi(n —-1)—x(n- N)Wﬁ"(”*"” +x(n)W,g"" )

where X}(n) is a complex constant related to the phase of
the complex twiddle factor, since the modulation moves
the desired kth-bin to k=0 (zero Hz). The relation
between the desired X (1) and the computed X?(n) is:

Xi(n) = WiX9(n) (10)

It is worth noticing that if the application only requires
DFT magnitude estimation, the complex multiplication in
Eq. (10) is unnecessary because \Xﬁ| is equal to |X(k)|. The
structure of mSDFT in Eq. (9) is depicted in Fig. 1(d). As
there is no complex twiddle factor in the resonator, the
singularities of mSDFT are precisely located (with no
finite-precision numerical error) on the unit circle. Hence
the accumulated errors and potential instabilities inherent
of traditional Sb-SDFT algorithms are eliminated in mSDFT.
In addition, the finite precision of the twiddle factor repre-
sentation no longer constitutes a problem for being
removed from the resonator loop. The trade-off for an
improved accuracy and stability is a non-linear filter given
the modulating sequence.

A z—domain transfer function for the kth-bin can be
obtained by separating the effects of the modulation prop-
erty in an auxiliary complex variable (x*(n)).

X' (n) = (MW" (11)

In Eq. (11), the chosen DFT bin with index k is shifted to the
position k = 0. Once this occurs, the transfer function from

x* to Xy becomes:

_Xiz)_1-z"
x(z) 1-z71

HDNF(Z) (12)

Eq. (12) corresponds to a digital notch filter that rejects
all the frequency multiples of f,/N, being f, the sampling
frequency. Since f; = N x f,, where f, is the fundamental
frequency of x(n), the resulting transfer function has zeroes
in all multiples of the input frequency. If multiple DFT fre-
quency bins are to be computed, a comb filter is needed for
each frequency bin. On the other hand, given the periodi-

city of Wﬁ"", as shown in [11], Eq. (9) can be rewritten as:
Xp(n) = Xp(n— 1) + W [=x(n — N) +x(n)] (13)

Whenever multiple DFT frequency bins are to be com-
puted, equation Eq. (13) becomes a more efficient
approach as only one comb filter is needed (Fig. 1). Also,
it processes real values (x(n)) rather than complex ones
(x*(n)) as in the filter implementation of Eq. (9).

Table 1 shows a Sb-SDFT computational effort compar-
ison for a real-only input with the use of a damping factor
to ensure stability. It is worth noticing that the amount of
operations reported for the mSDFT are those necessary for
the computation of X)(n) instead of X (n).

These methods have been applied in several works
mainly for spectrum analysis and as filters stages [17-
19], and the similarities between them have generally been
disregarded. However, as they are derived from the con-
ventional DFT, the equivalences between methods are dis-
cussed in the following sections.

3. Static analysis

It is common knowledge that the Cramer-Rao lower
bound (CRLB) is an important performance limit which
indicates the best estimation attainable with the available
observations. CRLB assumes that the parameter is
unknown but deterministic, and provides a lower bound
on the variance of any unbiased estimation. A key feature
of all estimation methods, in real applications, is immunity
to noise in the acquired signal evaluated by its CRLB
[20-22].

Computer simulations have been performed to evaluate
the performance of SDFT, SGT, mSDFT and D&S algorithms
for a single real sinusoid polluted with white Gaussian
noise:

x(n) = Acos(wn + ¢) + wgn(n) (14)

where A and ¢ are the amplitude and initial phase, respec-
tively, n is the time domain index, @ denotes the normal-
ized angular frequency (w =2nf,/f,) and wgn(n) is a
zero-mean white Gaussian noise of variance ¢2. Under
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Table 1
Sb-SDFT computational effort comparison, for real input.

Sb-SDFT Single computation Next computation
(n=ny) n=n,+1)
Real Real Real Real
multiplications adds  multiplications adds
SDFT Eq.(3) 5N 4N 5 4
SGT Eq.(6) 3N+2 3N+1 5 4
D&S Eq.(7) 5N 4N 5 4
mSDFT  Eq. (13) 2N 3N 2 3

the assumption of white Gaussian noise, the CRLB for
amplitude estimation is approximated by [23,24]:

2
20%

CRLB, = N

(15)

Parameters were assigned to A=1, f,=50Hz
fs=6.4kHz, N=128 and ¢ is a constant uniformly dis-
tributed between [0,27). The signal-to-noise ratio is
SNR = A*/(262), whereas different SNR levels were
obtained by properly scaling the noise variance ¢2. All sim-
ulation results provided are the averages of 1000 indepen-
dent runs. The damping factor was fixed at r = 0.9999 for
SDFT, SGT, and D&S algorithm.

Fig. 2 shows variance in the estimate of A (a;) versus

SNR. It can be seen that SNR = —10dB is the threshold
level below which variance rapidly worsens. From this
threshold, gn is below CRLB for all the methods, which

means that the results no longer correspond to an efficient
unbiased estimator.

When SNR is between the threshold level and 30 dB the
four methods exhibit similar behavior, being over CRLB.
From this SNR level, the os for SDFT and SGT does no

longer converge to CRLB and asymptotically approaches
the —63 dB bound. This is attributed to the fact that the
error introduced by the damping factor in Eq. (3) and Eq.
(6) is more significant than the effect of SNR level. The
same applies to the D&S algorithm, but starting at
SNR = 60 dB. For increasing SNR levels, the D&S algorithm
approaches the —91 dB bound. Hence, it can be concluded
that D&S algorithm, compared to SDFT and SGT, extends
the range in which it can be considered as an efficient
unbiased estimator at the expense of a slightly increased
computational cost and a non-linear operation. For the

range of SNR levels shown in Fig. 2, the variance of A com-
puted by the mSDFT remains on CRLB curve, due to the
absence of a damping factor.

The 0~ versus N at SNR = 30 dB are illustrated in Fig. 3.

As expected, N increase, i.e., the length of the sliding win-

dow, reduces the variance of A in the four methods. This is
mainly because the estimations are computed in a larger
sliding time window, i.e., more samples are used for the
estimation.

Finally, the effect of the damping factor on the o is

shown in Fig. 4. The simulation is performed for
SNR = 80dB because at this level SDFT, SGT and D&S

0 C\ | Threshold
L:\‘ :

-10 (;\ﬂ

04 [dB]

—100

o= .
—40-30-20-10 0 10 20 30 40 50 60 70 80 90
SNR [dB]

Fig. 2. Variance of A versus SNR levels for the analyzed estimators with
r=0.9999 and N = 128.

128 256 512 1024

Fig. 3. Variance of A versus N for the four estimators, with r = 0.9999 and
SNR =30dB.

algorithms do not lie on CRLB curve and have converged
to their final values listed in Fig. 2. Since mSDFT is indepen-
dent from r, its g remains constant and equal to CRLB for
this simulation. Fig. 4 shows that when r—1, the o for
SDFT, SGT and D&S algorithm approaches CRLB. This is
valid for any SNR after the threshold. An interesting corol-
lary to this analysis is that for the ideal case (r = 1), i.e,, an
infinite word precision case, with SNR levels beyond the
threshold, the curves of SDFT, SGT, D&S and mSDFT algo-
rithms lay over CRLB and provide an identical static
performance.

4. Dynamic behavior

In this section, dynamic responses of Sb-SDFT methods
are analyzed. For this study, the following test signal with
significant harmonic content was adopted:
x(n)=A-1.0cos(wn+¢;)+A-0.2cos(3wn+ ¢3)

+A-0.1cos(5wn+ ¢s) +A-0.04cos (7wn + ¢;)
+A-0.08cos (9wn + ¢g) +A-0.06 cos (11wn + ¢q;)
+A-0.03 cos (13wn + ¢y3) (16)

where the normalized frequency is the same as that used
for the static analysis, A=1 and ¢; = {0°,180°,0°,0°,



14 C.M. Orallo et al./ Measurement 69 (2015) 9-19

[ [dB]

-105 "
0.9999 10
r

Fig. 4. Variance of A versus r for the four estimators at SNR = 80 dB.

180°,180°,180°} are the initial phases of the harmonics of
order i. The selected signal is rich in odd harmonic content
for being the most usual case. The damping factor is set at
r = 0.9999, for SDFT, SGT, and D&S algorithm.

In Fig. 5, the estimated amplitude of the fundamental

component (A;) for all the algorithms can be observed
(the estimated values exhibited correspond to the steady-
state). The reference value is displayed with a black dashed
line. SDFT and SGT have the same steady-state error result-
ing from the use of a damping factor. This error has a mean
value with an overlaid ripple that is a direct consequence
of the use of the stable versions of IIR filters Egs. (4) and
(5), that do not provide infinite rejection to the undesired
harmonics of the input signal. The D&S algorithm signifi-
cantly reduces error and maintains the same damping fac-
tor than the two previous cases, resulting in improved
system performance. In Fig. 5, it is shown that when
(n mod N) = 0, the estimation is accurate, which is consis-
tent with the period of the fundamental component of the
test signal. On the other hand, mSDFT provides precise
estimation of the amplitude, since it does not require a
damping factor to ensure stability.

Fig. 6 displays the dynamic response of the algorithms
to a sudden amplitude step of 20%. This figure reveals that
all the algorithms yield the same dynamic response during
the transient, disregarding the differences from the damp-
ing factor effect, which are more apparent in SDFT and SGT.
For all cases, the duration of the transient response is equal
to the length of the sliding window. From the studies, it
can be concluded that mSDFT is the most accurate algo-
rithm of all the Sb-SDFT analyzed.

5. Single-bin Sliding DFT frequency adaptation

The Sb-SDFT implementations analyzed in this paper
suffer the same problem when working with non-station-
ary signals such as voltages and currents from the mains.
If the analyzed sequence does not correspond exactly to
an integer number of cycles of the signal, inaccuracies arise
due to the spectral leakage and picket-fence effect. There
are two typical strategies for mitigating these errors. The
first one is to weigh the sequence data with a window
and keep a fixed sampling frequency. This option increases
the computational cost and does not take advantage of the
recursive implementation of Sb-SDFT. The second strategy
consists in adapting the sampling frequency to a multiple

10020 : ‘ ‘ ‘
1.0000 |- — —i— = == i —
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Fig. 5. Amplitude estimation of the fundamental component (A;) in
steady state using the selected Sb-SDFT algorithms.
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Fig. 6. Transient for the estimation of A;, when the test signal is
undergoing a 20% step-change in its harmonic amplitude for the selected
Sb-SDFT algorithms.

of the line frequency. This ensures that the filter is tuned
to the fundamental frequency, which allows following its
variations. This approach takes advantage of the recursive
nature of Sb-SDFT at a low computational cost and allows
optimal operation of the system.

The variable sampling period approach was developed
by the authors to design synchronization methods [25-
27]. Yet its usefulness goes beyond this application. This
technique has recently been adapted to dynamically adjust
the sampling frequency in a harmonic measurement
method based on mSDFT [14].

In this section, the proposal in [14] is generalized so as
to be used with any Sb-SDFT implementation. The tech-
nique of variable sampling period is briefly described and
the way in which it can be adapted to be used in a scheme
of harmonics measurement is discussed. A unified small-
signal model, which allows to extend the results obtained
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to any Sb-SDFT is also developed. This model is valid for
any application using this type of transformation within
a control loop governed by phase differences. The system
controller is designed based on this model and depending
on the application requirements.

5.1. Variable Sampling Period Technique (VSPT)

VSPT allows to adapt the sampling frequency to be N
times the grid frequency. This technique has proven to be
efficient both in three-phase and in single-phase applica-
tions yielding a robust synchronization mechanism, whose
effectiveness has been tested under different conditions
and scenarios [25-27].

Fig. 7 illustrates the basic VSPT scheme for single-phase
implementation. The operating principle is based on the
dynamic adjustment of the sampling frequency. The input
signal is sampled and the input phase ((¢,(n)) is extracted
by the phase detector. Concomitantly with the input sam-
pling, the Reference Generator provides a signal called
reference phase:

D) =221 (17)

The method relies on sampling period modification, so as
to achieve a null error signal (e,(n)) between ¢,,(1n) and
@, (n). This is achieved by varying the sampling period
Ts(n) as a function of the phase error by means of the con-
troller G.(z). With each new sampling period, the Sampling
Generator produces a clock signal (CLK) that starts the con-
version and increments the reference phase. The imple-
mentation of the phase detector and phase error
calculation, enclosed by dashed lines in Fig. 7, is key for
the proper functioning of this technique. In [14], it was
implemented as one single component, by taking advan-
tage of mSDFT attributes.

5.2. Single-bin SDFT small-signal model

VSPT allows to adapt the sampling rate to a multiple of
the grid frequency, thus avoiding the problems concerning
DFT when working with non-stationary signals. In order to
adapt the sampling period, an error signal is needed, which
is related to the phase difference between the fundamental
component of the input signal and the reference phase.
This phase error allows to implement a closed-loop control
of the sampling period to attain synchronization. To
generalize this proposal to any Sb-SDFT, a general model
should be devised. The purpose of obtaining a unified
model is to make the choice of an Sb-SDFT independent
from the design of the control in charge of frequency
adjustment, rendering the design and implementation pro-
cess more flexible and convenient. It also allows to change
the algorithm with no need to redesign the adopted
control.

The real and imaginary components of X, (n) are the in-
phase and in-quadrature components of the desired kth-

bin, respectively. This is true for the X,(n) obtained with
SDFT, SGT and D&S algorithm, but does not apply to the

X%(n) obtained with mSDFT, unless Eq. (10) is used to

(1) @(n) [Phase | e T [ Sampling
1:@ ©, s pling
I ! lH Generator
o Pref)
Generator

)

Fig. 7. Scheme of Variable Sampling Period Technique (VSPT) for single-
phase.

CLK

obtain Xy (n), which increases computational cost. In [14],
it was shown that the use of Eq. (10) is completely unne-
cessary for VSPT implementation.

As mentioned in Section 2-4, when r—1 and for a real
input signal, SDFT, SGT and D&S algorithms become
equivalent. Therefore, for this scenario and for small-signal
conditions, these three filters supply the same in-phase
and in-quadrature components, which can be expressed
as follows:

cos(kpu(n) + i) (@)
n(ku(n) + i) (b)

where @,(n) is the estimated phase of the input signal, A«
and ¢, are the estimated amplitude and initial phase,
respectively, for the kth-bin of an N-point DFT. In several
applications (including VSPT), the estimation of the
fundamental component of a given electrical signal is cru-
cial for its proper functioning. Therefore, the fundamental
component (k= 1) is taken as the system reference and
¢, = 0° is adopted, which results in

{Re{xk }J‘”cos«ou( ) () 19)

Im{Xy(n)} = %" sin(¢u(n)) (b)

From Eq. (19), the estimated phase of the input signal
can be recovered as:

Re{X(n)} = T
Im{Xi(n)} = %

(18)

Pu(n) = angle(X, (n)) (20)

and the phase error between the incoming signal and the
system reference phase is:

€p(N) = Prer(N) — Pu(m) (21)

Fig. 8(a) displays the scheme for phase error estimation,
based on Egs. (19)-(21). This scheme is equivalent to the
portion enclosed by dashed line in the VSPT scheme in
Fig. 7.

A slightly different case is that of mSDFT, because
ngﬁXk (Eqgs. (13) and (10)). In [14], it is shown that
mSDFT output (Fig. 13(d) and (e)) is:

{ Re{X(n)} =% cos(kp,(n) — ke, (n) = ¢1)  (a)
Im{X;(m)} = %" sin(kg,(n) — ke, () — ¢) ~ (b)
(22)
By setting k = 1, taking ¢, = 0° and assuming that the

phase difference between ¢,(n) and ¢, (n) is small, (22)
can be approximated by:
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Fig. 8. (a) Phase error estimation scheme based on Sb-SDFT (except for
mSDFT). (b) Phase error estimation scheme based on mSDFT.

— oy @

{ Re{Xj(m)} ="
} =% (@rer(m) = @, (m) ()

As seen in Eq. (23), the real component of X? is propor-
tional to A; and the imaginary component is proportional
to A; and the phase difference. Therefore, by normalizing
the imaginary component, the phase error may be esti-
mated by:

_mm} e 24
Re{X}(n)} o !

(23)

ey(n) =

Fig. 8(b) shows the scheme for phase error estimation
with mSDFT, based on Egs. (23) and (24). Fig. 8(b) is
equivalent to the portion enclosed by the dashed line in
the VSPT scheme in Fig. 7.

Since all the Sb-SDFT methods evaluated in this work
derive from Eq. (1), they are mathematically equivalent,
and the system phase error (e,(n)) for small deviation is
approximately equal. Therefore, a simplified model can
be extrapolated for the phase error signal, regardless of
the algorithm used. The model is conveniently made from
mSDFT as its transfer function in the z-domain is the most
simple of all, as it has no coefficients Eq. (12). This is
explained by the fact that all implementations of Sb-SDFT
result from applying properties and mathematical opera-
tions to Eq. (1), all of which can be modeled from the nor-
malized mSDFT. The small signal model for all Sb-SDFTs
governed by the phase differences is presented in Fig. 9.

5.3. Controller design

In [14], the mathematical modeling of VSPT is detailed,
together with the controller design for a harmonics mea-
surement method based on mSDFT. This method uses the

imaginary component of X% as a phase error signal. As
shown in Eq. (23b), amplitude A, is part of the control loop
gain of the sampling period. As a consequence, the
dynamic response of this system may be compromised in
certain scenarios, e.g., if large variations in the input signal
amplitude occur.

Starting from the unified model discussed in
Section 5.2, a control design methodology similar to that
used in [14] is analyzed. All the Sb-SDFT methods reviewed

Pref(n) ~ A ép(n)
\—l—/ N 1—2z-1
L?u(n)

Fig. 9. Unified small-signal system model.

can be adjusted using the normalized error signal given by
Eq. (24) and the unified small-signal model (Fig. 9), obtain-
ing the mathematical model shown in Fig. 10. The spec-
ifications and requirements to be met by the controller
(G¢(2)) are determined by the application.

In the common practice, there are two typical set of
requirements to be considered when designing G.(z).
Certain applications require zero phase error and fre-
quency synchronization for normal operation. In these
cases, the controller must be proportional-integral to
achieve zero phase error in steady-state, the resulting sys-
tem being a type II system. Other applications only require
frequency synchronization, which reduces the restrictions
on the controller design, resulting in a faster and improved
dynamic response. In these applications, a proportional
controller suffices, the resulting system being a type I
system.

The transfer functions for both controllers in the z-
domain are:

Gp(z) = Kp (25)

Z—dp
z—-1

GPI(Z) = Kp (26)

As an example of design, @ =27n x 50rad/s and
N =128 are adopted. Concerning dynamics, a phase
margin of 45° and maximum bandwidth are adopted as
design criteria for G.(z). Based on this, and using the
design methodology proposed in [14], the parameters of
the controller are Kp =4.3408-107°, Ky = 1.7304-107°
and ap = 0.9974. The bandwidth obtained for G,(z) and
Gpi(z) are 12.505 Hz and 5.905 Hz, respectively.

To evaluate the performance of both controllers, a sim-
ulation was performed. In view of the similarity in the
small-signal characteristics of the different methods,
which is validated in the experimental results section, their
dynamic behaviors will be similar as well. Hence, only the
simulation results obtained with the mSDFT method are
presented. This simulation used Eq. (16) as a test signal,
with the same values used in Section 4 for a system com-
posed of a mSDFT tuned with k = 1 and with a VSPT based
on the model shown in Fig. 10. Fig. 11 compares the system
dynamic response to different disturbances for both
controllers.

The figure presents the estimated amplitude of the

fundamental component (;\1), the estimated and real

fundamental input frequency (fo and f,, respectively) and
the phase error (e,) for both controllers. To begin with,
the effect of an amplitude step change in the test signal
was evaluated. The signal was increased to 20% of the
nominal value at t = 0.5 s. The estimation of A; falls into
the 1% band in 20 ms for both controllers with a null steady
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Fig. 10. System model for Sb-SDFT frequency adjustment based on VSPT.

state error. During this disturbance, the phase error and
the estimated frequency, for both systems, were slightly
affected.

The ability of the method to measure harmonics in sit-
uations where the frequency deviates from its nominal
value was evaluated by simulating two possible scenarios.
The first simulation analyzed the effect of a frequency step
of 0.5 Hz at t = 1.0 s. The aim of the second simulated sce-
nario, in turn,was to verify the method performance when
continuous frequency variation occurred. To this end, the
fundamental frequency varied at a rate of 0.5 Hz/s from
t =2sto t =3s. Regarding the frequency step, the type I
system responded slightly faster as compared to the type
Il system. In addition, a constant phase error was observed
with the proportional controllers. On the other hand, as
regards the frequency ramp, the type II system delivered
best performance, since it had better tracking of the fre-
quency ramp. Importantly, in both scenarios and for both
controls, amplitude estimation was not compromised.

6. Experimental validation

This section concentrates on the experimental results
for the implementation of the reviewed Sb-SDFT with
VSPT. The experimental setup comprised a fixed-point
DSP TMS320F2812 (32bits, 150 MHz) and an A/D converter
board with an ADS8568 (eight 16-bit A/D channels and
2 pus conversion time). The algorithms were tuned as
described in the previous section with N =128,

= 20 :

2. |.15:

=0

o 105} Gp
0915 ‘ ‘ Crr
‘ (a)

Jolpu]
B A%l
CLOOD
OB

epl°]
L

o
=
=
93
—_
=
93
[
(=]
[
%3

3.0 35

Fig. 11. Comparison between the closed loop response of Sb-SDFT
algorithm with two different controllers: (a) accuracy in the estimation
of A;, (b) ability to track f, and (c) system phase error.

r = 0.9999 (for SDFT and SGT), r = 0.995 (for the D&S algo-
rithm) and the proportional-integral controller given by
Eq. (26) was adopted. Due to the non-linear operation of
the D&S algorithm, a smaller r was used to ensure stability
while preserving the same word length used in the other
methods. In order to evaluate the methods performance,
other DSP was used to generate the test signals.

6.1. Harmonic distortion

Fig. 12 shows the performances of all the methods
when a clean 9V input signal witha nominal frequency
equal to 50 Hz change to Eq. (16) with A =8V and the
same ¢; used in Section 4. Fig. 12(a) illustrates the input
signal and the estimated amplitude of the fundamental

component (A;) computed by all methods. In addition,
reference amplitude is presented in dashed line. As
expected, the transient is equal to one period of the test
signal, i.e., it is the time it takes the comb filter to store
the new input sequence for all Sb-SDFTs. The dynamics
of the Sb-SDFT both in steady state and during the tran-
sient is consistent with that reported in previous sections.

To highlight this, a detail of A; in steady state is provided
in Fig. 12(b). mSDFT is the most accurate of all, as expected.
However, as opposed to the simulations shown in
Section 4, the amplitude of D&S algorithm ripple in steady
state is similar to the amplitude of SDFT and SGT ripple
error. This is ascribed to the fact that a minor damping fac-
tor was required in the D&S algorithm in order to ensure
stability in DSP implementation, resulting in lower perfor-
mance as compared to the theoretical analysis. The adjust-

ment of the sampling period (TS) obtained with each
method is shown in Fig. 12(c), where the reference value
for a fundamental frequency of 50 Hz (156.250 ps) is high-

lighted in black dashed lines. The temporal evolution of Ts
is identical for all the methods which is agreement with
the theoretical study performed in this paper and validates
the proposed small-signal model. Table 2 summarizes the
performance of all the methods in steady state under both
clean and distorted conditions.

6.2. Frequency variation

The ability of Sb-SDFT with VSPT to track the grid fre-
quency variations is shown in Fig. 13. The fundamental fre-
quency is varied at a rate of 10 Hz/s from 51 Hz to 49 Hz,
for a clean input signal with an amplitude of 9 V. Then a
frequency step of 2 Hz returns the fundamental frequency

to 51 Hz. Table 2 shows the TS in steady state, where
153.186 ps and 159.438 ps are the ideal sampling period
corresponding to 51 Hz and 49 Hz, respectively. Fig. 13(c)
displays how the sampling period is adjusted to track the
frequency variations and thus mitigate the pitfalls of the
DFT-based algorithms when working with non-stationary
signals. The estimation of A; for this variation frequency
is shown in Fig. 13(a), where the reference amplitude is
indicated by a dashed black line. A detail is shown in
Fig. 13(b), where a similar behavior is observed and differ-
ences are given only by the precision of each Sb-SDFT
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Fig. 12. Systems performance in a grid polluted with harmonic distortion. (a) Input signal and estimation of A;. (b) Details of the estimation of Ay, after the

perturbation occurs. (c) Adaptive sampling period.

Table 2
Measurement comparative.
x(t) Reference SDFT SGT D&S mSDFT
u o n 4 I o u 4
Ideal (f, =50 Hz)
vi(v) 9 8.934 423.107° 8935 424.107° 8.985 851-107°% 8.991 1581077

Ts(s) 156.25-107° 156.243-10° 1.63-

Distorted (f, = 50 Hz)

Vi(v) 8 7.939 2.14-
Ts(s) 156.25-107° 156.256-107° 2.45.

Ideal (f, =51 Hz)

Vi(v) 9 8.936 4.24.
Ts(s) 153.186-10"° 153.193-10° 1.63-

Ideal (f, =49 Hz)

Vi) 9 8.934 425.
Ts(s) 159.438-10° 159.445.10° 1.65-

107'% 156.243-10° 1.64-107" 156.243-10°° 9.94.10°'® 156.240-10°°® 1.95.107'®

1075 7.941 2.15-107° 7.989 6.69-10°° 7.991 1.10-1077
107" 156.243-10°% 245.107'% 156.243-10°® 1.91.107"7 156.253-10° 1.87-107'8

107> 8938 425.107° 8.988 9.08-10% 8.993 1.79-1077
107'% 153.193-10°% 1.64-107'% 153.193-10°® 9.85.10°"® 153.191-10°° 260-10°'®

107> 8936 425.107> 8.986 8.93.10°% 8.991 2.89-1077
107'® 159.445.10° 1.65-107" 159.445.10°° 1.01-107"7 159.442.10°° 7.17-107"°
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Fig. 13. Systems performance under frequency variation condition. (a) Input signal and estimation of A;. (b) Details of the estimation of A;. (c) Adaptive

sampling period.

algorithm. Table 2 summarizes the performance of all the structure, static analysis, dynamic behavior and imple-

methods in steady state.

7. Conclusions

mentation issues on finite word-length precision systems.
Based on theoretical studies as well as on simulation and
experimental results, it is concluded that all these methods
are equivalent, since they are all derived from the conven-

In this work, a comparative study of four Sb-SDFT algo- tional DFT, and so they can be indistinctly adopted for
rithms is conducted. The comparison includes: filter many applications.
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As far as disturbance rejection and precision on spectral
estimation are concerned, this work shows that SDFT and
SGT are identical and that no differences are observed.
On the other hand, the D&S algorithm increases perfor-
mance accuracy in comparison to the previously men-
tioned methods. An interesting issue related to this
method is that a lower damping factor, as compared to
SDFT and SGT, had to be adopted to ensure stability. As a
result, the mean error was reduced in spectral estimation
but the ripple error was similar for the three methods.
SDFT and SGT are widely used due to their simple and
straightforward implementation, at the expense of an error
in precision attributed mainly to the use of a damping fac-
tor. In applications requiring greater precision, this error
can be mitigated by using the D&S algorithm. Moreover,
it can be eliminated by using mSDFT due to the absence
of such damping factor, resulting in better performance.
The results of the study have shown that mSDFT is the best
option when it comes to precision and noise rejection.
However, this method is the less frequently used due to
its non-linear characteristic.

Regardless of the Sb-SDFT method adopted, grid syn-
chronization becomes essential for obtaining a proper
response in terms of accuracy and speed. In this sense,
VSPT allows to obtain a sampling frequency synchronized
to the grid frequency. However, since it is a closed-loop
method, a model of the system is required. This work pro-
poses a unified small-signal system model, which was used
to design a generic adaptive frequency loop. This frequency
adaptive loop is based on VSPT and allows to mitigate
spectral leakage and picket-fence effects, common pitfalls
in any DFT-based algorithm. As a consequence, developers
can design the adaptive frequency loop regardless of the
Sb-SDFT method adopted, with the possibility of changing
it depending on the precision required by the application.
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