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Chalcones and their derivatives possess a wide range of significant pharmacological activities; among the most
important ones is their anticancer activity. For this reason we performed a Quantitative Structure–Activity
Relationships (QSAR) study of their anticancer activity against MCF-7 human breast cancer cell lines. In this
work, several descriptor options were tested on the dataset containing 93 molecular structures, using ERM
(Enhanced Replacement Method). The best models were found using merely two dimensional descriptors. The
two dimensional descriptor pool was further expanded using several nonlinear transformations, which resulted
in an optimal fivemolecular descriptormodel that showed very good predictive ability. Thus, ERMwas capable of
finding a simple to interpret and understand model that nonetheless addresses nonlinearities between the de-
scriptors and the activity. Furthermore, the acquiredmodel is very straightforward to use since it does not require
the optimization of chemical structures for the calculation of three dimensional descriptors.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In a recent report of the American Cancer Society breast cancer was
classified as themost frequently diagnosed cancer and the leading cause
of cancer death among females [1,2]. Although there are many
therapeutic strategies, more than onemillion new cases of breast cancer
are diagnosed every year [3]. Some of the main problems in the
treatment of cancer are high cytotoxicity and drug resistance, and no
clinically active substances are known to act selectively on tumor cells.
Scientists put great effort in finding new therapeutic targets for cancer
and to the development of new selective drugs [4].

Chalcones, 1,3-diphenyl-2-propene-1-ones (Fig. 1), present a very
interesting group of molecules from pharmaceutical point of view, be-
cause of their significant cytotoxic activity against various cancer cells.
Besides this important feature chalcones and their analogues display
considerable chemoprotective, antiangiogenic, antibacterial, antifugal,
antiparasitic, antioxidative, anti-inflammatory activity [4,5] and
antimarial activity [6,7]. Chalcones are also precursors for synthesis of
flavonoids, which are also known for their anticancer potential [8].

The variations of the structure of chalcones offered a new field of re-
search because of all of the positive effects mentioned above. Many of
them were tested against series of cancer cell lines [9]. In order to
present the variety of structural differences some of the previously ob-
tained experimental studies on human breast cancer cells (MCF7) are
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presented. Liu and Go showed that for the large number of chalcones
with basic functionalities activity against MCF7 was dependent on the
polar volume, hydrogen bonding features, HOMO energies and charge
on theβ carbon. Itwas discussed that the change in structure influenced
themechanism of action, so the compoundswith basic groups on ring A
interfered with cell cycle progression, but compounds with two basics
groups had no effect [10]. The same authors synthesized metoxylated
chalcones with N-methyl substituents on ring A and showed inhibition
of the growth of the MCF7 cell lines, because piperidinyl group adds
specificity to the mechanism of activity and also changes physiochemi-
cal properties of the whole system [11]. In a study by Ivkovic et al [4]
some of the basic modifications of the chalcone structure were intro-
duced, for example electron withdrawing groups (–F, –Cl and –CF3) in
the ortho and para position in the benzyl moiety and their antiprolifer-
ative activity was investigated, and structure–activity analysis was per-
formed in order to determine the best molecular descriptors for this
class of chalcones.

Shenavi and coworkers obtained interesting class of 2,4,5-
trimethoxy chalcones and their analogues from asaronaldehyde. These
compounds were tested against the same cell lines and revealed that
chalcones with groups that are good electron donors in para position
to carbonyl moiety of phenyl ring A had better results. Some of these
molecules showed significant nitric oxide scavenging activity [12].

In this paper we examine quantitative structure–activity relation-
ships (QSAR) of chalcones against human breast cancer cells (MCF-7)
based on 93 chalcone derivatives taken from the previously mentioned
experimental studies, measured under the same conditions. This group
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Fig. 1. Chalcone backbone structure.
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of chalcones will in principle give us reliable QSAR parameters for the
determination of the activity of somenewly synthesized chalconederiv-
ative towards MCF-7 cell lines.

2. Material and methods

2.1. Data sets

In our QSAR study, a total of 93 chalcone molecules were gathered
from the literature [4,10–12]. To our knowledge this particular set of
molecules was not employed in a QSAR study before. The experimental
log IC50, concentration of the compounds (μM) exhibiting 50% inhibition
of cell growth for human breast cancer (MCF 7), values along with the
SMILES structure representation can be found on Table 1. SMILES nota-
tion was chosen as a simple way of sharing the dataset with any inter-
ested reader, since it allows copying the text string and entering it in
many chemical structure representation software that can later be
used to calculate descriptor. The data-set was divided into a training
set of 63 and a test set of 30 chalcones by applying a k-means cluster
analysis [13], in order to have representative molecules of the complete
dataset in both training and test sets. The basis of the k-means cluster
analysis is to create k clusters or groups of molecules, in such a way
that compounds in the same cluster are very similar in terms of a dis-
tance metrics and compounds in other clusters are very different; de-
tails of the procedure have been presented elsewhere [14].

The cytotoxic activity of all compounds was evaluated by the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay
based on mitochondrial reduction of yellow MTT tetrazolium dye to a
highly colored blue formazan product [15,16].

2.2. Molecular descriptors

In order to calculate three dimensional descriptors, the structures of
the compounds were pre-optimized with the Molecular Mechanics
Force Field (MM+)procedure included in theHyperchem6.03 package
[17], and further refined by means of the semi-empirical method AM1
(Austin Method 1) using the Polak–Ribière algorithm and a gradient
norm limit of 0.01 kcal Å−1. The molecular descriptors were computed
using Dragon 5.0 [18] which calculates parameters of all types such as
Constitutional, Topological, Geometrical, Charge, GETAWAY (Geometry,
Topology and Atoms-Weighted AssemblY), WHIM (Weighted Holistic
Invariant Molecular descriptors), 3D-MoRSE (3D-Molecular Represen-
tation of Structure based on Electron diffraction), Molecular Walk
Counts, BCUT descriptors, 2D-Autocorrelations, Aromaticity Indices,
Randic Molecular Profiles, Radial Distribution Functions, Functional
Groups, Atom-Centered Fragments [19]. In addition, descriptors from
the software QuBiLs-MIDAS [20], that computes 3D molecular indices
by usingQuadratic, Bilinear andN-LinearMaps based onN-tuple Spatial
Metric [(Dis)-Similarity] Matrices and AtomicWeightings, were includ-
ed. The settings used in QuBiLs-MIDAS were the following: all algebraic
forms, all Matrix Forms, all Groups, and all Properties were selected;
only the first Metric and the first Invariant were selected.
The descriptors were separated in three different matrices, a matrix
(2D) containing the non-three dimensional descriptors from Dragon
5.0, a matrix (3D) containing the three dimensional descriptors from
Dragon and a matrix (Q) with the three dimensional descriptors from
QuBiLs-MIDAS. Several combinations of the matrices were tested: 2D;
3D; 2D+ 3D; Q; and 2D+ Q. In addition, to evaluate nonlinear depen-
dencies the matrix 2D was expanded using the following transforma-
tions: ln(x); ex; x2; x3; x4; x−1; x−2; x−3; and x1/2. After the
transformations the resulting matrix (2De) was cleaned removing ∞
and −∞ results; and in addition descriptors with correlations greater
than 0.98 were removed.

2.3. Model search

The goal is to search the set D, containing D descriptors, for an opti-
mal subset d, with d bb D, and with minimal standard deviation S,

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N−d−1ð Þ

XN
i¼1

resi2

vuut ð1Þ

bymeans of theMultivariate Linear Regression (MLR) technique. In this
equationN is the number ofmolecules in the training set, and resi the re-
sidual for molecule i, is the difference between the experimental prop-
erty (p) and predicted property (ppred). More precisely, the aim is to
obtain the global minimum of S(d) where d is a point in a space of
sizeD!/[d!(D− d)!]. A full search (FS) of optimal variables is impractical
because it requires D!/[d!(D− d)!] linear regressions. Therefore, an al-
ternative method is necessary. The optimum set of descriptors was
selected using a new advanced version of the Enhanced Replacement
Method (ERM) [21,22] as a search algorithm that produces linear
regression QSAR models with results similar to the FS, nonetheless
with much less computational work. This technique approaches the
minimum of S by judiciously taking into account the relative errors of
the coefficients of the least-squaresmodel given by a set of d descriptors
d = {X1,X2,…,Xd}. The ERM [23] gives models with better statistical pa-
rameters than the Forward Stepwise Regression procedure [24], and the
more elaborated Genetic Algorithms [25].

Among several other approaches to address this problem, the princi-
ple component regression (PCR) and partial least squares (PLS) analyses
provide highly predictive QSAR, however they are difficult to under-
stand and interpret for being abstract. A combination of GA and MLR
has shown to produce simple, less sophisticatedmodelswith better per-
formance on external testing set predictions than PLS [26]. In addition,
on an extensive contrast work, ERM has shown to further improve the
performance of the obtained models when compared to GA [25]. Since
ERM provides the same type of models in terms of simplicity compared
to GA, ERM was selected for this work.

For the theoretical validation of the models, Leave-One-Out (loo)
Cross-Validation procedures (l-n%-o) [27]was chosen. The computation-
al environment Matlab 5.0 (MathWorks, Natick, Massachusetts, USA)
was used for the calculations. The predictive ability of the best model
was further evaluated by (r2 − r20) / r2, (r2 − r′20) / r2, k and k′ [28,29].

The applicability domain (AD) for the best QSAR model was ex-
plored to obtain a reliable prediction for external samples. The AD is a
theoretical region in the chemical space, defined by the model descrip-
tors and modeled response, and thus by the nature of the chemicals in
the training set, represented in eachmodel by the specificmolecular de-
scriptors [30]. The AD can be characterized in various ways such as the
leverage approach [31], which allows verifyingwhether a new chemical
can be considered as interpolated and with reduced uncertainty or ex-
trapolated outside the domain. When outside the model domain, a
warning must be given. The leverage (h) is defined as [31]:

hi ¼ xi XTX
� �−1

xTi i ¼ 1;…;Mð Þ ð2Þ



Table 1
Structure of compounds in SMILES notation, experimental log IC50, predicted log IC50 by Eq. (4), and residuals. (Uppercase “t” indicates test set substances).

SMILES logIC50 exp. logIC50 pred. Res. Ref.

1 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)Cl)OC)OC)C1CCN(CC1)C 0.4472 0.4970 −0.0499 [10]
2 c1c(c(cc(c1C(_O)/C_C/c1ccccc1)OC)OC)C1CCN(CC1)C 0.5315 0.7299 −0.1984 [10]
3 c1c(c(cc(c1C(_O)/C_C/c1ccc(cc1)Cl)OC)OC)C1CCN(CC1)C 0.3979 0.5499 −0.1520 [10]
4 c1(cc(c(cc1C(_O)/C_C/c1ccncc1)C1CCN(CC1)C)OC)OC 0.8573 0.7103 0.1470 [10]
5 c1(cc(c(cc1C(_O)/C_C/c1cnccc1)C1CCN(CC1)C)OC)OC 0.6335 0.6410 −0.0075 [10]
6 c1(cc(c(cc1C(_O)/C_C/c1ncccc1)C1CCN(CC1)C)OC)OC 0.5911 0.7045 −0.1134 [10]
7 c1c(c(cc(c1C(_O)/C_C/c1ccc(cc1)N1CCN(CC1)C)OC)OC)C1CCN(CC1)C 0.9294 0.9984 −0.0690 [10]
8 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)C)OC)OC)C1CCN(CC1)C 0.8195 0.7724 0.0471 [10]
9 c1c(c(cc(c1C(_O)/C_C/c1ccc(cc1)C)OC)OC)C1CCN(CC1)C 0.7324 0.8550 −0.1226 [10]
10 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)OC)OC)OC)C1CCN(CC1)C 0.8451 0.8086 0.0365 [10]
11 c1c(c(cc(c1C(_O)/C_C/c1ccc(cc1)OC)OC)OC)C1CCN(CC1)C 0.8451 0.7435 0.1016 [10]
12 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)F)OC)OC)C1CCN(CC1)C 0.5798 0.5700 0.0098 [10]
13 c1c(c(cc(c1C(_O)/C_C/c1ccc(cc1)F)OC)OC)C1CCN(CC1)C 0.5911 0.4702 0.1208 [10]
14 c1c(c(cc(c1C(_O)/C_C/c1ccc(cc1)C(F)(F)F)OC)OC)C1CCN(CC1)C 0.4472 0.8667 −0.4196 [10]
15 c1(c(c(cc(c1C(_O)/C_C/c1c(cccc1)Cl)OC)OC)C1CCN(CC1)C)O 0.4914 0.5047 −0.0133 [10]
16 c1(c(c(cc(c1C(_O)/C_C/c1ccc(cc1)Cl)OC)OC)C1CCN(CC1)C)O 0.8261 0.6914 0.1347 [10]
17 c1(c(c(cc(c1C(_O)/C_C/c1ccccc1)OC)OC)C1CCN(CC1)C)O 0.7559 0.8474 −0.0915 [10]
18 c1(c(c(cc(c1C(_O)/C_C/c1c(cccc1)F)OC)OC)C1CCN(CC1)C)O 0.5315 0.6116 −0.0801 [10]
19 c1(c(c(cc(c1C(_O)/C_C/c1ccc(cc1)F)OC)OC)C1CCN(CC1)C)O 0.8062 0.6183 0.1878 [10]
20 c1(c(c(cc(c1C(_O)/C_C/c1c(cccc1)C)OC)OC)C1CCN(CC1)C)O 1.3483 1.0718 0.2765 [10]
21 c1(c(c(cc(c1C(_O)/C_C/c1ccc(cc1)C)OC)OC)C1CCN(CC1)C)O 0.8195 1.0269 −0.2074 [10]
22 c1(c(c(cc(c1C(_O)/C_C/c1c(cccc1)OC)OC)OC)C1CCN(CC1)C)O 1.0043 0.9852 0.0191 [10]
23 c1(c(c(cc(c1C(_O)/C_C/c1ccc(cc1)OC)OC)OC)C1CCN(CC1)C)O 1.4065 0.9458 0.4607 [10]
24 c1(c(c(cc(c1C(_O)/C_C/c1cc(ccc1)OC)OC)OC)C1CCN(CC1)C)O 1.4942 1.3218 0.1724 [10]
25 c1(c(c(cc(c1C(_O)/C_C/c1c(cc(cc1)OC)OC)OC)OC)C1CCN(CC1)C)O 1.0828 1.0800 0.0028 [10]
26 c1(c(c(cc(c1C(_O)/C_C/c1cc(ccc1)Cl)OC)OC)C1CCN(CC1)C)O 0.4314 0.7491 −0.3178 [10]
27 c1(c(c(cc(c1C(_O)/C_C/c1ccc(cc1)C#N)OC)OC)C1CCN(CC1)C)O 1.1399 1.0945 0.0454 [10]
28 c1(c(c(cc(c1C(_O)/C_C/c1ccc(cc1)C(F)(F)F)OC)OC)C1CCN(CC1)C)O 1.1553 1.0053 0.1500 [10]
29 c1(c(c(cc(c1C(_O)/C_C/c1ccc(cc1)N1CCN(CC1)C)OC)OC)C1CCN(CC1)C)O 1.1584 1.1646 −0.0062 [10]
30 c1(c(c(cc(c1C(_O)/C_C/c1ccc(cc1)N(C)C)OC)OC)C1CCN(CC1)C)O 1.1430 0.9730 0.1701 [10]
31 c1cc(ccc1C(_O)/C_C/c1c(cc(cc1)OC)OC)N1CCNCC1 1.2122 1.2979 −0.0857 [10]
32 c1cc(ccc1C(_O)/C_C/c1c(cccc1)Cl)N1CCNCC1 1.3304 1.3178 0.0126 [10]
33 c1cc(ccc1C(_O)/C_C/c1ccc(cc1)Cl)N1CCNCC1 0.9294 1.1719 −0.2425 [10]
34 c1cc(ccc1C(_O)/C_C/c1ccccc1)N1CCNCC1 1.6990 1.4957 0.2033 [10]
35 c1cc(ccc1C(_O)/C_C/c1c(cccc1)Cl)N1CCCCC1 1.6758 1.3553 0.3205 [10]
36 c1cc(ccc1C(_O)/C_C/c1ccc(cc1)Cl)N1CCCCC1 1.3997 1.1980 0.2016 [10]
37 c1cc(ccc1C(_O)/C_C/c1ccccc1)N1CCCCC1 1.6990 1.5847 0.1142 [10]
38 c1cc(ccc1C(_O)/C_C/c1c(cc(cc1)OC)OC)N1CCCCC1 1.6990 1.3003 0.3987 [10]
39 c1cc(cc(c1C(_O)/C_C/c1ccc(cc1)Cl)OC)OC 0.8129 0.9558 −0.1429 [10]
40 c1cc(cc(c1C(_O)/C_C/c1ccncc1)OC)OC 0.8976 1.1305 −0.2328 [10]
41 c1cc(cc(c1C(_O)/C_C/c1cccnc1)OC)OC 1.1335 1.0612 0.0723 [10]
42 c1cc(cc(c1C(_O)/C_C/c1ccccn1)OC)OC 0.8062 1.1305 −0.3243 [10]
43 c1cc(cc(c1C(_O)/C_C/c1ccc(cc1)N1CCN(CC1)C)OC)OC 1.1367 1.2399 −0.1031 [10]
44 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)Cl)OC)OC)C1CCN(CC1)c1ccccc1 0.4150 0.4932 −0.0782 [10]
45 c1c(c(cc(c1C(_O)/C_C/c1ccccc1)OC)OC)C1CCN(CC1)c1ccccc1 0.6812 0.7289 −0.0477 [10]
46 c1c(c(cc(c1C(_O)/C_C/c1ccc(cc1)Cl)OC)OC)C1CCN(CC1)c1ccccc1 0.5315 0.5334 −0.0019 [10]
47 c1c(c(cc(c1C(_O)/C_C/c1ccncc1)OC)OC)C1CCN(CC1)c1ccccc1 0.4624 0.7012 −0.2388 [10]
48 c1c(c(cc(c1C(_O)/C_C/c1ccc(cc1)N1CCCN(CC1)C)OC)OC)C1CCN(CC1)c1ccccc1 0.9445 0.9876 −0.0431 [10]
49 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)Cl)OC)OC)N1CCN(CC1)C 0.7924 0.5743 0.2181 [10]
50 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)F)OC)OC)N1CCN(CC1)C 0.8573 0.6346 0.2228 [10]
51 c1c(c(cc(c1C(_O)/C_C/c1ccccc1)OC)OC)N1CCN(CC1)C 0.7782 0.8115 −0.0333 [10]
52 c1c(c(cc(c1C(_O)/C_C/c1ccc(cc1)N1CCN(CC1)C)OC)OC)N1CCN(CC1)C 1.1399 1.0734 0.0665 [10]
53 c1c(c(cc(c1C(_O)/C_C/c1ccncc1)OC)OC)N1CCN(CC1)C 1.0934 0.7959 0.2975 [10]
54 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)Cl)OC)OC)N1CC[C@H](CC1)N1CCCCC1 0.5682 0.7798 −0.2116 [10]
55 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)F)OC)OC)N1CC[C@H](CC1)N1CCCCC1 0.5441 0.8488 −0.3048 [10]
56 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)F)O)OC)OC 1.3503 1.1296 0.2206 [10]
57 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)OC)O)OC)OC 1.0719 1.4141 −0.3422 [10]
58 c1c(c(cc(c1C(_O)/C_C/c1ccccc1)O)OC)OC 1.4065 1.2997 0.1068 [10]
59 c1c(ccc(c1C(_O)/C_C/c1c(cccc1)Cl)OC)C1CCN(CC1)C 0.4624 0.6006 −0.1382 [10]
60 c1c(ccc(c1C(_O)/C_C/c1ccc(cc1)Cl)OC)C1CCN(CC1)C 0.5052 0.6216 −0.1165 [10]
61 c1c(ccc(c1C(_O)/C_C/c1ccccc1)OC)C1CCN(CC1)C 0.6233 0.8498 −0.2265 [10]
62 c1(cc(c(c(c1C(_O)/C_C/c1ccccc1Cl)O)C1CCN(CC1)C)OC)OC 0.4914 0.5047 −0.0133 [11]
63 c1(cc(c(c(c1C(_O)/C_C/c1ccc(cc1)Cl)O)C1CCN(CC1)C)OC)OC 0.8261 0.6914 0.1347 [11]
64 c1(cc(c(c(c1C(_O)/C_C/c1ccccc1)O)C1CCN(CC1)C)OC)OC 0.7559 0.8474 −0.0915 [11]
65 c1(cc(c(c(c1C(_O)/C_C/c1c(cccc1)F)O)C1CCN(CC1)C)OC)OC 0.5315 0.6116 −0.0801 [11]
66 c1c(c(cc(c1C(_O)/C_C/c1c(cccc1)Cl)OC)OC)C1CCN(CC1)C 0.4314 0.4970 −0.0657 [11]
67 c1c(c(cc(c1C(=O)/C_C/c1ccc(cc1)Cl)OC)OC)C1CCN(CC1)C 0.3979 0.5499 −0.1520 [11]
68 c1c(c(cc(c1C(_O)/C_C/c1ccccc1)OC)OC)C1CCN(CC1)C 0.5315 0.7299 −0.1984 [11]
69 c1c(ccc(c1C(_O)/C_C/c1c(cccc1)Cl)OC)C1CCN(CC1)C 0.4624 0.6006 −0.1382 [11]
70 c1c(ccc(c1C(_O)/C_C/c1ccc(cc1)Cl)OC)C1CCN(CC1)C 0.5052 0.6216 −0.1165 [11]
71 c1c(ccc(c1C(_O)/C_C/c1ccccc1)OC)C1CCN(CC1)C 0.6233 0.8498 −0.2265 [11]
72 c1c(cccc1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)N(O)O 2.1136 1.8674 0.2462 [12]
73 c1cc(ccc1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)Cl 1.5628 1.4262 0.1366 [12]
74 c1cc(ccc1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)OC 1.5757 1.6014 −0.0257 [12]
75 c1cc(ccc1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)C 1.6249 1.5348 0.0901 [12]
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Table 1 (continued)

SMILES logIC50 exp. logIC50 pred. Res. Ref.

76 c1(cc(ccc1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)O)O 1.5757 1.8240 −0.2484 [12]
77 c1cc(ccc1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)F 1.4564 1.3054 0.1510 [12]
78 c1c(c(ccc1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)Cl)N(O)O 1.2170 1.7343 −0.5173 [12]
79 c1(cc(cc(c1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)OC)OC)OC 2.0338 1.9244 0.1093 [12]
80 c1cc(ccc1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)Br 1.5007 1.3608 0.1398 [12]
81 c1c(cc(cc1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)Cc1ccccc1)Cc1ccccc1 1.4296 1.4869 −0.0573 [12]
82 O(C(_O)C)c1ccc(cc1C(_O)/C_C/c1c(cc(c(c1)OC)OC)OC)OC(_O)C 1.7627 1.7601 0.0026 [12]
83 c1cccc(c1C(_O)CCc1c(cccc1)C(F)(F)F)O 1.2279 1.4249 −0.1970 [4]
84 c1cccc(c1C(_O)CCc1c(cccc1)F)O 1.1584 1.3548 −0.1964 [4]
85 c1cccc(c1C(_O)CCc1ccc(cc1)F)O 1.4150 1.1911 0.2239 [4]
86 c1cccc(c1C(_O)CCc1ccccc1C)O 1.5763 1.5378 0.0386 [4]
87 c1cccc(c1C(_O)CCc1ccc(cc1)C)O 1.5302 1.6778 −0.1476 [4]
88 c1cccc(c1C(_O)CCc1c(cccc1)Cl)O 1.4742 1.2864 0.1879 [4]
89 c1cc(c(cc1)OC[C@@H](CNCCC)O)C(_O)CCc1c(cccc1)F 1.2672 1.3142 −0.0470 [4]
90 c1cc(c(cc1)OC[C@@H](CNCCC)O)C(_O)CCc1ccc(cc1)F 1.5185 1.1867 0.3318 [4]
91 c1cc(c(cc1)OC[C@@H](CNCCC)O)C(_O)CCc1c(cccc1)C 1.3692 1.4658 −0.0965 [4]
92 c1cc(c(cc1)OC[C@@H](CNCCC)O)C(_O)CCc1ccc(cc1)C 1.5011 1.5527 −0.0516 [4]
93 c1cc(c(cc1)OC[C@@H](CNCCC)O)C(_O)CCc1c(cccc1)Cl 1.3054 1.2144 0.0909 [4]
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where xi is the 1× d descriptor row-vector of compound i,M is the num-
ber of compounds in the dataset, and X is the N × dmatrix of the train-
ing set (d is the number of model descriptors, and N is the number of
training set samples). The leverage is suitable to evaluate the degree
of extrapolation, its limit is set as h* = 3(N + 1) / M = 3(Σhi + 1) /
M, and a leverage greater than h* for the training set means that the
chemical is highly influential in determining the model, though for
the test set means that the prediction is the result of substantial extrap-
olation of the model and may not be reliable.

The standardized residual (σ) for molecule i is defined as:

σ i ¼ resi
Str

ð3Þ

where resi is the residual of molecule i and Str is the standard deviation
of the training set.

In order to visualize the AD of a QSARmodel aWilliams plot of stan-
dardized residuals (σ) vs leverage values (h) can be used to obtain an
immediate and simple graphical detection of both the response outliers
(Y outliers) and the structurally influential chemicals (X outliers) of a
model.

3. Results and discussion

By means of ERM the different descriptor matrices were indepen-
dently searched for the models that best correlate with the activity,
the results were summarized in Table 2. The results indicate that:

- The best model in terms of its predicted power reflected in the test
set parameters is m1 obtained using only the two dimensional de-
scriptors (2D).
Table 2
Number of descriptors in thematrix (D), number of descriptors in themodel (d), Standard devia
for Leave-One-Out and test indicate external test set results); for the best models found explor

D Model d S R

2D 950 m1 7 0.1595 0.9430
3D 696 m2 5 0.2216 0.8824

m3 7 0.1717 0.9337
2D + 3D 1734 m4 7 0.1595 0.9430
Q 14,178 m5 6 0.1852 0.9173

m6 7 0.1362 0.9570
2D + Q 15,128 m7 5 0.1730 0.9271

m8 7 0.1371 0.9565

Bold numbers indicate the best results.
- The best model obtained from 3D alone (m2) contains 5 descriptors;
and it is of inferior quality in all the parameters compared tom1. The
best 7 descriptor model (m3) from 3D, added for comparison pur-
poses, shows that it is also of inferior quality than m1.

- The sum of 3D to 2D descriptors (2D + 3D) gave the same model
(m4 = m1), hence no 3D descriptors were chosen by the descriptor
selection algorithm, implying that in this case 3D descriptors are not
helpful to model the activity when compared to 2D descriptors.

- The best model obtained from Q alone (m5) contains 6 descriptors;
and it is of inferior quality in all the parameters compared to m1.

The best 7 descriptor model from Q (m6) shows better calibration
parameters but much worse validation parameters compared to
m1, indicating that the model is overfitted. This might be a conse-
quence of the great number of descriptors that Q contains; allowing
an excessive fit to the training molecules, probably not by a true
structure activity relationship.

- The best model from the addition of 2D to Q (m7) has 5 descriptors
and again is of inferior quality than m1. The best 7 descriptor
model from 2D+ Q, shows better calibration but inferior validation
parameters, indicating once more an overfitted model.

- Themodels derived from 3D descriptors present worst calibration but
much better validation parameters than those from Q. Again this
might be a consequence of the great number of Q descriptors and
their problem (in this study) to excessively fit the training set, hence
not reflecting a true correlation between the structure and the activity.

- The comparison of themodels fromQ and those from 2D+Q, reveals
that the 2D descriptors help to find better models in terms of the pre-
dictive abilitywith better validation parameters. This further indicates
that for this study, the 2D descriptors are better in finding an actual
structure activity correlation.
tion (S), correlation coefficient (R), Kubinyi function (FIT) and y-randomization (loo stands
ing the different descriptors matrices (2D, 3D, 2D + 3D, Q, and 2D + Q).

FIT Sloo Rloo Stest Rtest y-rand.

3.9464 0.1864 0.9216 0.1937 0.8661 0.3476
2.2785 0.2460 0.8536 0.2083 0.8532 0.3632
3.3391 0.1987 0.9106 0.2372 0.8337 0.3447
3.9464 0.1864 0.9216 0.1937 0.8661 0.3476
3.0036 0.2061 0.8967 0.2355 0.8079 0.3528
5.3411 0.1525 0.9459 0.2580 0.7745 0.3436
3.9633 0.1911 0.9104 0.2213 0.8290 0.3496
5.2763 0.1500 0.9477 0.2276 0.8207 0.3551



Table 3
Symbols for molecular descriptors involved in Eq.(4).

Molecular
descriptor

Type Description

F08[C\\O] 2D atom pair frequency Frequency of C\\O at topological distance 8
ATS8m 2D autocorrelations Broto–Moreau autocorrelation of a topological

structure of lag 8 weighted by mass
F05[O\\O] 2D atom pair frequency Frequency of O\\O at topological distance 5
TI2 Topological Second Mohar index from Laplace matrix
GATS4e 2D autocorrelations Geary autocorrelation of lag 4 weighted by

Sanderson electronegativity

Table 4
Correlation matrix for descriptors of Eq. (4) (N = 93).

F08[C\\O]2 ATS8m4 F05[O\\O]4 TI21/2 GATS4e1/2

F08[C\\O]2 1 0.3214 0.6458 0.1324 0.2017
ATS8m4 1 0.0150 0.2937 0.5106
F05[O\\O]4 1 0.0362 0.0114
TI21/2 1 0.2031
GATS4e1/2 1

The bold number indicates the highest correlation.
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Fig. 2. Predicted (Eq.(4)) vs experimental log IC50 for the training (circles) and test (rhom-
bus) sets.
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From the above results it seems clear that 2Ddescriptors are the best
option for the database under study. This might be a consequence of the
fact that the 3D optimization are done to find the conformer of minimal
energy which might differ from the actual in vitro conformer. This limi-
tation in themethodology comes from the lack of information about the
3D disposition of the molecules when the experiments were carried
away.

The results also seem to indicate that 3D descriptors fromDragon are
better than those from QuBiLs-MIDAS; however this comparison might
not be entirely fair since the present dataset does not appear as the best
option to compare 3D descriptors. On the other hand it seems clear that
the great number of descriptors form Q tends to generate models that
overfit the training set.

In order to further improve the best obtained model; the 2D matrix
was expanded adding several nonlinear transformations. By doing so
ERM can be used to find a simple to interpret and understand model,
nonetheless that will address to some extend the possible nonlinearity
of the correlations between the descriptors and the activity. After the re-
moval of descriptors that had greater dependency than 0.98 compared
to any other descriptor, the expanded 2D matrix (2De) contained a
pool of D = 2115 descriptors. Subsequently, a search of an optimal set
of descriptors from those in the new matrix (2De) was done using
ERM, finding an optimal model with d=5parameters (Table 3) linking
the molecular structure of the compounds with their activity:

log IC50 ¼ −4:3644 �0:6ð Þ þ 0:01277 �1E−3
� �

F08 C‐O½ �2

−0:006185 �5E−4
� �

ATS8m4 −0:01558 �3E−3
� �

F05 O‐O½ �4

þ1:5994 �0:2ð ÞTI21=2 þ 2:5998 �0:5ð ÞGATS4e1=2

N ¼ 93; R ¼ 0:9060; S ¼ 0:1894; FIT ¼ 3:379; p b 10−6

Rloo ¼ 0:8940; Sloo ¼ 0:2005; RTS ¼ 0:9333; STS ¼ 0:1544:
ð4Þ

Here, the standard errors of the regression coefficients are given in
parentheses; p is the significance of themodel, FIT the Kubinyi function,
loo stand for the Leave-One-Out Cross Validation techniques respective-
ly and TS stands for Test Set. The presented model's coefficients were
recalculated using all the available data, to include in the correlation
all the available structural information.

A second model from 2De containing d = 9 descriptors is also pre-
sented, showing that although the number of descriptors is higher
than those in m1 the model still has very good validation parameters:

log IC50 ¼ 0:2931 �0:1ð Þ þ 0:001704 �2E−3
� �

GGI44−0:002030 �3E−4
� �

C‐0024

−0:02001 �7E−3
� �

F08 O‐F½ �4 −0:002268 �3E−4
� �

MATS1e‐1

þ0:9112 �0:1ð ÞGATS6m1=2 þ 0:4028 �0:06ð ÞnCrs1=2

−1:1863 �0:08ð ÞC‐0031=2 þ 0:3265 �0:05ð ÞB07 O‐O½ �1=2

−0:2633 �0:04ð ÞF05 N‐O½ �1=2

N ¼ 93; R ¼ 0:9456; S ¼ 0:1489; FIT ¼ 4:034; p b 10−3

Rloo ¼ 0:9357; Sloo ¼ 0:1617; RTS ¼ 0:8864; STS ¼ 0:1890:

ð5Þ
The correlation matrix of the descriptors from Eq. (4), shown in
Table 4, reveals that the descriptor do not have a relevant degree of
inter-correlation.

The predictive power of the models from Eq. (4) and Eq. (5) is
satisfactory as revealed by its stability upon the inclusion and/or
exclusion of compounds, measured by the statistical parameters
Rloo ¼ 0:8940 ðRloo

2 ¼ 0:7992Þ and Rloo ¼ 0:9357 ðRloo
2 ¼ 0:8755Þ re-

spectively. As a general rule Rl − n % − o (Q) should be higher
than 0.71 (Q2 N 0.5) to have a validated model [29,32]. The models
were further validated by the following conditions [28,29]: RTS

2 ¼
0:8710 and RTS

2 ¼ 0:7857 N 0.6; k = 0.9819; k′ = 0.9908 and k =
0.9723; k′ = 0.9870 (0.85 b k or k′ b 1.15); (r2 − r20) / r2 = −0.1452
and −0.2657 b 0.1; (r2 − r′20) / r2 = −0.1476 and −0.2717 b 0.1
respectively.

To demonstrate that Eq. (4) and Eq. (5) are not the result of accident,
the widely used approach y-randomization was used to establish the
model robustness [33]. This method consists of scrambling the experi-
mental p property, so that activities do not correspond to the respective
compounds. After analyzing 10,000,000 cases of y-randomization, the
smallest S values obtained in this way were 0.3626 and 0.3510 respec-
tively, which are larger than the ones coming from the calibration
(0.1894 and 0.1490). These results suggest that both models are robust,
that the calibration is not fortuitous, and that a reliable structure–activity
relationship was found.

To determine the robustness of the models from Table 2 (used for
the comparison of the different descriptor matrixes), a similar proce-
dure using 100,000 cases was used. In all cases the y-randomization S
presented significantly higher values than the calibration S.

The plot of values predicted by Eq. (4) vs. experimental log IC50

shown in Fig. 2 suggests that the 63 compounds from the training set
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and 30 from the test set follow a straight line. The predicted activity
given by Eq. (4) for the training and test sets is shown in Table 1. The
Williams plot of the standardized residual in terms of the leverages il-
lustrated in Fig. 3 shows that most compounds lie within the AD of
Eq. (4) and were calculated correctly. Compounds 79 and 82 (Hat =
0.9079) are X outliers (Hat N 0.2381) of the training set reinforcing
the model [31]; there are no compounds with a standardized residual
higher than the limit (2.5σ) that can be considered outliers. The plot
of values predicted by Eq. (5) vs. experimental log IC50 shown in Fig. 4
also suggests that this alternative model follows a straight line.

The standardization of the regression coefficients of Eq. (4) allows
assigning greater importance to the molecular descriptors that exhibit
the largest absolute standardized coefficients [24]. Taking the descriptor
to the power as a new transformed descriptor the standard coefficients
are,

F08 C−O½ �2 0:8232ð ÞNATS8m4 0:7060ð ÞNTI21=2 0:4318ð ÞN
F05 O−O½ �4 0:3153ð ÞNGATS4e1=2 0:3049ð Þ:

By looking at this order we can see that themost significant descrip-
tor is the squared topological descriptor F08[C\\O], followed by the 2D
autocorrelation to the forth power ATS8m.

The review of Eq. (4) also reveals that ERM selected all transformed
descriptors.

4. Conclusions

In this work a dataset composed of a series of 93 chalcones with
measured activity against human breast cancer cells (MCF-7) was ex-
plored revealing that the best models were obtained using only two di-
mensional descriptors. The comparison between Dragon and QuBiLs-
MIDAS for the calculation of three dimensional descriptors showed
that better results are found using the first one and the second seems
to overfit the training set values. In order to further improve the best ob-
tained models; the two dimensional descriptor matrix was expanded
adding several nonlinear transformations. ERM was then used to find
a simple to interpret and understandmodel that nevertheless addressed
nonlinearities. The model contained five parameters, all being transfor-
mations of descriptors from 2D, and showed better predictive ability
than any non-transformed model, established by the theoretical and
test set validations. It is expected that the proposed interpretable
model may be employed as a useful tool in the prediction of this anti-
cancer activity, in a fast and costless manner, for any future studies
that may require an estimation of this important activity. The fact that
no three dimensional descriptors are used additionally simplifies the
use of themodel since the 3D optimization of structures is not required.
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