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The nonmesonic weak decay of double-� hypernuclei is studied within a microscopic diagrammatic approach.
In addition to the nucleon-induced mechanism, �N → nN and �NN → nNN , widely studied in single-�
hypernuclei, additional hyperon-induced mechanisms, �� → �n, �� → �0n, and �� → �−p, are accessible
in double-� hypernuclei and are investigated here. As in previous works on single-� hypernuclei, we adopt a
nuclear matter formalism extended to finite nuclei via the local density approximation and a one-meson exchange
weak transition potential (including the ground-state pseudoscalar and vector octets mesons) supplemented by
correlated and uncorrelated two-pion-exchange contributions. The weak decay rates are evaluated for hypernuclei
in the region of the experimentally accessible light hypernuclei 10

��Be and 13
��B. Our predictions are compared

with a few previous evaluations. The rate for the �� → �n decay is dominated by K-, K∗-, and η-exchange and
turns out to be about 2.5% of the free � decay rate, �free

� , while the total rate for the �� → �0n and �� → �−p

decays, dominated by π -exchange, amounts to about 0.25% of �free
� . The experimental measurement of these

decays would be essential for the beginning of a systematic study of the nonmesonic decay of strangeness −2
hypernuclei. This field of research could also shed light on the possible existence and nature of the H dibaryon.

DOI: 10.1103/PhysRevC.92.014301 PACS number(s): 21.80.+a, 25.80.Pw

I. INTRODUCTION

Strangeness nuclear physics plays an important role in
modern nuclear and hadronic physics and involves important
connections with astrophysical processes and observables as
well as with quantum chromodynamics (QCD). In particular,
the weak decay of � hypernuclei is the only actual source
of information on strangeness-changing four-baryon weak
interactions. A great variety of theoretical and experimental
studies were performed on the decay of such systems. Let us
mention the experimental and theoretical analysis of nucleon-
coincidence emission spectra and the theoretical modeling
of the decay channels within complete one-meson-exchange
weak transition potentials, which in some cases have been sup-
plemented by a two-pion-exchange mechanism. A reasonable
agreement between data and predictions have been reached
for the mesonic and nonmesonic decay rates, the �n/�p ratio
between the neutron- and the proton-induced decay widths,
the �2/�NM ratio between the two-nucleon induced and the
total nonmesonic rates, and the intrinsic asymmetry parameter
a� for the decay of polarized hypernuclei [1]. Nevertheless,
discrepancies between theory and experiment are still present
for the emission spectra involving protons [2–4].

Despite their implications on the possible existence of
dibaryon states and multistrangeness hypernuclei and on the
study of compact stars, much less is known on strangeness
−2 hypernuclei. Little information is available on cascade
hypernuclei, for instance, on the �–nucleus potential. The
existence of the strong �−p → �� reaction makes � hyper-
nuclei unstable with respect to the strong interaction. However,
this conversion reaction can be exploited to produce double-�
hypernuclei.

Investigations on the structure of double-� hypernuclei
are important to determine the �� strong interaction, which

is poorly known at present. Indeed, only a few double-�
hypernuclei events have been studied experimentally up to
date. In the KEK-176 and KEK-373 experiments, 4

��H, 6
��He,

and 10
��Be have been identified, while less unambiguous events

were recorded for 6
��He and 10

��Be in the 1960s and for 13
��B in

the early 1990s [5]. The observation of the so-called NAGARA
event implies a weak and attractive �� interaction, i.e.,
a bond energy �B��(6

��He) ≡ B��(6
��He) − 2B�(5

�He) =
(0.67 ± 0.17) MeV [6]. In [7] the authors demonstrated that
this bond energy value, which will be employed in the present
work as the binding energy between the two �’s, describes
well double-� hypernuclear data in the mass range from 6 to
13. Future experiments on strangeness −2 hypernuclei will be
carried out at J-PARC [8] and FAIR (PANDA Collaboration)
[9]. In particular, we mention that the J-PARC E07 experiment,
adopting the production reaction p(K−,K+)�− and a dia-
mond target, is based on a newly established hybrid-emulsion
method, with 10 times better statistics of the previous KEK-
E373 experiment. We also note that the PANDA experiment at
FAIR will use antiproton-induced reactions, p̄p → �̄�, and
that a variety of hypernuclei will be accessible by using a 12C
primary target, ranging from 7

��Li to 12
��B.

On the weak interaction side, double-� hypernuclei offer
the opportunity to access the following �-induced � decay
channels: �� → �n, �� → �−p, �� → �0n (with a
|�S| = 1 change in strangeness) and �� → nn (|�S| = 2).
Antisymmetry constraints on the �� initial state restrict
the pair to be coupled to S = 0 and J = 0, thus only two
nonmesonic decay channels are accessible: 1S0 →1 S0 and
1S0 →3 P0 in spectroscopic notation. No data are available
on these decays, apart from the claim for the observation
of a single event at KEK [10]. The experimental signature
of a �� → �n decay is clear, i.e., the emission of a
large momentum � (∼425 MeV), but the major problem
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is that these events are expected to be somewhat rare. The
usual neutron- and proton-induced decays, �n → nn and
�p → np, dominate over the �-induced ones in double-�
hypernuclei.

Realistic calculation and improved measurements of the
�-induced � weak decays could also provide hints on the
possible existence of the long-hunted H dibaryon, predicted
long ago by Jaffe [11]. A reliable calculation is important in
the design of future experiments at J-PARC and FAIR, where
these weak processes could be unambiguously observed for
the first time.

Only a few predictions are available for such interesting
strangeness-changing processes [12–14]; unfortunately, there
are major disagreements among the predictions of these
works, which adopted different frameworks. Their results are
discussed in the following together with the new ones obtained
here.

In this paper we present a microscopic calculation of both
the �- and nucleon-induced � decay rates for double-�
hypernuclei by using a nuclear matter formalism; both one- and
two-nucleon stimulated processes, �N → nN and �NN →
nNN , are taken into account, while the �� → nn decay
channel is not considered here because, requiring a change
in strangeness of two units, it is much less likely than the
other �-induced processes. Results for finite hypernuclei in
the mass range of the empirically interesting 10

��Be and 13
��B

systems are reported within the local density approximation.
The same microscopic approach showed that Pauli exchange
and ground-state correlation contributions are very important
for a detailed calculation of the rates, the asymmetry parameter,
and the nucleon emission spectra in the nonmesonic weak
decay of � hypernuclei [3,15–17]. Less pronounced effects
have been reported by including the �-baryon resonance in
the microscopic approach [4].

The paper is organized as follows. In Sec. II we present
the theoretical formalism employed for the evaluation of the
decay rates, while in Sec. III we discuss the adopted weak
potential model. In Sec. IV the numerical results are discussed
and compared with previous calculations. Finally, in Sec. V
we draw our conclusions.

II. FORMALISM

Let us start by writing the total nonmesonic decay rate for
a double-� hypernucleus as

�NM = �N + ��, (1)

where

�N = �(�n → nn) + �(�p → np) + �(�NN → nNN )

= �n + �p + �2

= �1 + �2,

�� = �(�� → �n) + �(�� → �0n) + �(�� → �−p)

= ��n + ��on + ��−p, (2)

are the total nucleon- and �-induced decay rates,
respectively. Note that the two-nucleon-induced
rate reads �2 = �(�NN → nNN ) = �(�nn →
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FIG. 1. Goldstone diagrams for the evaluation of the �N → nN ,
�� → �n, �� → �0n, and �� → �−p decay rates in infinite
nuclear matter.

nnn) + �(�np → nnp) + �(�pp → npp), while the
definitions of the partial rates �n, �p, ��n, ��on, and ��−p

are self–explanatory.
As in previous papers on � hypernuclei, we adopt a

microscopic formalism. In this many-body technique the
calculation is performed in infinite nuclear matter and then
it is extended to finite nuclei through the local density
approximation (LDA) [18].

The many-body contributions we consider for describing
the �N → nN and �� → YN processes in nuclear matter
are given by the Goldstone diagrams of Fig. 1. They provide
the various decay widths through the relations: ��N

f =
−2 Im ��N

f , ��N
f being the �N self–energy and f = nn

and np denoting the possible final states; ���
f = −2 Im ���

f ,
���

f being the �� self-energy and f = �n,�0n and �−p
denoting the possible final states.

Let us consider infinite nuclear matter with Fermi mo-
mentum kF and denote the four-momenta of the initial �’s
with k = (k0,k) and k′ = (k′

0,k
′) and the four-momenta of the

final particles by p1 = (p1 0, p1) (hyperon) and p2 = (p2 0, p2)
(nucleon). In a schematic way, for the Goldstone diagrams of
Fig. 1 one obtains the partial decay width to the YN (= �n,
�0n and �−p) final state as follows:

�YN (k,kF ) =
∑
f

|〈f |V ��→YN |0〉kF
|2δ(Ef − E0), (3)

where V ��→YN is the weak transition potential, |0〉kF
denotes

the initial state with energy E0 including the nuclear matter
ground state and the two �’s in the 1s level, and |f 〉 the
possible final states with energy Ef including nuclear matter
and the YN pair. Note also that momentum conservation, i.e.,
k′ = p1 + p2 − k, implies that only one of the initial momenta
(k) is an independent variable once p1 and p2 are integrated
out, as in Eq. (3). We remind the reader that, as anticipated, the
decay rates of Eq. (3) are obtained as the imaginary part of the
corresponding self-energies of Fig. 1. Self-energy diagrams
provide cut graphs representing the decay rates: Each one of
the Goldstone diagrams in Fig. 1 is cut by a horizontal line
at the intermediate baryon-baryon state to provide the decay
rate; in this rate the baryons which are crossed by the cut line
appear as final on-shell particles. Explicit expressions for the
self-energies and decay rates obtained from the diagrams of
Fig. 1 are given below.
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The decay rates for a finite hypernucleus are obtained from
the previous partial widths via the LDA:

�YN =
∫

dk |ψ̃�(k)|2
∫

d r |ψ�(r)|2 �YN (k,kF (r)). (4)

This approximation (see Appendix A) consists of introducing
a local nucleon Fermi momentum kF (r) = {3π2ρ(r)/2}1/3 in
terms of the density profile ρ(r) of the nuclear core and then
in averaging the partial widths over the nuclear volume. This
average is weighted by the probability per unit volume of
finding the � which then transforms into the final nucleon at
a given position r , |ψ�(r)|2. A further average is performed
over the momentum distributions of the �, ψ̃�(k) (both initial
�’s lie in the 1s1/2 single-particle state). The calculation is
performed for double-� hypernuclei with mass number A =
10–13 to mimic the behavior of the experimentally accessible
finite hypernuclei 10

��Be and 13
��B. As in [12], for the function

ψ�(r) we use a 1s1/2 harmonic oscillator wave function; its
frequency �ω = 13.6 MeV is obtained from the fit of [19] of
the experimental binding energies of 6

��He, 10
��Be, and 13

��B.
The energies of the initial � with momentum k is given by
k0 = m� + k2/(2m�) + V�, where for the binding term we
adopt the value V� = −�ω = −13.6 MeV.

Analyzes of � formation spectra in the (K−,π±) and
(π+,K+) reactions showed that the �-nucleus potential has a
substantial isospin dependence and, with the exception of very
light systems (the only quasibound state of a � in a nucleus
was observed in 4

�He), is repulsive: V� ∼ +(10–50) MeV at
normal nuclear density. In the present calculation we adopt the
value V� = +30 MeV.

Before we give explicit expressions for the decay widths
in nuclear matter, it is convenient to show the general form of
the weak transition potential. The standard weak, strangeness-
changing transition potential for the �� → YN processes can
be written as

V ��→YN (q) =
∑
τ=0,1

OτVτ (q), Oτ =
{

1 for τ = 0
τ 1 · τ 2 for τ = 1 ,

(5)
where

Vτ (q) = (GF m2
π ){Sτ (q) σ 1 · q̂ + S ′

τ (q) σ 2 · q̂

+PL,τ (q)σ 1 · q̂ σ 2 · q̂

+PC,τ (q) + PT,τ (q)(σ 1 × q̂) · (σ 2 × q̂)

+ iSV,τ (q)(σ 1 × σ 2) · q̂}. (6)

In these equations the spin-isospin dependence is shown
explicitly, while the momentum dependence is given by the
functions Sτ (q), S ′

τ (q), PL,τ (q), PC,τ (q), PT,τ (q), and SV,τ (q).
We return to these functions in the next section.

To enforce antisymmetrization, for each one of the contri-
butions of Fig. 1 we also consider the corresponding exchange

k

p 1

k

k′

p 2

k′

q

q

dir

k

p 1

k

k′

p 2

k′

q

Q

exch

FIG. 2. Direct and exchange Goldstone diagrams for the �� →
�n decay.

contribution. In Fig. 2 we give the direct and exchange
diagrams for �� → �n.

Through the standard rules for Goldstone diagrams one
writes down the explicit expression for these contributions. In
particular, for ��n = −2 Im ��n we have

��n(k,kF )

= −2 Im
∫

d4 p1

(2π )4

∫
d4 p2

(2π )4
G�(p1) Gn(p2)

1

4

×
∑

all spins

〈γ�(k)γ�(k′)|(V ��→�N )†|γ�(p1)γn(p2)〉ant

×〈γ�(p1)γn(p2)|V ��→�N |γ�(k)γ�(k′)〉ant, (7)

where with γB(K) we represent the spin, isospin, and energy-
momentum K of the baryon B. Explicit expressions for the
hyperon and neutron propagators G�(p) and Gn(p) are given
in Appendix C. After performing the summation over spin,
the evaluation of the isospin matrix element and the energy
integration, one obtains the antisymmetrized decay rate:

��n(k,kF ) = π (GF m2
π )2

∫
d3p1

(2π )3

∫
d3p2

(2π )3
(2Wdir

0 (q)

−Wexch
0 (q,Q))θ (| p2| − kF )

× δ(k0 + k′
0 − E�(p1) − En(p2)), (8)

where E� (En) is the total � (neutron) energy, while q =
k − p1 and Q = k − p2. For the direct term, the momentum
matrix element of the interaction turns out to be

Wdir
0 (q) = {

S2
0 (q) + S ′2

0 (q) + P 2
L,0(q) + P 2

C,0(q)

+ 2 P 2
T ,0(q) + 2 S2

V,0(q)
}
, (9)

while for the exchange term we have

Wexch
0 (q,Q)

= (q̂ · Q̂)S0(q,Q) + (2(q̂ · Q̂)2 − 1)PL,0(q)PL,0(Q)

+2((q̂ · Q̂)2 − 1)PT,0(q)PT,0(Q)

−2(q̂ · Q̂)2(PL,0(q)PT,0(Q) + PL,0(Q)PT,0(q))

+PC,0(q)PC,0(Q) + PC,0(q)PL,0(Q) + PC,0(Q)PL,0(q)

+2(PC,0(q)PT,0(Q) + PC,0(Q)PT,0(q)), (10)
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where we have defined

S0(q,Q) = (S0(q) + S ′
0(q))(S0(Q) + S ′

0(Q))

− 2(S0(q)SV, 0(Q) + SV, 0(q)S0(Q))

+ 2(S ′
0(q)SV, 0(Q) + SV, 0(q)S ′

0(Q)). (11)

Note from Eqs. (9)–(11) that, being the �� → �n weak
potential of isoscalar nature, we have fixed τ = 0 in Eqs. (5)
and (6). In Appendix C we present explicit expressions for the
�� → �0n and �� → �−p decay rates.

III. THE POTENTIAL MODEL

We adopt a meson-exchange description of the weak
transition potential including π , η, K , ρ, ω, and K∗ mesons
(these contribute to the one-meson-exchange part, denoted by
OME in the following) together with a two-pion-exchange
mechanism (TPE) consisting of both an uncorrelated and a
correlated part. The explicit expressions for the OME poten-
tials are given in Appendix B. The OME contribution to the
momentum-dependent functions Sτ , S ′

τ , PL,τ , PC,τ , PT,τ , and
SV,τ appearing in Eq. (6) and in Eqs. (9)–(11), include short-
range correlations and vertex form factors and are obtained
from Appendix B of [20] once the modifications concerning
the baryon coupling constants discussed in Appendix B of the
present paper are implemented.

Because isospin is conserved in the strong baryon vertices,
the �� → �n decay process has isoscalar character [τ = 0,
in Eq. (5)] and only η, K , ω, and K∗ exchange together with
TPE contribute; instead, the �� → �0n and the �� → �−p
processes are of isovector nature [τ = 1, in Eq. (5)] and the
contributing mesons are π , K , ρ, and K∗. We again refer to
Appendix B for details. At the OME level one naively expects
the �� → �n decay (�� → �−p, �� → �0n decays) to
be dominated by K exchange (π exchange). In particular,
from the �� → �n (�� → �0n) channel one could obtain
information on the ��K (��K) vertex; these vertices are
important to constrain SU (3) chiral perturbation theory [12].

As in [21], the TPE for the �N → nN processes is taken
from [22], where in particular a chiral unitary model was
used to account for the correlated two-pion exchange in
the scalar-isoscalar channel. For the �� → YN processes,
the two-pion-exchange contributions are obtained from the
�N → �N scalar-isoscalar two-pion-exchange strong inter-
action potential derived in [23], again by a chiral unitary
approach. The present work is the first one to include the TPE
mechanism in the �� → YN nonmesonic decays, while we
note that the calculations of [17,21,22,24] have included the
TPE mechanism in �n → nN nonmesonic decay calculations.

We assume the �I = 1/2 rule on the isospin change to be
valid for all baryon-baryon-meson weak vertices, although it
is phenomenologically justified only for the �Nπ free vertex.
By further neglecting the small mass difference between �0

and �− one obtains that the rates for decays into �0n and
�−p states are simply related by

��−p

��0n

= 2, (12)

and it is sufficient to calculate the decay rates ��n and ��0n.

IV. RESULTS

The calculations refer to the mass range corresponding
to the experimentally accessible 10

��Be and 13
��B hypernuclei.

Practically, the calculations are performed with a mass number
A = N + Z + 2 = 12 and an equal number of neutrons and
protons, N = Z = 5. We verified that the numerical results do
not change appreciably by changing A by one or two units:
We will refer to them as the results for A ∼ 12 double-�
hypernuclei.

In Table I we give our results for the �� → �n, �� →
�0n, and �� → �−p weak decay widths. Predictions are
given for the individual meson exchanges and for the most
relevant combinations among them. The results for ��−p are
obtained as ��−p = 2��0n because the �I = 1/2 isospin rule
is assumed here. As anticipated, the rate ��n (��0n) has no
contribution from isovector (isoscalar) mesons.

In the OME sector the rate ��n receives major contributions
by K– and K∗–exchange. The η contribution is smaller but
non-negligible. Instead, both the ω exchange and the TPE
contributions are negligible; the TPE provides the smallest
contribution. The addition of K and K∗ exchange provides a
decay rate which is about 65% larger than the complete result
for ��n because of a constructive interference between the
two meson contributions. However, the further addition of the
η meson, from a destructive interference, lowers the decay rate
to be only 4% larger than the complete result.

The rates ��0n and ��−p are much smaller than ��n and,
as expected, are dominated by π exchange. Much smaller
single contributions originate from K , K∗, and ρ exchange.
However, the combined effect of these mesons is to increase
the rates by about 20% thanks to constructive interference
effects. From the kinematics point of view, mesons heavier
than the pion are expected to contribute less to the rates
��0n and ��−p than to the rate ��n because the �� → �n
process is characterized by larger momentum transfers than the
�� → �0n and �� → �−p processes. This is confirmed
by the results of Table I: The ��n rate receives substantial
contributions from K , K∗, and η exchange, while ��0n is
dominated by π exchange.

TABLE I. Results for the �� → �n, �� → �0n, and �� →
�−p weak decay widths in A ∼ 12 double-� hypernuclei are given
as a percentage of the free � decay rate. Predictions are given for
the individual contributing mesons and for the most relevant meson
combinations.

Model ��n ��0n ��−p

π – 0.070 0.140
K 1.73 0.001 0.002
η 0.35 – –
ρ – 0.001 0.002
K∗ 0.84 0.002 0.004
ω 0.01 – –
TPE 0.002 – –
π + K + K∗ 4.14 0.081 0.162
π + K + K∗ + η 2.57 0.081 0.162
All 2.48 0.084 0.168
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TABLE II. Predictions for the one-nucleon-induced nonmesonic
weak decay rates for A ∼ 12 double-� hypernuclei. The results of
the present work are given together with previous ones available for
6
��He [12,13]. The decay rates are in units of the free � decay width.

Model and Ref. �n �p �n/�p �1 = �n + �p

This work (A ∼ 12) 0.48 1.12 0.43 1.60
OME (6

��He) [12] 0.30 0.66 0.46 0.96
π + 2π/ρ + 2π/σ 0.295 0.441 0.669 0.736

(6
��He) [13]

Before comparing the above predictions with those ob-
tained in previous calculations, in Table II we present our
results for the one-nucleon-induced nonmesonic decay rates
together with determinations from [12,13]. Our predictions
for �n and �p in A ∼ 12 double-� hypernuclei are larger than
previously obtained for 6

��He; indeed, it is well established
that, in single-� hypernuclei, the values of the �N → nN
rates are increasing as a function of A and saturate for
A ∼ 20. One expects the neutron- and proton-induced rates
for a double-� hypernucleus to be larger than twice the
corresponding rates for a single-� hypernucleus with one unit
less mass number: �1(A��Z) > 2 �1(A−1

� Z). Apart from the
fact that a double-� hypernucleus has twice the number of
�’s than a single-� hypernucleus, one has to consider that the
binding energy of a � is larger in A

��Z than in A−1
� Z. This is

well confirmed experimentally by binding data on 6
��He and

5
�He. The same behavior is expected in our mass range [25],
although for increasing A the � binding energies for double-�
and single-� hypernuclei should converge towards a common
value. Our results confirm the described behavior: The one-
nucleon-induced nonmesonic decay rate obtained for an A =
12 double-� hypernucleus, �1 = 1.60 �free

� , is about 5% larger
than twice the same rate we obtain within the same framework
and weak potential model for 11

� B, �1(11
� B) = 0.76 �free

� . To
conclude the discussion of the nucleon-induced nonmesonic
decay, we come to the decay rate �2 for the two-nucleon-
induced processes, �NN → nNN (with N = n or p). We
obtained �2 = 0.72 �free

� and thus �2 = 0.31 �N. This result is
not included in Table II because the determinations by other
authors therein displayed do not contain this decay channel.
Similarly to the one-nucleon-induced case, for the two-
nucleon-induced rate the inequality �2(A��Z) > 2 �2(A−1

� Z)
turns out to be satisfied: Indeed, within the same framework
and weak potential model we find �2(11

� B) = 0.27 �free
� . The

difference between the two-nucleon-induced decay rate for an
A = 12 double-� hypernucleus and twice the rate �2(11

� B) is
about 25%. The main contribution to this difference is from
the sensitivity of the rate �2 to the hypernucler mass number
and not to the � binding energy.

In Table III our final results for the �� → �n, �� →
�0n, and �� → �−p decay rates in A ∼ 12 double-�
hypernuclei are given together with existing calculations for
6
��He and 10

��Be [12–14].
Our calculation is easily comparable with the finite nucleus

(single-particle shell model) OME calculation of [12] because
TPE turned out to give a negligible contribution in the present

TABLE III. Predictions for the �� → �n, �� → �0n, and
�� → �−p weak decay rates for A ∼ 12 double-� hypernuclei
of the present work and for 6

��He and 10
��Be from previous works.

The decay rates are in units of 10−2 �free
� , �free

� being the free � decay
width.

Model and Ref. ��n ��0n ��−p

This work (A ∼ 12) 2.48 0.08 0.17
OME (6

��He) [12] 3.6 0.13 0.26
π + K + ω + 2π/ρ + 2π/σ (6

��He) [13] 5.3 0.10 0.20
π + K + ω + 2π/ρ + 2π/σ (10

��Be) [13] 3.4 0.07 0.13
π + K (6

��He) [14] 0.03 0.51 1.00
π + K + DQ (6

��He) [14] 0.24 0.65 0.85

calculation and the OME models employed in both works
have the same pseudoscalar and vector meson content. Our
predictions for ��n, ��0n, and ��−p are smaller, by 30%–40%,
than the ones of the finite nucleus calculation. We think this is
mainly because of the fact that in [12] a lighter hypernuclueus,
6
��He, was considered. Indeed, we proved numerically that the
�-induced � decay rate �� = ��n + ��0n + ��−p decreases
for increasing mass number A: A decrease of 2% in the rate
��n is obtained if the calculation is performed with A = 10
instead of A = 12 (note that our LDA calculation cannot be
extended to small mass numbers as A = 6). The results of
[13] of Table III also corroborates this behavior. Note instead
that the one-nucleon-induced � decay rate �1 = �n + �p

(for both single- and double-� hypernuclei) increases with
A. The different behavior of �1 and �� as a function of
A is easily explained as follows. On the one hand, the rate
�1 increases and then saturates with A because it somehow
measures the number of nucleons which can interact with the
�, i.e., the nucleons which can induce a �N → nN decay. On
the other hand, for increasing A the average distance between
two �’s in a double-� hypernucleus increases and thus the
rate �� becomes smaller. Our �-induced predictions exhibit
a behavior which is similar to the one obtained in [12], which
also enforced the �I = 1/2 rule: The ratio ��n/��0n is about
28 in the finite nucleus approach, while in the present work,

��n

��0n

∼ 30. (13)

Another ratio between decay rates deserves to be consid-
ered: It involves the neutron-induced rate �n and the �-induced
rate ��n. One expects the �n/��n ratio to be driven by the
number of �n pairs in the hypernucleus, i.e., by the number of
neutrons Nn that can induce the nonmesonic decay. In a naive
picture, �n/��n is thus proportional to Nn. We obtain

�n

��n

∼ 19.4, (14)

while in the finite nucleus approach in [12], �n/��n ∼
8.3. The different results are mainly from the differ-
ent neutron numbers in the two calculations, Nn = 5
in the present calculation and Nn = 2 in [12]: Indeed,
(�n/��n)Nn=5/(�n/��n)Nn=2 ∼ 2.3, while the corresponding
ratio between the neutron numbers is 5/2 = 2.5.
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In [13], a phenomenological, correlated two-pion-exchange
(2π/σ + 2π/ρ) mechanism was added to a π + K + ω-
exchange model for a finite nucleus calculation for 6

��He and
10
��Be. The authors found an improvement in the calculation
of the �n/�p ratio for single-� hypernuclei by including the
2π/σ and 2π/ρ potentials [26] together with K exchange [13].
We note that in [13] the same � wave function previously
adopted for 5

�He was used for 6
��He, despite, as explained

above, a � is more bound in 6
��He than in 5

�He. This
assumption leads to an underestimation of the �n and �p

decay rates reported in Table II for 6
��He. In the same

paper, the wave function of 6
��He (10

��Be) was described
by an α + � + � three-body cluster model (α + α + � + �
four-body cluster model). Although the final results for 10

��Be
are not very different from ours, a dominant contribution from
2π/σ exchange to the �� → �n decay rate is obtained; this
behavior is not confirmed by the chiral unitary approach based
TPE mechanism adopted in the present study. The lack of
details from [13] does not allow us to understand the origin
of such a discrepancy. The ratio ��n/��0n is about 53 (49)
for 6

��He (10
��Be); both results are larger by about 80% than

what is found in the present paper and in [12]. Furthermore,
the ratio �n/��n is about 5.6 for 6

��He, i.e., about 30% less
that found in the finite nucleus calculation of [12] for the same
hypernucleus.

In [14] an hybrid quark-meson approach is instead adopted,
which includes π - and K-exchange at long and medium
distances and a direct quark mechanism (basically, a valence
quark picture of baryons based on an effective four-quark
weak Hamiltonian) to account for the short-range part of
the processes. The direct quark mechanism provides a large
contribution to the ��n, ��0n, and ��−p decay rates and
strongly violates the isospin rule of Eq. (12) (see the results
in Table III). We note that the π + K calculation provides
�K

�n/�π
�0n

= 0.06, in strong disagreement with the other
calculations of Table III. We note that a simple evaluation
in terms of the weak and strong coupling constants involved
in the �� → �n decay mediated by the K meson and the
�� → �0n decay mediated by the π meson indicates that
the ratio �K

�n/�π
�0n

(which is a good approximation of the
ratio ��n/��0n; see the results of Table I) has to be larger than
1. When compared with the results of the present paper and
of [12], the very small value of �K

�n/�π
�0n

originates from a
“very small” K-exchange (“large” π -exchange) contribution
to the �� → �n (�� → �0n) channel. We point out the
strong disagreement concerning K exchange: �K

�n/(10−2�free
� )

is 0.03 in the hybrid quark-meson approach, while it is 1.7
(2.7) in the present approach (in the finite nucleus calculation
of [12]). For the complete calculation, the hybrid quark-meson
approach provides ��n/��0n ∼ 0.37.

As mentioned, no data is available on �-induced � decays,
apart from the claim [10] for the detection of a single event
in the KEK hybrid-emulsion experiment which led to the
observation of the so-called NAGARA event consisting in the
formation of the 6

��He hypernucleus. The authors interpreted
this event as a weak decay of an unknown strangeness −2
system into a �−p pair. This result is difficult to interpret
because the KEK experimental branching ratio (BR) for this
process is of the order of 10−2 while for the �� → �−p

decay in a double-� hypernucleus the BR is evaluated to be
of the order of 10−3 in the present work as well as in the
previous determinations of [12,13]. As done in [10], one could
also speculate that the observed event corresponds to a decay
of an H dibaryon. As far as we know, there is only a dated
calculation [27] concerning the H → �−p process, which,
adapted to the case of a double-� hypernucleus, provides a BR
of the order of 10−2. Future measurements will be essential
not only to establish the �-induced � weak decays studied
here but also to clarify the question of the existence and
nature of the H dibaryon and eventually to establish its role in
defining the properties of double-� hypernuclei. We conclude
by mentioning that recent evidences have been obtained in
lattice QCD calculations which point toward the existence of
a bound H dibaryon [28,29]. These studies demonstrate that
(small) hypernuclei could be directly treated with QCD in the
future.

V. CONCLUSIONS

A microscopic diagrammatic approach is used to evaluate
the nucleon- and �-induced � decay in double-� hypernuclei.
The calculation is performed in nuclear matter and then
extended to finite hypernuclei with mass numbers A ∼ 12
(10
��Be and 13

��B are experimentally accessible cases) by means
of the local density approximation. The present approach is the
first one which takes into account the full one-meson-exchange
weak transition potential together with two-pion-exchange
contributions. The one-meson-exchange potential contains the
mesons of the ground-state pseudoscalar and vector octets,
while the two-pion-exchange potential includes correlated and
uncorrelated terms and is obtained from the chiral unitary
approach of [22,23]. Such a complete potential model proved
to be of crucial importance in consistently explaining the whole
set of decay data on single-� hypernuclei [1].

We confirm that the neutron- and proton-induced decay
rates for the hypernucleus A

��Z with A ∼ 12 turn out to be
larger (by about 5%) than twice the corresponding rates for
the single-� hypernucleus A−1

� Z; data indicate that the binding
energy of a � is indeed larger in A

��Z than in A−1
� Z.

The two-pion-exchange mechanism turns out to provide a
negligible contribution to the �� → �n nonmesonic decay
of double-� hypernuclei. The rate ��n receives the major
contributions from K and K∗ exchange (however, the η meson
cannot be neglected). The rates ��0n and ��−p, which are
much smaller than ��n (��n/��0n = 29 and ��−p/��0n = 2
in virtue of the �I = 1/2 isospin rule), are dominated by π
exchange.

The total �-induced decay rate, �� = ��n + ��0n +
��−p, amounts to about 1.2% of the total nonmesonic rate,
�NM = �n + �p + �2 + ��. We also find that the rate ��

decreases as the hypernuclear mass number A increases
because the average distance between two �’s in a double-�
hypernucleus is an increasing function of A.

Our final results for ��n, ��0n, and ��−p are in fairly good
agreement with the ones of [12,13] and in strong disagreement
with those of [14].

We hope the present work may contribute to the start of a
systematic investigation on the nonmesonic weak decays of
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double-� hypernuclei. No reliable experimental evidence of
interesting processes such as �� → �n, �� → �0n, and
�� → �−p is available at present. Future measurements
will also be essential to clarify the question of the existence
and nature of the H dibaryon and eventually to establish its
interplay and/or mixing with the �� pair in determining the
structure and weak decays properties of double-� hypernuclei.
New experimental programs at J-PARC and FAIR should thus
be strongly supported.
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APPENDIX A

We present here the formal derivation of Eq. (4) which
is used to calculate the decay rates in the local density
approximation (LDA). Let us start by introducing the �
pair wave function in coordinate space, ψ��(r,r ′). In a
double-� hypernucleus both hyperons are paired in the lowest
energy 1s single-particle state. In the independent-particle
approximation, ψ��(r,r ′) is simply factorized in terms of the
individual � wave functions ψ�(r) and ψ�(r ′) associated with
the same energy eigenvalue:

ψ��(r,r ′) = ψ�(r)ψ�(r ′). (A1)

Let us denote with k and k′ ( p1 and p2) the momenta of
the initial �’s (final hyperon and nucleon) for the �� → YN
decay. In the LDA one introduces the following rate for such
a decay:

�YN (k) =
∫

d r
∫

d r ′|ψ��(r,r ′)|2�YN (k,r,r ′), (A2)

k being the momentum of one of the initial �’s. The final
momenta p1 and p2 are integrated out to obtain �YN (k,r,r ′).
Note also that momentum conservation, i.e., k′ = p1 + p2 −
k, implies that only one of the initial momenta (k) is an
independent variable once p1 and p2 are integrated out. This is
the reason why the integrand in Eq. (A2) is independent of k′.

The rates for finite hypernuclei are thus obtained through
the relation:

�YN =
∫

dk |ψ̃�(k)|2�YN (k), (A3)

ψ̃�( p) denoting the Fourier transform of ψ�(r).
Let us denote with r the spatial point in which the

final nucleon is created and with r ′ the spatial point in
which the initial � converts into the final hyperon. Then,
introduce a local nucleon Fermi momentum depending on
the position in which the final nucleon is created, kF (r) =
{3π2ρ(r)/2}1/3, ρ(r) being the density profile of the nuclear
core. It follows that the function �YN (k,r,r ′) is independent

of r ′ and can be written as �YN (k,kF (r)). Finally, from
Eqs. (A1)–(A3) one simply obtains Eq. (4), which formally
is the same relation used for the �N → nN nonmesonic
decays.

APPENDIX B

The aim of this Appendix is twofold. First, we provide
explicit expressions for the �� → �N and the �� → �N
weak transition potentials as obtained through the exchange
of the π , η, K , ρ, ω, and K∗ mesons. Second, we briefly
explain how to build up the general expression for the
transition potential of Eq. (5) from these meson-exchange
potentials.

Weak couplings are in units of GF m2
π and are taken from

[12]. The Nijmegen NSC97f model [30] is used for the strong
coupling constants.

The V ��→�n transition potential. This transition is of pure
isoscalar nature (τ = 0), thus the contributing mesons are η,
ω, K , and K∗. We start with the η meson:

Vη(q) = GF m2
π

g��η

2M
F 2

η (q)

×
(

Aη + Bη

2M̄
σ 1 · q

)
σ 2 · q

q2
0 − q2 − m2

η

, (B1)

where g��η = −6.56, Aη = 1.80, Bη = −11.9, and �η =
1.75 GeV and M̄ is the average between the nucleon and
� masses.

For the ω meson we have

Vω(q) = GF m2
π

(
gV

��ωαω

− (αω + βω)(gV
��ω + gT

��ω)

4MM̄
(σ1 × q) · (σ2 × q)

− iεω

gV
��ω + gT

��ω

2M
(σ1 × σ2) · q

)
1

q2
0 − q2 − m2

ω

,

(B2)

where gV
��ω = 7.11, gT

��ω = −4.04, αω = −0.17, βω =
−7.43, εω = −1.33, and �ω = 1.31 GeV.

Finally, we come to the isoscalar terms of the K
and K∗ exchange. The K-meson contribution reads (the
isoscalar character of these terms is indicated by a τ = 0
subindex)

V0, K (q) = GF m2
π

g�NK

2M
F 2

K (q)

(
AK + BK

2M̄
σ 1 · q

)

× σ 2 · q

q2
0 − q2 − m2

K

, (B3)

with g�NK = −14.1, AK = 0.67, BK = 12.72, �K =
1.8 GeV, while for the K∗ meson we have

V0, K∗ (q) = GF m2
π

(
gV

�NK∗αK∗

− (αK∗ + βK∗ )(gV
�NK∗+gT

�NK∗ )

4MM̄
(σ1×q) · (σ2×q)
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− iεK∗
gV

�NK∗ + gT
�NK∗

2M
(σ1 × σ2) · q

)

× 1

q2
0 − q2 − m2

K∗
, (B4)

where gV
�NK∗ = −5.47, gT

�NK∗ = −11.9, αK∗ = −1.34,
βK∗ = 11.2, εK∗ = −1.38, and �K∗ = 1.65 GeV.

The V ��→�0n transition potential. This transition is of pure
isovector nature (τ = 1), thus the contributing mesons are π ,
ρ, K , and K∗. We begin with the π meson:

Vπ (q) = GF m2
π

g��π

2M
F 2

π (q)

(
Aπ + Bπ

2M̄
σ 1 · q

)

× σ 2 · q τ 1 · τ 2

q2
0 − q2 − m2

π

, (B5)

where g��π = 12.0, Aπ = −1.05, Bπ = 7.15, and �π =
1.75 GeV.

For the ρ meson we have

Vρ(q) = GF m2
π

(
gV

��ραρ − (αρ + βρ)(gV
��ω + gT

��ρ)

4MM̄

× (σ1 × q) · (σ2 × q)

−iερ

gV
��ρ + gT

��ρ

2M
(σ1 × σ2) · q

)
τ 1 · τ 2

q2
0 − q2 − m2

ρ

,

(B6)

where gV
��ρ = 0.0, gT

��ρ = 11.2, αρ = 3.29, βρ = 6.74, ερ =
−1.09, and �ρ = 1.23 GeV.

Finally, we come to the isovector terms of the K
and K∗ exchange. The K-meson contribution reads (the
τ = 1 subindex indicates the isovector character of the
interaction)

V1, K (q) = GF m2
π

g�NK

2M
F 2

K (q)

(
ÃK + B̃K

2M̄
σ 1 · q

)

× σ 2 · q τ 1 · τ 2

q2
0 − q2 − m2

K

, (B7)

with g�NK = −14.1, ÃK = 0.39, B̃K = 5.95, �K = 1.8 GeV,
while for the K∗ meson we have

V1, K∗ (q) = GF m2
π

(
gV

�NK∗ α̃K∗

− (α̃K∗ + β̃K∗ )(gV
�NK∗ + gT

�NK∗ )

4MM̄
(σ1×q) · (σ2×q)

− iε̃K∗
gV

�NK∗ + gT
�NK∗

2M
(σ1 × σ2) · q

)

× τ 1 · τ 2

q2
0 − q2 − m2

K∗
, (B8)

where gV
�NK∗ = −5.47, gT

�NK∗ = −11.9, α̃K∗ = −3.9, β̃K∗ =
4.45, ε̃K∗ = 0.63, and �K∗ = 1.65 GeV.

To obtain the transition potential of Eq. (5), first short-range
correlations (SRC) have to be implemented. The procedure to
do this is explained in Appendix B of [20] for the V �N→NN

transition potential. Once this is done, it is very simple to

identify the expressions for the functions Sτ (q), S ′
τ (q), PL,τ (q),

PC,τ (q), PT,τ (q), and SV,τ (q) entering Eqs. (5) and (6). Just
as an example, by neglecting SRC and considering only the
π -meson transition potential of Eq. (B5), it is straightforward
to identify the parity-violating term of this potential with a
contribution to Sτ=1(q) and the parity-conserving term with
PL,τ=1(q).

The explicit expressions for the functions Sτ (q), S ′
τ (q),

PL,τ (q), PC,τ (q), PT,τ (q), and SV,τ (q) entering in the po-
tential V ��→YN are obtained from the ones corresponding
to V �N→nN as follows: (i) The V ��→�n potential, which
is isoscalar, is obtained by making the following replace-
ments for the strong coupling constants, gNNη → g��η,
gV

NNω → gV
��ω, gT

NNω → gT
��ω. Analogously, the NNK and

NNK∗ weak parity-conserving and parity-violating coupling
constants are replaced by the ��K and ��K∗ couplings,
respectively; (ii) for the V ��→�0n potential, which is isovec-
tor, the following replacements have to be made—for the
strong coupling constants, gNNπ → g��π , gV

NNρ → gV
��ρ ,

and gT
NNρ → gT

��ρ ; the NNK and NNK∗ weak coupling
constants are replaced by the ��K and ��K∗ couplings,
respectively.

APPENDIX C

In this Appendix we present expressions for the evaluation
of ��0n and ��−p. Note that, as explained in the text, by
neglecting the small mass difference between the �0 and �−
hyperons, the enforcement of the �I = 1/2 isospin rule leads
to ��−p = 2 ��0n.

For ��0n = −2 Im ��0n we have

��0n(k,kF )

= −2 Im
∫

d4 p1

(2π )4

∫
d4 p2

(2π )4
G�0 (p1) Gn(p2)

1

4

×
∑

all spins

〈γ�(k)γ�(k′)|(V ��→�0n)†|γ�0(p1)γn(p2)〉ant

×〈γ�0(p1)γn(p2)|V ��→�0n|γ�(k)γ�(k′)〉ant, (C1)

where with γB(K) we represent the spin, isospin, and energy-
momentum K , of the baryon B. The �, �, and neutron
propagators read

G�(p) = 1

p0 − E�( p) − V� + iε
, (C2)

G�(p) = 1

p0 − E�( p) − V� + iε
, (C3)

and

GN (p) = θ (| p| − kF )

p0 − EN ( p) − VN + iε
, (C4)
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respectively, V�, V� , and VN representing binding energies. After performing the summation over spin, the evaluation of the
isospin matrix element and the energy integration, one obtains the antisymmetrized �� → �0n decay rate in nuclear matter as

��0n(k,kF ) = π

3
(GF m2

π )2
∫

d3p1

(2π )3

∫
d3p2

(2π )3

(
2Wdir

1 (q) − Wexch
1 (q,Q)

)
× θ (| p2|−kF ) δ(k0+k′

0 − E�0 (p1) − En(p2)), (C5)

where E� (En) is the total � (neutron) energy. For the direct and exchange terms, the momentum matrix elements of the
interaction turn out to be

Wdir
1 (q) = {

S2
1 (q) + S ′2

1 (q) + P 2
L,1(q) + P 2

C,1(q) + 2 P 2
T ,1(q) + 2 S2

V,1(q)
}
, (C6)

and

Wexch
1 (q,Q) = (q̂ · Q̂)S1(q,Q) + (2(q̂ · Q̂)2 − 1)PL,1(q)PL,1(Q) + 2((q̂ · Q̂)2 − 1)PT,1(q)PT,1(Q)

− 2(q̂ · Q̂)2(PL,1(q)PT,1(Q) + PL,1(Q)PT,1(q)) + PC,1(q)PC,1(Q) + PC,1(q)PL,1(Q) + PC,1(Q)PL,1(q)

+ 2(PC,1(q)PT,1(Q) + PC,1(Q)PT,1(q)), (C7)

respectively, where q = k − p1, Q = k − p2, and

S1(q,Q) = (S1(q) + S ′
1(q))(S1(Q) + S ′

1(Q)) − 2(S1(q)SV, 1(Q) + SV, 1(q)S1(Q)) + 2(S ′
1(q)SV, 1(Q) + SV, 1(q)S ′

1(Q)). (C8)

The finite hypernucleus decay rate ��0n is then obtained by means of the LDA of Eq. (4).
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Phys. Rev. C 87, 044614 (2013).
[25] Note that available experimental values of the harmonic oscil-

lator parameter �ω (obtained as the energy separation between
the s and p �-levels) are −10.8 MeV for 12

� C and −13.6 MeV
for A = 6–13 double-� hypernuclei.

[26] K. Itonaga, T. Ueda, and T. Motoba, Phys. Rev. C 65, 034617
(2002).

[27] J. F. Donoghue, E. Golowich, and B. R. Holstein, Phys. Rev. D
34, 3434 (1986).

[28] S. R. Beane et al. (PLQCD Collaboration), Phys. Rev. Lett. 106,
162001 (2011).

[29] T. Inoue et al. (HAL QCD Collaboration), Phys. Rev. Lett. 106,
162002 (2011).

[30] V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59, 3009 (1999);
Th. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, ibid. 59, 21
(1999).

014301-9

http://dx.doi.org/10.1140/epja/i2012-12041-6
http://dx.doi.org/10.1140/epja/i2012-12041-6
http://dx.doi.org/10.1140/epja/i2012-12041-6
http://dx.doi.org/10.1140/epja/i2012-12041-6
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.055
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.055
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.055
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.055
http://dx.doi.org/10.1016/S0370-1573(02)00199-0
http://dx.doi.org/10.1016/S0370-1573(02)00199-0
http://dx.doi.org/10.1016/S0370-1573(02)00199-0
http://dx.doi.org/10.1016/S0370-1573(02)00199-0
http://dx.doi.org/10.1016/j.nuclphysa.2010.01.246
http://dx.doi.org/10.1016/j.nuclphysa.2010.01.246
http://dx.doi.org/10.1016/j.nuclphysa.2010.01.246
http://dx.doi.org/10.1016/j.nuclphysa.2010.01.246
http://dx.doi.org/10.1016/j.physletb.2011.03.017
http://dx.doi.org/10.1016/j.physletb.2011.03.017
http://dx.doi.org/10.1016/j.physletb.2011.03.017
http://dx.doi.org/10.1016/j.physletb.2011.03.017
http://dx.doi.org/10.1016/j.physletb.2012.08.027
http://dx.doi.org/10.1016/j.physletb.2012.08.027
http://dx.doi.org/10.1016/j.physletb.2012.08.027
http://dx.doi.org/10.1016/j.physletb.2012.08.027
http://dx.doi.org/10.1143/PTPS.185.335
http://dx.doi.org/10.1143/PTPS.185.335
http://dx.doi.org/10.1143/PTPS.185.335
http://dx.doi.org/10.1143/PTPS.185.335
http://dx.doi.org/10.1103/PhysRevC.88.014003
http://dx.doi.org/10.1103/PhysRevC.88.014003
http://dx.doi.org/10.1103/PhysRevC.88.014003
http://dx.doi.org/10.1103/PhysRevC.88.014003
http://dx.doi.org/10.1103/PhysRevLett.87.212502
http://dx.doi.org/10.1103/PhysRevLett.87.212502
http://dx.doi.org/10.1103/PhysRevLett.87.212502
http://dx.doi.org/10.1103/PhysRevLett.87.212502
http://dx.doi.org/10.1016/j.physletb.2011.05.069
http://dx.doi.org/10.1016/j.physletb.2011.05.069
http://dx.doi.org/10.1016/j.physletb.2011.05.069
http://dx.doi.org/10.1016/j.physletb.2011.05.069
http://dx.doi.org/10.1007/s10751-011-0542-y
http://dx.doi.org/10.1007/s10751-011-0542-y
http://dx.doi.org/10.1007/s10751-011-0542-y
http://dx.doi.org/10.1007/s10751-011-0542-y
http://dx.doi.org/10.1016/j.nuclphysa.2012.12.118
http://dx.doi.org/10.1016/j.nuclphysa.2012.12.118
http://dx.doi.org/10.1016/j.nuclphysa.2012.12.118
http://dx.doi.org/10.1016/j.nuclphysa.2012.12.118
http://dx.doi.org/10.1007/s10751-014-1076-x
http://dx.doi.org/10.1007/s10751-014-1076-x
http://dx.doi.org/10.1007/s10751-014-1076-x
http://dx.doi.org/10.1007/s10751-014-1076-x
http://dx.doi.org/10.1016/j.ppnp.2011.04.001
http://dx.doi.org/10.1016/j.ppnp.2011.04.001
http://dx.doi.org/10.1016/j.ppnp.2011.04.001
http://dx.doi.org/10.1016/j.ppnp.2011.04.001
http://dx.doi.org/10.1140/epja/i2007-10465-7
http://dx.doi.org/10.1140/epja/i2007-10465-7
http://dx.doi.org/10.1140/epja/i2007-10465-7
http://dx.doi.org/10.1140/epja/i2007-10465-7
http://dx.doi.org/10.1103/PhysRevLett.38.195
http://dx.doi.org/10.1103/PhysRevLett.38.195
http://dx.doi.org/10.1103/PhysRevLett.38.195
http://dx.doi.org/10.1103/PhysRevLett.38.195
http://dx.doi.org/10.1103/PhysRevLett.38.617
http://dx.doi.org/10.1103/PhysRevLett.38.617
http://dx.doi.org/10.1103/PhysRevLett.38.617
http://dx.doi.org/10.1103/PhysRevC.65.015205
http://dx.doi.org/10.1103/PhysRevC.65.015205
http://dx.doi.org/10.1103/PhysRevC.65.015205
http://dx.doi.org/10.1103/PhysRevC.65.015205
http://dx.doi.org/10.1016/S0375-9474(01)01030-2
http://dx.doi.org/10.1016/S0375-9474(01)01030-2
http://dx.doi.org/10.1016/S0375-9474(01)01030-2
http://dx.doi.org/10.1016/S0375-9474(01)01030-2
http://dx.doi.org/10.1142/S0217732303010119
http://dx.doi.org/10.1142/S0217732303010119
http://dx.doi.org/10.1142/S0217732303010119
http://dx.doi.org/10.1142/S0217732303010119
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.008
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.008
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.008
http://dx.doi.org/10.1016/j.nuclphysa.2003.07.008
http://dx.doi.org/10.1016/j.nuclphysa.2009.06.022
http://dx.doi.org/10.1016/j.nuclphysa.2009.06.022
http://dx.doi.org/10.1016/j.nuclphysa.2009.06.022
http://dx.doi.org/10.1016/j.nuclphysa.2009.06.022
http://dx.doi.org/10.1103/PhysRevC.81.064315
http://dx.doi.org/10.1103/PhysRevC.81.064315
http://dx.doi.org/10.1103/PhysRevC.81.064315
http://dx.doi.org/10.1103/PhysRevC.81.064315
http://dx.doi.org/10.1103/PhysRevC.85.024321
http://dx.doi.org/10.1103/PhysRevC.85.024321
http://dx.doi.org/10.1103/PhysRevC.85.024321
http://dx.doi.org/10.1103/PhysRevC.85.024321
http://dx.doi.org/10.1016/0375-9474(85)90220-9
http://dx.doi.org/10.1016/0375-9474(85)90220-9
http://dx.doi.org/10.1016/0375-9474(85)90220-9
http://dx.doi.org/10.1016/0375-9474(85)90220-9
http://dx.doi.org/10.1016/S0375-9474(98)00640-X
http://dx.doi.org/10.1016/S0375-9474(98)00640-X
http://dx.doi.org/10.1016/S0375-9474(98)00640-X
http://dx.doi.org/10.1016/S0375-9474(98)00640-X
http://dx.doi.org/10.1016/S0375-9474(03)00641-9
http://dx.doi.org/10.1016/S0375-9474(03)00641-9
http://dx.doi.org/10.1016/S0375-9474(03)00641-9
http://dx.doi.org/10.1016/S0375-9474(03)00641-9
http://dx.doi.org/10.1016/j.physletb.2007.08.094
http://dx.doi.org/10.1016/j.physletb.2007.08.094
http://dx.doi.org/10.1016/j.physletb.2007.08.094
http://dx.doi.org/10.1016/j.physletb.2007.08.094
http://dx.doi.org/10.1016/S0375-9474(01)01085-5
http://dx.doi.org/10.1016/S0375-9474(01)01085-5
http://dx.doi.org/10.1016/S0375-9474(01)01085-5
http://dx.doi.org/10.1016/S0375-9474(01)01085-5
http://dx.doi.org/10.1103/PhysRevC.74.064002
http://dx.doi.org/10.1103/PhysRevC.74.064002
http://dx.doi.org/10.1103/PhysRevC.74.064002
http://dx.doi.org/10.1103/PhysRevC.74.064002
http://dx.doi.org/10.1140/epja/i2006-10215-5
http://dx.doi.org/10.1140/epja/i2006-10215-5
http://dx.doi.org/10.1140/epja/i2006-10215-5
http://dx.doi.org/10.1140/epja/i2006-10215-5
http://dx.doi.org/10.1103/PhysRevC.87.044614
http://dx.doi.org/10.1103/PhysRevC.87.044614
http://dx.doi.org/10.1103/PhysRevC.87.044614
http://dx.doi.org/10.1103/PhysRevC.87.044614
http://dx.doi.org/10.1103/PhysRevC.65.034617
http://dx.doi.org/10.1103/PhysRevC.65.034617
http://dx.doi.org/10.1103/PhysRevC.65.034617
http://dx.doi.org/10.1103/PhysRevC.65.034617
http://dx.doi.org/10.1103/PhysRevD.34.3434
http://dx.doi.org/10.1103/PhysRevD.34.3434
http://dx.doi.org/10.1103/PhysRevD.34.3434
http://dx.doi.org/10.1103/PhysRevD.34.3434
http://dx.doi.org/10.1103/PhysRevLett.106.162001
http://dx.doi.org/10.1103/PhysRevLett.106.162001
http://dx.doi.org/10.1103/PhysRevLett.106.162001
http://dx.doi.org/10.1103/PhysRevLett.106.162001
http://dx.doi.org/10.1103/PhysRevLett.106.162002
http://dx.doi.org/10.1103/PhysRevLett.106.162002
http://dx.doi.org/10.1103/PhysRevLett.106.162002
http://dx.doi.org/10.1103/PhysRevLett.106.162002
http://dx.doi.org/10.1103/PhysRevC.59.3009
http://dx.doi.org/10.1103/PhysRevC.59.3009
http://dx.doi.org/10.1103/PhysRevC.59.3009
http://dx.doi.org/10.1103/PhysRevC.59.3009
http://dx.doi.org/10.1103/PhysRevC.59.21
http://dx.doi.org/10.1103/PhysRevC.59.21
http://dx.doi.org/10.1103/PhysRevC.59.21
http://dx.doi.org/10.1103/PhysRevC.59.21



