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Abstract. We investigate the possible location of the critical endpoint in the QCD phase diagram based on
nonlocal covariant PNJL models including a vector interaction channel. The form factors of the covariant
interaction are constrained by lattice QCD data for the quark propagator. The comparison of our results
for the pressure including the pion contribution and the scaled pressure shift ∆P/T 4

vs. T/Tc with lattice
QCD results shows a better agreement when Lorentzian form factors for the nonlocal interactions and
the wave function renormalization are considered. The strength of the vector coupling is used as a free
parameter which influences results at finite baryochemical potential. It is used to adjust the slope of the
pseudocritical temperature of the chiral phase transition at low baryochemical potential and the scaled
pressure shift accessible in lattice QCD simulations. Our study, albeit presently performed at the mean-
field level, supports the very existence of a critical point and favors its location within a region that is
accessible in experiments at the NICA accelerator complex.

The search for the location of the critical endpoint
(CEP) of first-order phase transitions in the QCD phase
diagram is one of the objectives for beam energy scan
(BES) programs in relativistic heavy-ion collision experi-
ments at RHIC and SPS as well as in future ones at NICA
and FAIR, which try to identify the parameters of its po-
sition (TCEP, µCEP). From a theoretical point of view, the
situation is very blurry since the predictions for this posi-
tion form merely a skymap in the T -µ plane [1].

Lattice QCD results at zero and small chemical po-
tential µ show that the chiral and deconfinement transi-
tions are crossover with a pseudocritical temperature of
Tc(0) = 154 ± 9MeV [2].

However, at finite density lattice QCD suffers from the
sign problem and only extrapolation or approximate tech-
niques are available that work at finite quark densities.
Therefore, nonperturbative methods and effective models
are inevitable tools in this region. Up to now, such effective
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low-energy QCD approaches are not yet sufficiently devel-
oped to provide a unified approach to quark-hadron mat-
ter where hadrons appear as strongly correlated (bound)
quark states that eventually dissolve into their quark (and
gluon) constituents in the transition from the hadronic
phase with confined quarks to the quark gluon plasma.
Since this transition shall be triggered by chiral symmetry
restoration (by lowering the thresholds for hadron disso-
ciation determined by in-medium quark masses), we ex-
pect that a first step towards a theoretical approach to
the QCD phase diagram is the determination of order pa-
rameters characterizing the QCD phases in a mean-field
approximation for chiral quark models of different degree
of sophistication. As a consequence there appeared a va-
riety of possibilities for the structure of the QCD phase
diagram and the position of the CEP in the literature. Let
us mention few of them:

– no CEP at all [3], with crossover transition in the whole
phase diagram;

– no CEP, but a Lifshitz point [4];
– one CEP, but with largely differing predictions of its

position [1];
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– second CEP [5–7];
– CEP and triple point, possibly coincident, consider-

ing another phase (i.e. color superconducting [8] or
quarkyonic [9] matter) at low temperatures and high
densities.

This situation is far from being satisfactory in view of
the upcoming experimental programmes. An exhaustive
analysis should be performed to predict a CEP region as
narrow as possible, considering only those effective mod-
els that best reproduce recent lattice QCD results, on the
one hand, and that obey constraints from heavy-ion col-
lision experiments and compact star observations where
available.

In the present contribution, we discuss the existence
and location of a CEP within the class of nonlocal chiral
quark models coupled to the Polyakov loop (PL) potential,
with vector channel interactions, on the self-consistent
mean-field level, contrasting our results with those of the
widely used local PNJL models that appear as limiting
case of the present approach.

The Lagrangian of these models is given by

L = q̄(i /D − m0)q + Lint + U(Φ), (1)

where q is the Nf = 2 fermion doublet q ≡ (u, d)T , and
m0 is the current quark mass (we consider isospin sym-
metry, that is m0 = mu = md). The covariant derivative
is defined as Dµ ≡ ∂µ − iAµ, where Aµ are color gauge
fields.

The nonlocal interaction channels are given in the
current-current coupling form by

Lint = −GS

2
[ja(x)ja(x) − jP (x)jP (x)]

−GV

2
jV (x) jV (x), (2)

where the nonlocal generalizations of the currents are

ja(x) =

∫

d4z g(z) q̄
(

x +
z

2

)

Γa q
(

x − z

2

)

,

jP (x) =

∫

d4z f(z) q̄
(

x +
z

2

) i
←→
/∂

2κp
q
(

x − z

2

)

,

jV (x) =

∫

d4z g(z) q̄
(

x +
z

2

)

γ0 q
(

x − z

2

)

, (3)

with Γa = (ΓS , ΓP ) = (11, iγ5τ ) for scalar and

pseudoscalar currents respectively, and u(x′)
←→
∂ v(x) =

u(x′)∂xv(x)−∂x′u(x′)v(x). The functions g(z) and f(z) in
eq. (3) are nonlocal covariant form factors characterizing
the corresponding interactions. The scalar-isoscalar com-
ponent of the ja(x) current will generate the momentum-
dependent quark mass in the quark propagator, while
the “momentum” current, jP (x), will be responsible for
a momentum-dependent wave function renormalization
(WFR) of this propagator. Note that the relative strength
between both interaction terms is controlled by the mass
parameter κp introduced in eq. (3). Finally, jV (x) repre-
sents the vector channel interaction current, whose cou-
pling constant GV is usually taken as a free parameter.

In what follows it is convenient to Fourier transform
into momentum space. Since we are interested in studying
the characteristics of the chiral phase transition we have
to extend the effective action to finite temperature T and
chemical potential µ. In the present work this is done by
using the Matsubara imaginary time formalism. Concern-
ing the gluon degrees of freedom we employ the PL exten-
sion of nonlocal chiral quark models according to previ-
ous works [10–14], i.e. assuming that the quarks move in
a background color gauge field φ = iA0 = ig δµ0 Gµ

aλa/2,
where Gµ

a are the SU(3) color gauge fields and λa are
the Gell-Mann matrices. Then the traced PL Φ, which is
taken as order parameter of confinement, is given by Φ =
1
3

Tr exp(iφ/T ). Then, working in the so-called Polyakov
gauge, in which the matrix φ is given by a diagonal rep-
resentation φ = φ3λ3 + φ8λ8. At vanishing chemical po-
tential, owing to the charge conjugation properties of the
QCD Lagrangian, the traced PL is expected to be a real
quantity. Since φ3 and φ8 have to be real-valued [15], this
condition implies φ8 = 0. In general, this need not be the
case at finite µ [16,17]. As, e.g., in refs. [11,15,18–20] we
will assume that the potential U is such that the condition
φ8 = 0 is well satisfied for the range of values of µ and T
investigated here. The mean-field–traced PL is then given
by

Φ =
1

3
[1 + 2 cos(φ3/T )] . (4)

In the present work we have chosen a µ-dependent log-
arithmic effective potential described in [21],

U(Φ, T, µ) = (a0T
4 + a1µ

4 + a2T
2µ2)Φ2

+ a3T
4
0 ln(1 − 6Φ2 + 8Φ3 − 3Φ4), (5)

where there parameters are a0 = −1.85, a1 = −1.44 ×
10−3, a2 = −0.08, a3 = −0.40. For the T0 parameter we
use the value corresponding to two flavors T0 = 208MeV,
as has been suggested in ref. [22] and already employed in
nonlocal PNJL models in [12,23].

Finally, in order to fully specify the nonlocal model
under consideration we set the model parameters as well
as the form factors g(q) and f(q) following refs. [11,24]
and [25], i.e. considering two different types of functional
dependencies for these form factors: exponential forms

(Set A)

{

g(p) = exp
(

−p2/Λ2
0

)

f(p) = 0,
(6)

(Set B)

{

g(p) = exp
(

−p2/Λ2
0

)

f(p) = exp
(

−p2/Λ2
1

)

,
(7)

and Lorentzians with WFR

(Set C)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g(p) =
1 + αz

1 + αz fz(p)

αm fm(p) − mαzfz(p)

αm − mαz

f(p) =
1 + αz

1 + αz fz(p)
fz(p),

(8)
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where

fm(p) =
[

1 +
(

p2/Λ2
0

)3/2
]

−1

,

fz(p) =
[

1 +
(

p2/Λ2
1

)]−5/2
, (9)

and αm = 309MeV, αz = −0.3. Further details on the
parameters can be found in ref. [25] and references quoted
therein.

Within this framework the thermodynamic potential
in the mean-field approximation (MFA) reads

ΩMFA = − 4T
∑

c

∑

n

∫

d3
p

(2π)3
ln

[

(ρ̃c
n,p)2 + M2(ρc

n,p)

Z2(ρc
n,p)

]

+
σ2

1 + κ2
p σ2

2

2GS
− ω2

2GV
+ U(Φ, T ), (10)

where M(p) and Z(p) are given by

M(p) = Z(p) [m + σ1 g(p)] ,

Z(p) = [1 − σ2 f(p)]
−1

. (11)

In addition, we have defined [26]

(

ρc
n,p

)2
= [(2n + 1)πT − iµ + φc]

2
+ p

2, (12)

where the quantities φc are given by the relation φc =
diag(φr, φg, φb). Namely, φc = c φ3 with c = 1,−1, 0 for r,
g, b, respectively.

In the case of (ρ̃c
n,p) we have used the same definition

as in eq.(12) but shifting the chemical potential according
to [25]

µ̃ = µ − ω g(p)Z(p). (13)

We also want to include in our analysis the results
arising from a local PNJL model based on [27] with two
flavors instead of three. Moreover, we consider that the
chemical potential is shifted by

µ̃ = µ − ω. (14)

ΩMFA turns out to be divergent and, thus, needs to be
regularized. For this purpose we use the same prescription
as in refs. [28,11]. The mean-field values σ1,2, ω and φ3 at
a given temperature or chemical potential, are obtained
from a set of four coupled “gap” equations which come
from the minimization of the regularized thermodynamic
potential, that is

∂ΩMFA
reg

∂σ1

=
∂ΩMFA

reg

∂σ2

=
∂ΩMFA

reg

∂ω
=

∂ΩMFA
reg

∂φ3

= 0. (15)

As a starting point, we consider the local NJL, using in
this case the parameters as in [20]. This resembles the local
limit of the present model and results can be compared,
e.g., with refs. [3] and [29]. As in our previous work [25],
the model inputs have been constrained with results from
lattice QCD studies. In particular, the form factors of the
nonlocal interaction can be chosen such as to reproduce

0
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Fig. 1. Normalized dynamical masses for the different form
factors under study and wave function renormalization for Set
B and Set C, fitted to lattice QCD data [30]. (Adapted from
ref. [24]).

the dynamical mass function M(p) and the WFR func-
tion Z(p) of the quark propagator in the vacuum [30].
In fig. 1 we show the shapes of normalized dynamical
masses and WFR for the models under discussion here,
i.e., the nonlocal models of Set A (rank-one), Set B and
Set C (rank-two) as well as the local limit. From this fig-
ure we see that Set C fits best the normalized dynamical
mass.

Now we are in the position to discuss the results for
the thermodynamics of the nonlocal PNJL models, start-
ing from the pressure P (µ, T ) = −ΩMFA

reg . In the upper
panel of fig. 2, we compare the pressure shift ∆P =
P (µ, T ) − P (0, T ) scaled with T 4 as a function of T/Tc

for all sets of parametrizations shown in fig. 1 to lattice
results from [31,32]. It is obvious that the best obtained fit
corresponds to Set C, supporting the robustness of rank-2
Lorentzian parametrization. In the lower panel of fig. 2, we
show a comparison between Set C and lattice results [31],
for GV = 0.0 (i.e. without vector interactions).

In fig. 3, we show a comparison of the pressure normal-
ized to the Stefan-Boltzmann limit (PSB) to lattice QCD
results from [33]. In this figure it can be seen that the pion
pressure dominates the pressure dependence for T < Tc

and quickly vanishes for T > Tc as a result of the Mott
dissociation of the pion.

From the above results, Set C appears to be the ap-
propriate choice to best fit lattice QCD results.

As mentioned above, the vector coupling GV is con-
sidered a free parameter. In fig. 4 we show again ∆P/T 4

vs. T/Tc as in fig. 2, but now considering different vec-
tor coupling parameters ηV = GV /GS just for Set C and
µ = Tc. The best agreement with lattice QCD data is ob-
tained for ηV = 0, i.e. for the deactivated vector channel.
The consequences will be discussed below.
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Fig. 2. The scaled pressure shift ∆P/T 4 as a function of the
scaled temperature T/Tc, for GV = 0.0. Upper panel: Compar-
ison of the lattice QCD data [31] with results of local and non-
local pNJL models. Lower panel: Comparison of Set C results
with lattice QCD [31] for two chemical potentials µ = 1.0 Tc

and µ = 0.8 Tc.

In MFA the vector coupling channel has a direct
influence on the µ dependence of the pseudocritical
temperature Tc(µ) in the QCD phase diagram. In lattice
QCD this dependence has been analyzed by Taylor expan-
sion techniques [34] as

Tc(µ)/Tc(0) = 1 − κ(µ/T )2 + O[(µ/T )4], (16)

with κ = 0.059(2)(4) being the curvature. We will refer to
this situation as LR I (lattice results I). In the same way,
the vector coupling channel can be tuned to reproduce the
curvature given by recent lattice QCD results based on
imaginary chemical potential technique which gives κ =
0.1341 ± 0.019 [35] and κ = 0.1215 ± 0.018 [36], we call it
LR II.
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Fig. 3. Comparison of the pressure in units of its Stefan-
Boltzmann value between Set C (with and without pion pres-
sure) and lattice QCD results [33] as a function of T/Tc.
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The curvatures can be determined from the phase di-
agrams. To do so, we plotted the pseudocritical tempera-
tures of the crossover transitions as a function of (µ/T )2

for different values of the vector coupling parameter ηV .
Then, the curvatures can be obtained from the slope of
the straight lines in the region of low (µ/T ) values.

An example of this is shown in fig. 5 for Set C (the cor-
responding plots for the other sets are qualitatively very
similar). The fit (16) of the lattice QCD results, LR I, is
also shown. The grey zone corresponds to the error in the
coefficient κ obtained in [34].

In fig. 6 we compare the lattice QCD results for both,
LR I and LR II, with the values for the coefficient κ ob-
tained within all PNJL models under study, considering
different values of ηV .

Note that for fitting the lattice QCD value in the lo-
cal model a larger vector coupling is required than in the
nonlocal ones, as is shown in ref. [25]. Also the absolute
value of the critical temperature Tc(0) in the local model
is significantly different (larger) than in the nonlocal one.
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Fig. 5. (Color online) Chiral crossover transitions at low values
of µ/T for different values of the vector coupling ratios ηV =
GV /GS for Set C. The dashed line corresponds to the lattice
QCD prediction of κ = 0.059(2)(4), LR I [34].
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(κ = 0.1215 ± 0.018 [36]).

The phase diagram with (pseudo)critical temperatures
Tc(µ) and critical points for Set C, i.e. the parametrization
that best fits lattice QCD results (see figs. 1 to 3) are
shown in fig. 7. The finite vector coupling parameter ηV

is chosen to reproduce the curvature value for LR I at low
µ. We found that switching off the vector interaction can
reproduce both, the curvature obtained in LR II and the
∆P/T 4 vs. T/Tc from fig. 21.

Now we also considered the pseudocritical deconfine-
ment lines for Φ = 0.4–0.6 in fig. 7. To determine them we
proceed as follows: we set the fixed value of Φ in eq. (4),

1 Note that in refs. [35,36] the values are quoted in the T -
µ2

B plane, while we are addressing the quark chemical potential
instead of the baryon one. So the difference in the κ coefficients
is a factor 9.
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Fig. 7. Phase diagrams with (pseudo)critical temperatures
Tc(µ) and critical endpoints for Set C parametrization of the
nonlocal rank-2 PNJL model for the two cases ηv = 0.0
and ηv = 0.555. Dashed (full) lines correspond to the chiral
crossover (first-order) transitions. The PL transition lines, de-
fined by the peak of the PL susceptibility, coincide with the
chiral crossover. The dash-dotted and dotted lines represent
the deconfinement transition range, i.e. Φ = 0.4 and Φ = 0.6,
respectively.

obtaining a relation between φ3 and T . Then we replace
this relation in the thermodynamic potential and minimize
it respect to the mean fields by solving eqs. (15). Thus,
for each value of Φ we have the corresponding values of φ3

and T that satisfy eq. (4) and the gaps equations for the
desired value of Φ. Those are the deconfinement lines at
fixed Φ shown in fig. 7. However, this tells us only that the
PL changes quickly with T , but not how much confining
the model is still at high T . Since obviously the change
occurs at absolute values of Φ ≤ 0.4, there are still strong
color correlations present in the system at high tempera-
tures.

In order to estimate the region in the phase diagram
where we expect color correlations as measured by the
value of the Polyakov loop to be strong, we choose to
show the lines of constant Φ. Interestingly, we find that
in the presence of a vector mean field the approach to the
free quasiparticle case (Φ = 1) is inhibited. It is clear that
this is the more so the larger the chemical potential is
since the vector mean field is proportional to the baryon
density which increases with µ.

On the other hand, the PL transition as defined by
the peak of the PL thermal susceptibility coincides nicely
with that of the crossover chiral transition.

The values for Tc(µ = 0) (in MeV) are 169.9, 171.3,
173.2 and 200.9, for Sets A, B, C and local, respectively.
These results indicate that the Tc(0) of nonlocal covariant
PNJL models is rather insensitive to the choice of the form
factors parametrizing the momentum dependence (run-
ning) of the dynamical mass function and the WFR func-
tion of the quark propagator as measured on the lattice
at zero temperature [30], whereas the position of the CEP
and critical chemical potential at T = 0 strongly depends
on it.
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In view of this finding, the absence of a CEP reported
in the local limit [3] as well as the result for Set A without
WFR seems to be less realistic (see ref. [25]).

On the other hand, more recent lattice results [35,36]
(LR II) suggest higher values for the κ coefficient, which
implies a lower or even vanishing vector coupling param-
eter ηV , giving better agreement for ∆P/T 4 vs. T/Tc.

Considering the different lattice constraints for κ and
that the best fitting rank-2 nonlocal PNJL model is the
one with Lorentzian form factors (Set C parametrization),
the region in the QCD phase diagram where the CEP
should be located according to our study, would be de-
termined as (TCEP, µCEP) = (128.6MeV, 223.3MeV) for
ηV = 0.0 and (TCEP, µCEP) = (69.9MeV, 319.1MeV) for
ηV = 0.555. This region is highlighted in fig. 7.

With this result of the present study we arrive at our
conclusion for the NICA experiments which are devoted
to the study of the quark-hadron mixed phase that shall
be located at T < TCEP and µ > µCEP. We shall estimate
whether the planned energy ranges of the BM@N exper-
iment (Elab = 2–4A GeV) and of the MPD experiment
(
√

sNN = 4–11GeV) are suitable for accessing the region
of the mixed phase that follows from our study. To this
end we use a parametrization for the chemical freeze-out
temperature in the QCD phase diagram by Andronic et

al. [37],

Tfreeze = Tlim

(

1 − 1

0.7 + [exp(
√

sNN (GeV)) − 2.9]/1.5

)

,

(17)
as obtained from statistical model analyses of hadron pro-
duction in heavy-ion collision experiments, with Tlim =
161 ± 4MeV. According to this parametrization and to
the LR-I motivated nonlocal PNJL model with vanishing
vector coupling, one should expect signals of a first-order
phase transition in collisions with

√
sNN � 6GeV, right in

the middle of the MPD energy scan. For the LR-II moti-
vated parametrization with ηV = 0.555 the CEP is at such
a low temperature that only the BM@N experiment has
a chance to access the mixed phase, at laboratory ener-
gies Elab � 3A GeV, within the range of this fixed target
experiment but too low for the collider experiment MPD.

The main conclusion of this study is that for the
search of CEP signatures and the investigation of prop-
erties of the quark-hadron mixed phase in BES pro-
grammes the energy range of the NICA and FAIR fa-
cilities shall be particularly promising. We find a certain
preference for a CEP position at a critical temperature
TCEP ∼ 130MeV, expected to be crossed in collisions with√

sNN ∼ 6GeV, corresponding to Elab ∼ 18A GeV. This
energy could not be reached from above by the present
RHIC BES programme of the STAR experiment (lower
limit

√
sNN = 7.7GeV) and also not in the NA49 exper-

iment at CERN SPS (lower limit Elab = 20A GeV). Just
the ongoing NA61-SHINE experiment has a lower limit of
Elab = 13A GeV in their energy scan that would allow to
cross this suspected critical point (unless it is located at
a slightly lower temperature). The old AGS experiment
at BNL did not quite reach this energy (maximum energy
Elab = 10.74A GeV) and were also not designed for a CEP

search, while the energies at the GSI SIS are probably too
low to reach the phase transition border (maximum en-
ergy Elab = 2A GeV). The theoretical investigation of the
baryon stopping as a probe of the onset of deconfinement
in heavy-ion collisions [38] has revealed a characteristic
“wiggle” structure in the curvature of the proton rapid-
ity distribution at

√
sNN ∼ 6GeV, which remains robust

also when applying acceptance cuts of the MPD experi-
ment [39] at NICA. The MPD experiment at NICA will
be the first dedicated heavy-ion collision experiment of
the third generation to fully cover the suspected location
of the CEP and thus to enter the mixed phase region via a
first-order phase transition. Contrary to studies with the
local NJL model which first in [40] and more recently in [3]
have shown that a CEP may be absent at all in the phase
diagram for finite coupling in the repulsive vector channel,
the present work with nonlocal PNJL models constrained
by lattice QCD propagator data has shown that the pres-
ence of a CEP in the QCD phase diagram is rather robust
against even stronger vector channel interactions.

Finally, we would like to mention currently ongoing
developments of our approach to the QCD phase diagram
and the EoS of matter under extreme conditions:

– Extension of the model to 2 + 1 flavours in order
to properly compare with modern lattice QCD re-
sults [41,42].

– Investigation of the robustness of the results of the
nonlocal PNJL models when modifying the choice of
the Polyakov-loop potential taking into account recent
developments [43–45].

– Addition of quark pair interaction channels and the
possibility of color superconducting quark matter
phases [20,46]

– Going beyond the mean-field approximation within the
Beth-Uhlenbeck approach [47], where hadronic correla-
tions of quarks are included with their spectral weight
showing both bound and scattering parts, with a char-
acteristic medium dependence that exhibits the Mott
transition (dissociation of hadronic bound states into
the scattering continuum at finite temperatures and
chemical potentials).

A key quantity for such studies is the hadronic phase
shifts. First results using a generic ansatz [48] for join-
ing the hadron resonance gas and PNJL approaches are
promising [49]. The inclusion of baryonic correlations is
possible and has been started at finite temperatures [50]
and will be extended to the full phase diagram. As the
behavior of the hadronic spectral functions and in par-
ticular the location of the Mott transitions in the QCD
phase diagram is essentially determined by the dynamical
quark mass functions, a key issue for future research is to
investigate the back-reaction of hadronic correlations on
these order parameters. We expect that, by following the
Beth-Uhlenbeck approach, one will have a methodic basis
for answering the question about the robustness of predic-
tions for the structure of the QCD phase diagram at the
mean-field level discussed here.
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