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The mucosal tissues of the gastrointestinal tract are the main portal entry of pathogens 
such as rotavirus (RV), which is a leading cause of death due to diarrhea among young 
children across the globe and a major cause of severe acute intestinal infection in 
livestock animals. The interactions between intestinal epithelial cells (IECs) and immune 
cells with RVs have been studied for several years, and now, it is known that the innate 
immune responses triggered by this virus can have both beneficial and detrimental effects 
for the host. It was demonstrated that natural RV infection in infants and experimental 
challenges in mice result in the intestinal activation of pattern recognition receptors 
(PRRs) such as toll-like receptor 3 (TLR3) and striking secretion of proinflammatory 
mediators that can lead to increased local tissue damage and immunopathology. 
Therefore, modulating desregulated intestinal immune responses triggered by PRRs 
activation are a significant promise for reducing the burden of RV diseases. The ability of 
immunoregulatory probiotic microorganisms (immunobiotics) to protect against intestinal 
infections, such as those caused by RVs, is among the oldest effects studied for these 
important group of beneficial microbes. In this review, we provide an update of the 
current status on the modulation of intestinal antiviral innate immunity by immunobiotics 
and their beneficial impact on RV infection. In addition, we describe the research of our 
group that demonstrated the capacity of immunobiotic strains to beneficially modulated 
TLR3-triggered immune response in IECs, reduce the disruption of intestinal homeostasis 
caused by intraepithelial lymphocytes, and improve the resistance to RV infections.
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iNTRODUCTiON

One of the leading causes of children mortality is preventable infectious diseases (1, 2). Rotavirus 
(RVs), calicivirus, astrovirus, and adenovirus account to the viral etiologic agents of gastroenteritis 
in humans (3, 4). RV, a naked double-strand RNA (dsRNA) virus, is the most common cause of 
severe dehydrating diarrhea in children (5, 6). The main symptoms of RVs gastroenteritis are nau-
sea, low-grade fever, vomit, and acute watery diarrhea. Even though two oral vaccines containing 
attenuated live viruses are being used globally, Rotarix (GlaxoSmithKline) and RotaTeq (Merck), 
the epidemic in the developing world is far from being controlled (6, 7). Vaccine effectiveness 
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FigURe 1 | innate immune response against rotavirus in intestinal epithelial cells (ieCs). Rotavirus double-strand genomic RNA activates toll-like receptor 
3 (TLR3), retinoic acid-inducible gene-I (RIG-I), and melanoma differentiation-associated gene-5 (MDA-5), which are pattern recognition receptors (PRRs) expressed 
in IECs. Cellular signaling cascades are activated and converge at the level of interferon (IFN) regulatory factor-3 (IRF3) that upregulate the expression of type I 
(IFN-α, IFN-β) and type III (IFNλ1, IFNλ2/3) IFN, which in turn induces the synthesis of IFN-stimulated genes with antiviral activities (MxA, Mx1, RNase L, OAS, PKR). 
Antiviral PRRs also activate nuclear factor κB (NF-κB) pathway and induce the secretion of proinflammatory cytokines and chemokines (IL-6, IL-8, MCP-1, CXCL10). 
Those effects could be imitated in vitro and in vivo by administration of the dsRNA synthetic analog poly(I:C).
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is reduced in developing areas, and some possible reasons are 
children infected at an early age, high viral challenge loads, and 
the lack of transferred maternal antibodies (8, 9).

Some lactic acid bacteria (LAB) strains are able to impact 
on human and animal health by modulating the mucosal and 
systemic immune systems. Those immunoregulatory probiotic 
LAB, known as immunobiotics, provide protection against viral 
infections by modulating innate and adaptive antiviral immu-
nity. Thus, several reports have shown that immunobiotic LAB 
shorten the duration of diarrhea, reduce the number of episodes, 
diminish RVs shedding, normalize gut permeability, and increase 
the production of RVs-specific antibodies (10–12).

The purpose of this review is to provide an update of the 
current status on the modulation of intestinal antiviral innate 
immunity by immunobiotics, and their beneficial impact on RVs 
infection. We also highlight some results of our group, which 
demonstrate the capacity of immunobiotic strains to beneficially 
modulate toll-like receptor (TLR)-3-triggered immune response 

in intestinal epithelial cells (IECs), reduce the disruption of intes-
tinal homeostasis caused by intraepithelial lymphocytes (IELs), 
and improve the resistance to RVs infection.

iNTeSTiNAL ANTiviRAL iNNATe iMMUNe 
ReSPONSe AND ROTAviRUS

Upon RVs internalization, the capsid uncoats loosing VP4 and 
VP7, the outer surface proteins, and yielding a transcriptionally 
active double-layered particle. The eleven segments of dsRNA 
viral genome are transcribed directing the synthesis of structural 
and non-structural proteins and serving as templates for the 
complementary strand of genomic RNA (13). The IEC senses 
viral dsRNA through pattern recognition receptors (PRRs), such 
as TLR3, retinoic acid-inducible gene-I (RIG-I), and melanoma 
differentiation-associated gene-5 (MDA-5), and cellular signaling 
cascades are activated to react to viral infection (14–16) (Figure 1). 
One of the major innate responses against dsRNA viruses relies 
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FigURe 2 | innate immune response against rotavirus in intestinal 
mucosa. Rotavirus double-strand genomic RNA activate toll-like receptor 3 
(TLR3), retinoic acid-inducible gene-I (RIG-I), and melanoma differentiation-
associated gene-5 (MDA-5), which are pattern recognition receptors (PRRs) 
expressed in intestinal epithelial cells (IECs) and dendritic cells (DCs). 
Activation of antiviral PRRs in the intestinal mucosa increases the production 
of type I IFN (IFN-α, IFN-β), IFN-γ, and proinflammatory cytokines and 
chemokines (TNF-α, IL-6, IL-8, IL-12, MCP-1), which improves the antiviral 
state in IECs, induces the recruitment and activation of immune cells and the 
maturation of DCs. Those effects could be imitated in vitro and in vivo by 
administration of the dsRNA synthetic analog poly(I:C).

FigURe 3 | inflammatory damage of the intestinal mucosa induced by 
rotavirus in a toll-like receptor 3-deppendent manner. Both purified 
rotavirus double-strand genomic RNA and poly(I:C) induce severe mucosal 
intestinal damage via TLR3 activation and intestinal epithelial cells (IECs) and 
intraepithelial lymphocytes (IELs) interaction. Activation of TLR3 in IECs 
increases the expression of proinflammatory cytokines and chemokines 
(MCP-1, IL-8, IL-15) and retinoic acid early inducible-1 (RAE1). IL-15 
produced by IECs induce the recruitment of CD3+NK1.1+CD8αα+ IELs, which 
mediates epithelial destruction and mucosal injury by the NKG2D receptor 
expressed on these cells that is able to recognize RAE1. This intestinal 
TLR3-IECs-IELs interaction induces villous atrophy, mucosal erosion, and gut 
wall attenuation.
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on the activation of those PRRs, which leads to the production 
of cytokines and chemokines by IECs and immune cells. Thus, 
RVs dsRNA triggers the production of IL-8, IP-10, IL-6, TNF-α, 
and IL-15 in IECs via the TLR3-, RIG-I-, and MDA5-activated 
pathways inducing recruitment and activation of macrophages 
and NK cells and stimulating adaptive B- and T-cell immune 
responses. As a result of PRRs activation, interferons (IFNs) and 
IFN-regulated gene products are also produced and they play a 
key role in establishing an antiviral state for virus clearance and 
restriction of spread (Figure  1). Type I and III IFNs limit RV 
infection in vitro, and their levels are augmented in RVs-infected 
children and animals (17–19). Both families of IFN are immedi-
ately produced upon RV infection, elicit responses on different 
types of receptors, and temporally and spatially regulated in the 
gastrointestinal tract (20). Another evidence suggesting that IFNs 
are crucial to limit RV infection relies on the fact that this virus 
has evolved mechanisms to manipulate IFNs signaling such as 
the type I IFNs damping NSP1 protein (21). While TLR3 mainly 
recognizes viral components such as viral nucleic acid in endoso-
mal compartments, RIG-I and MDA-5 recognize cytoplasmatic 
dsRNA. These pathways converge at the level of IFN regula-
tory factor-3 (IRF3) (18, 22, 23). Upon IRF3 phosphorylation, 
antiviral responses initiate the activation of type I IFN, which in 
turn induces the synthesis of interferon-stimulated genes (ISGs), 
secretion of proinflammatory cytokines, and activation and 
maturation of antigen-presenting cells (APCs) (Figure 2).

Poly(I:C), a synthetic analog of dsRNA, when administered 
intraperitoneally to mice mimics the local intestinal immune 
response elicited by an enteric viral infection (24, 25). Both 
purified RVs dsRNA and poly(I:C) are able to induce severe 
mucosal damage in the gut via TLR3 activation including vil-
lous atrophy, mucosal erosion, and gut wall attenuation (24). 
IELs, which are mostly T cells distributed as single cells within 
the epithelial cell layer, play a critical role in disrupting epithe-
lial homeostasis caused by abnormal TLR3 signaling (Figure 3) 
(24). Due to their key location at the interface between the inner 
intestinal tissue and the lumen, these specialized immune cells 
are important as a first line of defense against microbes and in 
maintaining the epithelial barrier homeostasis. The majority of 
IELs are CD8+ being simply classified as CD8αα+ or CD8αβ+. 
The CD8αβ+ IELs bear the hallmarks of adaptive immune cells, 
whereas the CD8αα+ IELs are considered innate immune cells 
(26). When TLR3 is abnormally activated by poly(I:C) and RVs, 
genomic dsRNA, IL-15, and CD3+NK1.1+CD8αα+ IELs are 
involved in the disruption of epithelial homeostasis. In addi-
tion, it was demonstrated that TLR3 activation in IECs induces 
the expression of retinoic acid early inducible-1 (RAE1), 
which mediates epithelial destruction and mucosal injury by 
interacting with the NKG2D receptor expressed on IELs (27) 
(Figure 3).

Thus, increasing our understanding of how PRRs such as 
TLR3 are activated and regulated in immune cells and IECs 
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may help designing effective therapies for the prevention and/or  
treatment of viral diseases.

BeNeFiCiAL eFFeCTS OF 
iMMUNOBiOTiCS iN ROTAviRUS 
iNFeCTiON

Several studies have demonstrated that immunobiotics are able 
to improve the outcome of RV infection in human and livestock 
animals.

effects of immunobiotics in Humans
Lactobacillus rhamnosus GG is probably the most studied probi-
otic bacteria in the context of intestinal viral infections. Isolauri 
et  al. (28) first described for more than 20  years, a protective 
effect of L. rhamnosus GG strain in RVs gastroenteritis in infants 
and children. In this study, the patients who received either a 
L. rhamnosus GG-fermented milk product or a L. rhamnosus 
GG freeze-dried powder after oral rehydration presented a 
significantly shorter duration of diarrhea when compared to 
the placebo group. Later, Majamaa et al. (29) conducted a study, 
in which 6- to 35-month-old children with RVs gastroenteritis 
received either L. rhamnosus GG, Lactobacillus acidophilus or 
a combination of Streptococcus thermophilus with L. delbrückii 
subsp. bulgaricus twice daily for 5  days. Only children who 
received L. rhamnosus GG had shorter diarrhea duration. The 
protective effect was related to augmented intestinal and serum 
IgA concentration, and a higher number of specific antibody-
secreting cells to RVs. Additional studies showed that the con-
sumption of L. rhamnosus GG is able to shorten the diarrheal 
phase in children suffering from RVs infection, an effect that 
was associated with increased concentrations of IgA antibodies 
as well (28–33). Furthermore, meta-analysis showed that the 
administration of L. rhamnosus GG to hospitalized children 
reduced the overall incidence of health care-associated diarrhea, 
including symptomatic RVs gastroenteritis (34). In spite of this 
evidence, it is important to notice that the shortening of diarrhea 
already at day 3 after probiotic treatment strongly suggests that 
the main therapeutic effect involves innate immune responses 
rather than the modulation of adaptive immunity (35).

Another example of probiotic treatment for alleviating RVs 
gastroenteritis was the use of Lactobacillus reuteri, which has 
been daily administered to hospitalized children with acute diar-
rhea for the length of hospitalization (up to 5  days). L. reuteri 
shortened both the duration of RVs diarrhea and the disease 
severity, when compared to the placebo group (36). L. sporogenes 
daily administered to newborns during 1  year, prevented the 
incidence and also diminished the duration of acute RVs diar-
rhea (37). Fang et al. (38) demonstrated that a minimal effective 
dose of L. rhamnosus significantly reduced fecal shedding RVs 
concentration in pediatric patients. Although the administra-
tion of lyophilized Lactobacillus paracasei strain ST11 daily for 
5  days had a clinically significant benefit in the management 
of non-RVs-induced diarrhea, ST11 treatment against severe 
RVs diarrhea was ineffective (39). Children with RV infection 
who received milk-based formula supplemented with either  

B. animalis Bb12 alone or combined with S. thermophilus had 
fewer RVs infections (40).

In Argentina, mucosal infections such as bronchitis and 
diarrhea are the most common infectious diseases in children 
(41–43). In a randomized controlled trial conducted by Villena 
et  al. (44), L. rhamnosus CRL1505 (administered in a yogurt 
formulation) improved mucosal immunity and reduced the 
incidence and severity of intestinal and respiratory infection in 
children. Hence, the incidence of infectious events was reduced 
from 66% in the placebo group to 34% in the group that received 
the probiotic yogurt. Furthermore, there was also a significant 
reduction in the occurrence of indicators of disease severity such 
as fever and the need for antibiotic treatment in children receiv-
ing the probiotic yogurt (44). Therefore, the results of this trial 
suggested that consumption of yogurt containing L. rhamnosus 
CRL1505 was helpful to reduce the burden of common child-
hood morbidities, especially those associated to viral infections 
including RVs (44).

effects of immunobiotics  
in Livestock Animals
Apart from the beneficial effects of immunobiotics on humans, 
some studies have evaluated their antiviral and anti-inflammatory 
activities in animals. Zhang et  al. (45) reported that probiotic 
administration to gnotobiotic pigs challenged with RVs did not 
yielded differences in virus titers with respect to the placebo 
group. Nonetheless, LAB administration downregulated the 
recruitment of viral-activated monocytes/macrophages into  
the intestinal tract thereby limiting the inflammation induced by 
the virus (45).

In another study, it was shown that systemic monocyte/mac-
rophage and APCs responses were modulated by immunobiotics 
in the context of a RV infection (45). Probiotic LAB induced 
strong TLR2-expressing APCs responses in blood and spleen, 
RVs induced a TLR3 response in spleen, and TLR9 responses 
were induced by RVs (as measured in immune cells isolated 
from spleen) and LAB (as determined in blood circulating 
immune cells). Immunobiotics and RVs had an additive effect 
on TLR2- and TLR9-expressing APCs responses, consistent with 
the adjuvant effect of LAB. Immunobiotics augmented IFN-γ and 
IL-4 levels in serum, but suppressed TLR3- and TLR9-expressing 
APCs responses in spleen and the serum IFN-α response induced 
by virulent RVs (46).

During RVs infections in weaned pigs, there is evidence of 
disruption of the barrier function as evidenced by the decreased 
villus height and crypt depth, lower levels of IgA, IL-4, and mucin 
1 as well a reduced transcription of ZO-1, occludin, and Bcl-2 
in jejunal mucosa (47). Some of these effects have been par-
tially associated with alterations of transforming growth factor 
(TGF)-β production (48). Azevedo et al. (48) demonstrated that 
immunobiotic LAB further enhanced the Th1 and Th2 cytokine 
responses to RV infection as indicated by significantly higher 
concentrations of IL-12, IFN-γ, IL-4, and IL-10 in RVs-infected 
gnotobiotic pigs. LAB also helped to maintain immunological 
homeostasis during RV infection by regulating TGF-β produc-
tion. It was also shown that treatment of pigs with L. rhamnosus 
GG modulated TGF-β and promoted the enhancement of 
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intestinal epithelial tight junctions, which may contribute to the 
preservation and restoration of the gut homeostasis after RV 
infection (11). Further evidence was reported by Maragkoudakis 
et al. (12) demonstrating that Lactobacillus casei Shirota and L. 
rhamnosus GG protected porcine and goat epithelial cells from 
RVs and other transmissible gastroenteritis viruses.

CeLLULAR AND MOLeCULAR 
MeCHANiSMS OF iMMUNOBiOTiCS 
ACTiONS

The interactions of IECs with luminal antigens and with immune 
cells play a central role in determining the type of immune 
response triggered by intestinal microorganisms (5, 6). A critical 
and virtually universal early innate response of host cells to viral 
infection is the secretion of factors belonging to the IFN family. 
The secretion of IFN results in the expression of several ISGs 
products with antiviral activities.

We showed in different studies that the originally established 
porcine intestinal epithelial cell line (PIE cells) is a useful tool for 
studying IFN response triggered by TLR3, RIG-I, and/or MDA-5 
activation. These cells are permissive to porcine RVs and also 
respond to dsRNA and its synthetic analog poly(I:C) (49, 50). 
Furthermore, co-cultures of PIE cells with immune cells isolated 
from porcine Peyer’s patches (PPs) provide an in vitro system to 
study the transduction of the signal from its detection by IECs to 
the effect on the under laying immune cells.

The response of PIE cells to poly(I:C) challenge was evaluated, 
and it was found that MCP-1, IL-8, TNF-α, IL-6, and both IFN-α 
and IFN-β were upregulated in PIE cells after stimulation (49). We 
also showed that after stimulation of co-cultures with poly(I:C), 
there was an upregulation of IFN-α, IFN-β, IFN-γ, IL-2, and 
IL-12p40 in immune cells (49). TLR3 was the receptor involved 
in the recognition of the luminal stimulus and the responsible 
to trigger the expression and release of cytokines, which in turn 
activated the underlying APCs and effector lymphocytes.

Rotavirus infection stimulates IFN-β and early antiviral gene 
expression by a signaling pathway that requires MAVS, an adaptor 
protein that is recruited to signaling complexes following activa-
tion of RIG-I or MDA-5 (51, 52). In addition, both RIG-I and 
MDA-5 are involved in recognizing RVs infection, as proven by 
the reduction of IFN-β induction when these factors are lost (51, 
52). Taking into account those facts, we evaluated the suitability 
of PIE cells and co-cultures as models for studying this signaling 
pathway after RVs infection. Our results showed that PIE cells 
have functional TLR3, RIG-I, and MDA-5 receptors, which signal 
via IRF3 and NF-κB, inducing IFN-β and the upregulation of the 
ISGs MxA and RNase L (50), which are important antiviral effec-
tors of IFN pathway.

We used PIE cells for the screening of immunobiotic LAB 
strains taking into consideration their ability to enhance IFN-β 
production upon poly(I:C) stimulation (49, 53). Thus, L. casei 
MEP221106 was selected because of its potential to impact on 
viral intestinal infections. L. casei MEP221106 had the highest 
capacity to improve IFN-β production in poly(I:C)-challenged 
PIE cells. Moreover, in vitro co-culture experiments showed that 

L. casei MEP221106 was able to improve not only the production 
of IFN-β but also the levels of other cytokines including IFN-α, 
TNF-α, MPC-1, and IL-6. In co-cultures of PIE cells with immune 
cells, we demonstrated that L. casei MEP221106 improved the 
production of inflammatory and antiviral cytokines by PPs cells 
when compared with control cells (49).

The PIE system was also used to screen bifidobacteria strains 
with anti-RVs effect (50). Bifidobacterium infantis MCC12 and 
Bifidobacterium breve MCC1274 were selected in the screen 
because they significantly upregulated IFN-β in response to 
poly(I:C) challenge. In addition, both MCC12 and MCC1274 
strains significantly increased PIE cells resistance to RV infection 
(Figure 4), while other strains with moderate or no effect in IFN-
β production did not have any influence on RVs replication (50). 
As a result of the enhanced IFN-β levels, there was a concomitant 
upregulation of the ISGs MxA and RNase L. These effectors of 
antiviral immunity have different mechanisms of action: RNase 
L degrades dsRNA and the resulting RNA fragments activate 
RLRs to amplify IFN production and induce apoptosis on virus 
infected cells (54), while MxA hijacks newly synthesized viral 
proteins into perinuclear complexes. Then, the upregulation of 
MxA, RNase L, and probably other ISGs induced by MCC12 and 
MCC1274 strains through IFN-β would be related to the lower 
RVs replication found in bifidobacteria-treated PIE cells. This 
is supported by the fact that IFN-β is a key factor for improv-
ing defenses against RVs since viral replication is restricted 
in permissive cells when they are pretreated with IFN-β (55). 
Accordingly, IFN-β treatment of newborn calves and piglets 
prior to RV infection reduces virus replication and disease 
severity (56).

Several cytokines are induced via NF-κB signaling as a result 
of RVs infection, including IL-8, RANTES, GM-CSF, GRO-α, 
MIP-1β, and IP-10 (57), as observed in both cell lines and histo-
logical intestinal samples. Secreted cytokines initiate an impor-
tant primary line of host defense, but if this response lasts too 
long or is dysregulated, it may lead to tissue damage and epithelial 
barrier dysfunction. In this regard, we have reported that efficient 
regulation of inflammatory response induced by immunobiotic 
bacteria is essential to achieve full protection against pathogens 
(58, 59). In line with this, we also showed that bifidobacteria 
strains MCC12 and MCC1274 differentially modulated the 
production of proinflammatory mediators in RVs-infected PIE 
cells (Figure 4) (50).

Toll-like receptor negative regulators play key roles in main-
taining intestinal hemostasis by regulating TLR signaling. The 
zinc-finger protein A20, due to its deubiquitinase and ubiquit-
inase E3 ligase activities, is capable to terminate TLR signaling 
that results in inhibition of NF-κB activation and reduction 
of inflammatory induced cytotoxicity (60). Saitoh et  al. (61) 
reported that IRF3 activation is suppressed by A20. The A20 
protein is able to induce the suppression of the IFN-mediated 
immune response and IFN-promoter-dependent transcrip-
tion by physically interacting with IKK-i/IKKϵ and inhibiting 
dimerization of IRF3 following engagement of TLR3 by dsRNA. 
Moreover, A20 knock down results in enhanced IRF3-dependent 
transcription triggered by the stimulation of TLR3 or virus infec-
tion. Human monocyte-derived dendritic cells (DCs) stimulated 
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FigURe 4 | Beneficial effects of immunobiotic bifidobacteria on the innate immune response against rotavirus in intestinal epithelial cells (ieCs). 
Rotavirus double-strand genomic RNA activates toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I (RIG-I), and melanoma differentiation-associated gene-5 
(MDA-5), which are pattern recognition receptors (PRRs) expressed in IECs. Cellular signaling cascades mediated by interferon (IFN) regulatory factor-3 (IRF3) 
upregulate the expression of type I (IFN-α, IFN-β), and type III (IFNλ1, IFNλ2/3) IFN, which in turn induces the synthesis of IFN-stimulated genes with antiviral 
activities (MxA, Mx1, RNase L, OAS, PKR). Antiviral PRRs also activate nuclear factor κB (NF-κB) pathway and induce the secretion of proinflammatory cytokines 
and chemokines (IL-6, MCP-1, CXCL10). Preventive treatment of IECs with Bifidobacterium infantis MCC12 or Bifidobacterium breve MCC1274 reduce the 
expression of A20, increase the activation of IRF3, improve the production of the antiviral factors IFN-α, IFN-β, MxA, and RNase L, and differentially regulate the 
expression of IL-6, MCP-1, and CXCL10.
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with poly(I:C) upregulate A20. When A20 is downregulated in 
DCs, they showed higher activation of NF-κB and AP-1, which 
resulted in increased and sustained production of IL-6, IL-10, and 
IL-12p70. Furthermore, DCs enhanced their T cell stimulatory 
capacity (62). Negative regulators involved in TLR signaling can 
be modulated by immunobiotic strains in human intestinal cell 
lines (63). In this regard, we also reported that both B. infantis 
MCC12 and B. breve MCC1274 significantly reduced the expres-
sion of A20 in RVs-infected PIE cells (Figure 4) (50), which is in 
line with the capacity of both strains to improve IRF3 activation 
and IFN-β production. In line with our findings, MacPherson 
et al. (64) also studied the effect of probiotics in the modulation 
of poly(I:C) induced inflammatory response in HT-29 cells. 
Stimulating HT29 cells with poly(I:C) alone increased the 

expression of A20, but the co-stimulation with poly(I:C) and 
probiotics significantly reduced A20 expression levels.

We also used these porcine in vitro systems to attain deeper 
knowledge into the mechanisms involved in the immunomodula-
tory effect of L. rhamnosus CRL1505 and concentrated our atten-
tion in the crosstalk between the immunobiotic strain and porcine 
IECs and APCs, in order to explain its capacity to reduce viral 
diarrhea episodes in children (44). Moreover, we performed com-
parative studies with another immunobiotic strain, Lactobacillus 
plantarum CRL1506, that is able stimulate intestinal immunity in 
animal models (65). Studies comparing the immunobiotic strains 
L. rhamnosus CRL1505 and L. plantarum CRL1506 in co-cultures 
of PIE cells and APCs, stimulated with poly(I:C), showed that 
both strains improved the production of type I IFNs in response 
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FigURe 5 | Beneficial effects of immunobiotic lactobacilli on the innate immune response against rotavirus in intestinal mucosa. Rotavirus double-
strand genomic RNA or poly(I:C) activate toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I (RIG-I), and melanoma differentiation-associated gene-5 (MDA-5), 
which are pattern recognition receptors (PRRs) expressed in intestinal epithelial cells (IECs) and dendritic cells (DCs). Activation of antiviral PRRs increases the 
production of IFN-α, IFN-β, IFN-γ, and proinflammatory cytokines and chemokines (TNF-α, IL-6, IL-8, IL-12, MCP-1), which improves the antiviral state in IECs, 
induces the recruitment and activation of immune cells and the maturation of DCs. In addition, both purified rotavirus genomic dsRNA and poly(I:C) activate TLR3 in 
IECs increasing the expression of IL-15 and retinoic acid early inducible-1 (RAE1). IL-15 produced by IECs induces the recruitment of CD3+NK1.1+CD8αα+ 
intraepithelial lymphocytes (IELs), which mediates epithelial destruction and mucosal injury by the NKG2D receptor expressed on these cells that is able to recognize 
RAE1. Preventive treatments with Lactobacillus rhamnosus CRL1505 or Lactobacillus plantarum CRL1506 improve the production of type I IFN and IFN-γ in the 
intestinal mucosa enhancing the antiviral state and differentially regulate the expression of inflammatory cytokines and chemokines reducing the intestinal damage, 
especially associated with the TLR3–IECs–IELs interaction.
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to poly(I:C) challenge (66). In addition, CRL1505 and CRL1506 
strains modulated the expression of proinflammatory and regula-
tory cytokines and influenced activation and maturation of APCs 
(Figure 5). However, L. rhamnosus CRL1505 had a stronger effect 
both when applied alone or combined with a posterior poly(I:C) 
challenge. The improved Th1 response induced by immunobi-
otic lactobacilli was evidenced by the augmented expression of 
MHC-II, IL-1β, IL-6, and IFN-γ in DCs (66, 67). Those studies 
gave scientific basis for explaining the protection against intestinal 
viral infections achieved by L. rhamnosus CRL1505 in children.

The receptors, which are activated by the immuno-
biotics strains with antiviral capabilities MEP221106, MCC12, 
MCC1274, CRL1505, and CRL1506 strains in PIE cells to reduce 
A20, improve IRF-3 activation and increase IFN-β production 
remains to be uncovered. Bifidobacteria strains with a high 
capacity to stimulate TLR2 such as B. longum BB536 and B. breve 
M-16V were able to increase the expression of A20 in PIE cells 
and reduce TLR4-mediated inflammatory response (68, 69). On 
the contrary, strains with low capacity of stimulating TLR2 did 
not modify the expression of the ubiquitin-editing enzyme A20 
in PIE cells challenged with TLR4 agonists. In our experiments, 
we were unable to block the increase of IFN-β induced by the 

lactobacilli and bifidobacteria by using anti-TLR2 or anti-TLR9 
antibodies, suggesting that other receptor(s) are involved in the 
immunobiotic activity (66). Further studies are needed in order 
to find the PRRs involved in the recognition of lactobacilli and 
bifidobacteria leading to A20 and IFN-β modulation in PIE cells.

Recently, we confirmed in vivo the differential antiviral immu-
nomodulatory activities triggered by L. rhamnosus CRL1505 and 
L. plantarum CRL1506 (65). Both strains increased the produc-
tion of IFNs, the CRL1505 treatment being the most effective 
for increasing the levels of IFN-γ. Then, our results suggest 
that these two lactobacilli strains have potential to be used to 
improve the outcome of viral gastrointestinal disease. This is also 
supported by the human clinical trial demonstrating the capac-
ity of L. rhamnosus CRL1505 to improve the infectious disease 
rates in children (70). Recently, Zhang et al. (71) proposed the 
activation of innate immunity with flagellin as a preventive and 
therapeutic strategy against RVs infection. They demonstrated 
that intraperitoneal flagellin injection reduced severity and 
shedding of RVs RNA in acute and chronic infected mice via 
TLR5/NLRC4 activation, which resulted in secretion of IL-22 
and IL-18 by different effector cells. Although the mechanism of 
action of flagellin administration is substantially different to the 
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mechanisms elicited by immunobiotics, both approaches rely on 
the principle of combating viral infection by enhancing innate 
immune defenses.

Lactobacillus rhamnosus CRL1505 and L. plantarum CRL1506 
also reduced TLR3-induced small intestinal injury by regula-
tion of proinflammatory cytokines production and IECs–IELs 
interaction (65) (Figure  5). IECs and IELs are the first line of 
defense against pathogens including viruses, and their interac-
tion is essential for maintaining an appropriate immunological 
homeostasis. IECs produce a variety of cytokines and chemokines, 
including IL-6, IL-7, IL-8, IL-15, TNF-α, TGF-β, and GM-CSF. 
IL-15 functions as a mediator of TLR3-induced small intestinal 
injury (24). Abnormal TLR3 signaling results in elevated levels 
of IL-15, which regulates IECs apoptosis by activating perforin-
mediated killing by CD3+NK1.1+ IELs (70). Moreover, IL-15 
is able to enhance the cytotoxic activity of human IELs (72). 
Blocking the α receptor of IL-15 partially protected mice from 
poly(I:C)-induced small intestinal injury, including less villous 
atrophy, and mucosal erosion (24). Autologous ligands released 
by cells stress and infection are recognized by the NKG2D recep-
tor in NK cells. NKG2D ligands expression is downregulated by 
gut microbiota, as demonstrated in germ-free mice, which had 
increased surface expression of these ligands (73). RAE1, a high 
affinity NKG2D ligand, which is minimally detected in normal 
cells, is upregulated upon TLR3 activation. In fact, blockade of 
NKG2D–RAE1 interaction avoids the cytotoxic effect of IELs 
on IECs and prevents acute small intestinal injury in mice chal-
lenged with dsRNA (27). Therefore, TLR3 signaling stimulates 
IECs to express IL-15 and RAE1 and induces CD3+NK1.1+CD8
αα+ IELs to express NKG2D through IEC-derived IL-15. In our 
hands, poly(I:C) treatment of mice increased intestinal injury in a 
IL-15- and CD8αα+NKG2D+-dependent manner (65). Poly(I:C) 
induced inflammatory-mediated intestinal tissue damage through 
the increase of CD3+NK1.1+ and CD8αα+NKG2D+ cells as well as 
proinflammatory mediators (TNF-α, IL-1β, IFN-γ, IL-15, RAE1, 
IL-8). Mice pretreated with immunobiotic lactobacilli before 
TLR3 activation responded with reduced levels of TNF-α, IL-15, 
RAE1, CD3+NK1.1+, CD3+CD8αα+, and CD8αα+NKG2D+ cells 
(Figure  5). The beneficial effect of these lactobacilli improved 
mice health as reflected by a significant reduction of body weight 
loss and intestinal tissue damage after poly(I:C) challenge (65).

It is well known that commensal bacteria in the gut are able 
to modulate IELs function. Furthermore, IELs are significantly 
reduced in germ-free mice (74, 75) underlying gut microbiota 
importance in the maintenance of IELs. These specialized lym-
phocytes are very important players in mucosal protection; they 
seem to occupy a unique temporal niche from which they are 
able to detect and limit bacterial penetration already in the first 
hours after pathogen attack (76). Ismail et al. (76) showed that 

IEL antibacterial response depends on bacterial stimulation in a 
MyD88-dependent signaling. Later, Jiang et al. (77) investigated 
the role of NOD2 signaling in the maintenance of IELs and found 
that NOD2 maintained IELs via recognition of gut microbiota. 
They demonstrated that stimulation of IEL requires activation of 
PRRs signaling in neighboring IECs (76, 77).

Therefore, it was shown that commensal bacteria establish a 
regulatory milieu in a healthy gut, with increased expression of 
immuno-inhibitory cytokines such as TGF-β and IL-10, which 
in turn downregulate NKG2D ligand surface expression (78, 79). 
This is in line with our findings for the immunomodulatory 
strains L. rhamnosus CRL1505 and L. plantarum CRL1506, which 
reduced expression of RAE-1 and increased levels of intestinal 
IL-10. Whether the immunomodulatory effects of L. rhamnosus 
CRL1505 and L. plantarum CRL1506 are induced by direct action 
on the IECs (indirectly on IELs) and/or a direct effect on IELs is 
an open question, which we propose to address in the near future.

CONCLUSiON

The detailed characterization of the cellular and molecular mecha-
nisms underlying the intestinal innate defense against RV infection 
achieved in the past years has opened new ways for developing 
strategies to preventing and treating this viral induced diarrhea. 
In this sense, the use of immunobiotic bacteria to beneficially 
modulate IFN and inflammatory signaling pathways in IECs and 
immune cells is an attractive target for preventive or therapeutic 
intervention against RVs infection. Furthermore, the advances in 
the knowledge of the molecular crosstalk between immunobiotics 
and the gut innate immune system have provided light into the 
microorganism-sensing signals that allow these beneficial micro-
organisms to improve intestinal immune responses. This new 
molecular information might be helpful to improve the develop-
ment of functional foods and/or pharmabiotics using immunobi-
otics aimed to reduce mortality and severity of RVs disease.
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