
Empir Econ
DOI 10.1007/s00181-013-0788-0

Robust tests for time-invariant individual heterogeneity
versus dynamic state dependence

Federico Zincenko · Walter Sosa-Escudero ·
Gabriel Montes-Rojas

Received: 13 November 2012 / Accepted: 13 November 2013
© Springer-Verlag Berlin Heidelberg 2014

Abstract We derive tests for persistent effects in a general linear dynamic panel
data context. Two sources of persistent behavior are considered: time-invariant unob-
served factors (captured by an individual random effect) and dynamic persistence or
“state dependence” (captured by autoregressive behavior). We will use a maximum
likelihood framework to derive a family of tests that help researchers learn whether
persistence is due to individual heterogeneity, dynamic effect, or both. The proposed
tests have power only in the direction they are designed to perform, that is, they are
locally robust to the presence of alternative sources of persistence, and consequently,
are able to identify which source of persistence is active. A Monte Carlo experiment is
implemented to explore the finite sample performance of the proposed procedures. The
tests are applied to a panel data series of real GDP growth for the period 1960–2005.
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1 Introduction

One of the most important advantages of panel models is to distinguish among alterna-
tive sources of persistent behavior. After controlling for observed factors, two sources
of persistence are relevant. First, time-invariant unobserved factors that reflects indi-
vidual heterogeneity (captured by an individual fixed or random effects) induce persis-
tence. A second source is dynamic persistence through serial correlation, in the error
term or as a lagged dependent variable. Distinguishing among sources of persistence is
a much relevant issue for policy purposes at the microeconomic and macroeconomic
level. Unobserved heterogeneity call for interventions to remedy individual factors
that keep individuals or countries persistently in poverty, like improving education.
Dynamic persistence, on the other hand, may better be handled through helping house-
holds or countries to cope with the persistent effects of negative shocks, like insurance
programs. [See Lillard and Willis (1978) classic article on earnings persistence, and
Sosa-Escudero et al. (2011) for a recent application in rural El Salvador]. However,
as argued by Angrist and Pischke (2009, p. 245), models for each persistence source
“are not nested, which means that we cannot hope to estimate one and get the other
as a special case if need be.”

The purpose of this paper is to derive tests for persistent effects in a general linear
dynamic panel data context. We derive a family of tests that help researchers learn
whether persistence is due to individual heterogeneity, dynamic effects, or both.

Baltagi and Li (1995) derive a test for serial correlation, when random effects
are present and controlled for in an error components model, based on a maximum-
likelihood context. Similarly Holtz-Eakin (1988) proposed a test for random individual
effets, in a dynamic panel structure estimated by GMM. These two proposals can be
seen as “conditional”, in the sense that they test for a particular source of persis-
tence, controlling for (estimating) the other one. Bera et al. (2001) show that standard
“unconditional” tests for random effects (Breusch and Pagan 1980) or serial corre-
lation (Baltagi and Li 1991), are of limited use for these purposes because each of
them implicitly assumes that the other source of persistence is absent. For example,
the classical test by Breusch and Pagan (1980) is shown to reject its null not only when
random effects are present, but also due to the presence of positive serial correlation.
A similar and symmetric concern affects the test by Baltagi and Li (1991), which
confounds serial correlation with random effects. Bera et al. (2001) circumvent this
problem by deriving modified tests for each source of persistence, that are insensitive
to the local presence of the other one, i.e., a test for random effects (serial correla-
tion) that is insensitive to the local presence of serial correlation (random effects).
The local nature of the solution might seem restrictive, but a comprehensive Monte
Carlo experiment by these authors shows that the proposed tests perform well, even in
non-local contexts and small samples. A major advantage of this strategy, as compared
to a conditional approach as implicit in Baltagi and Li (1995) or Holtz-Eakin (1988)
is that tests can be based on simple pooled-OLS estimation of a model, under the joint
null of neither random effects nor serial correlation.
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As stressed by Hendry and Mizon (1978) and Hendry (1995), serial correlation is
only a particular form of dynamic misspecification, which does not necessarily cap-
ture more general dynamic persistence patterns. An autoregressive specification is thus
preferred as a more general model to analyze dynamic behavior. This is the under-
lying idea behind the “general-to-specific” approach advocated by Hendry (1995).
Consequently, in our panel data context, first order serial correlation is only one pos-
sible specification of a more general dynamic panel model, where a “common factor”
restriction holds.

We construct tests for persistent effects in a general linear dynamic panel data con-
text. Unobserved individual heterogeneity is captured by random individual effects,
and dynamic persistence is handled through the presence of a lagged dependent vari-
able, closer to the idea of “state dependence” in the applied literature. Our testing
strategy is based on pooled OLS estimation of a model without persistence. Hence
the proposed testing strategy can help researchers decide whether a truly dynamic
model is required, or whether simpler random effects model would suffice to capture
persistent behavior.

A Monte Carlo experiment is implemented to explore the finite sample performance
of our tests. They are shown to have power only in the direction they are designed to
perform, that is, they are robust to the presence of alternative sources of persistence,
and consequently, are able to identify which source of persistence is active. Moreover,
the tests have correct size and power for alternative distributional assumptions in the
error components.

The paper is organized as follows. Section 2 presents the model and the assumptions.
Section 3 derives the test statistics. Section 4 studies the small sample behavior of the
proposed tests. Section 5 contains an application of the proposed tests to the study of
real GDP per capita growth in a panel data of countries. Section 6 concludes.

2 Model and assumptions

Consider a first order dynamic panel data model with random individual effects:

yit = γ yi,t−1 + x ′
i tβ + uit ,

uit = μi + εi t ,

where i = 1, 2, . . . , N and t = 1, 2, . . . , T . In this model, yit is the dependent vari-
able, xit is a (k ×1) vector of exogenous variables, μi is the random effect component,
and εi t is the general disturbance term. β is a (k × 1) vector of coefficients, and γ

is a scalar parameter. In this context, dynamic effects or state dependence relates
to the relevance of yi,t−1 as a determinant of current values of the dependent vari-
able. The time persistent presence of the term μi induces an alternative source of
persistence, usually referred as unobserved time-invariant individual heterogeneity or
random effects.

To derive the asymptotic properties of our tests, we impose the following regu-
larity assumptions. Define x̃i = (xi,1, . . . , xi,T ) and ε̃i = (εi,1, . . . , εi,T ) as random
matrices of dimension (k × T ) and (1 × T ), respectively.
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Assumption {(yi0, x̃i , μi , ε̃i ) : i = 1, . . . , N } are independent and identically dis-
tributed random vectors that satisfy the following requirements: x̃i is independent
of (μi , ε̃i ); E(x̃i x̃ ′

i ) is finite and nonsingular; yi0 is stochastic and independent of
(x̃i , μi , ε̃i ); and μi and ε̃i are unobservable and independent of each other with
ε̃i ∼ N (0, σ 2

ε IT ) and μi ∼ N (0, ωσ 2
ε ). Moreover, (β ′, σ 2

ε , γ, ω)′ belongs to a com-
pact subset of R

k × R>0 × [0, 1) × R≥0.

The asymptotic results will be derived assuming that N grows to infinity and T is
fixed. This serves for the most common case where the T dimension is short while the
number of individuals N is large. Given that T is fixed, our assumptions imposes mild
conditions on the time series properties of x̃i . More specifically, we are just requiring
E(x̃i x̃ ′

i ) to be finite and nonsingular, and among other properties, xit may have a unit
root. In addition, our assumptions allow us to include a constant term as a component
of xit , and hence, the individual effect μi may be interpreted as deviation from a
common mean. We remark that such a constant term cannot be identified without the
restriction E(μi ) = 0.

The log-likelihood function for our model is given by

L(θ) = − N T

2
ln(σ 2

ε ) − N

2
ln(1 + T ω) − u′u

2σ 2
ε

+
(

ω

1 + T ω

)(
u′ HN T u

2σ 2
ε

)
, (1)

where θ = (β ′, σ 2
ε , γ, ω)′, u = (u11, u12, . . . , uit , . . . , uN (T −1), uN T )′, HN T =

IN ⊗ eT e′
T , eT denotes a (T × 1) vector of ones, and ⊗ stands for the Kronecker

product. Bhargava and Sargan (1983, p. 1,641), and Hsiao (2003, ch. 4), present a
derivation of this function. We refer to these references for further details, in particu-
lar for consistency and asymptotic normality of all the parameter estimates in θ , and
remark that its functional form depends on the normality of ε̃i and μi . In the next sec-
tion, our proposed tests will be based on the log-likelihood function (1), and therefore,
this function will serve for our purposes of establishing the sources of persistence.

3 Tests for persistent effects

In our model, a test for the presence of dynamic effects or state dependence corresponds
to evaluating Hγ

0 : γ = 0. A test for random effects or time-invariant individual
heterogeneity involves checking Hω

0 : ω = 0. And a joint test for the presence of both
types of persistence corresponds to evaluating Hγω

0 : (γ, ω) = (0, 0).
To derive Lagrange multiplier (LM) tests, we require the score functions and

the Fisher information matrix of the log-likelihood model (1). Denote da(θ) =
∂L(θ)/∂a as the score function of L(θ) with respect to a, where a can be any
sub-vector of (β ′, σ 2

ε , γ, ω)′. Denote the elements of the Fisher information matrix
as Jab(θ) = −(N T )−1 E[∂2L(θ)/∂a∂b′], where a, b, c can be any sub-vectors of
(β ′, σ 2

ε , γ, ω)′. In addition, let define Ja,b(θ) = Jaa(θ) − Jab(θ)J−1
bb (θ)Jba(θ) and

Jac,b(θ) = Jac(θ) − Jab(θ)J−1
bb (θ)Jbc(θ) = J ′

ca,b(θ). Note that these terms involve
unknown expectations, thus in order to derive feasible tests, they will be replaced by
the corresponding sample analogs evaluated at the parameter values estimated under
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Time-invariant heterogeneity versus dynamic state dependence

the null hypothesis. Explicit formulas for da(θ) and Jab(θ) are provided in Appendices
1.1 and 1.2, respectively, while details about the construction of the statistics below
are given in Appendix 1.3. Assuming that N grows to infinity and T is fixed, hereafter,
we follow closely (Bera and Yoon 1993) to derive the asymptotic distributions of our
tests.

A first approach consists in deriving marginal tests for Hγ
0 , Hω

0 , and a joint test for
Hγω

0 . By “marginal” we mean a test for dynamic effects (random effects) assuming
no random effects (dynamic effects). The proposed tests can be expressed as

L Ma = 1

N T
da(θ̂)′ J−1

a,b (θ̂)da(θ̂), (2)

where a = γ, ω, and (γ, ω)′, respectively, b = (β ′, σ 2
ε )′, and θ̂ = (β̂ ′, σ̂ 2

ε )′ is the
maximum likelihood estimate of b under joint null of no persistence, Hγω

0 : (γ, ω) =
(0, 0). The formulas for the three LM statistics are

L Mγ = (N T )
B2

C
, (3)

L Mω = (N T )
A2

2(T − 1)
, and (4)

L Mγω = (N T )
[B + (A/T )]2

C − 2(T − 1)/T 2 + (N T )
A2

2(T − 1)
, (5)

where A = 1 − (û′ HN T û)/(û′û), B = (y′−1û)/(û′û), C = (ê′ê)/(û′û) + (T −
1)/T, û = Qy, Q = IN T − X (X ′ X)−1 X ′, X is a (N T × k) matrix of regressors,
and y is a (N T × 1) vector of dependent variables. Moreover, ê = Qŷ−1, where ŷ−1
is a (T N × 1) vector obtained from the vectorization of the (T × N ) matrix [ŷ−1,i t ]t,i

with ŷ−1,i1 = yi0 and ŷ−1,i t = x ′
i,t−1β̂ for t ≥ 2.1

Under the joint null hypothesis of no persistence, the marginal statistics, L Mγ and
L Mω, converge in distribution to χ2

1 (0) while L Mγω to χ2
2 (0), where χ2

m(0) denotes
a central chi-square distribution with m degrees of freedom. These asymptotic results
can be derived from a well-known property of the LM statistics [see for example, Bera
and Yoon (1993, p. 651)]: under the null a = 0 and when the alternative is correctly
specified, the asymptotic distribution of L Ma is χ2

dim(a)(0).

The fact that Jγω,b(θ0) = (T − 1)/T �= 0, where θ0 = (β ′, σ 2
ε , 0, 0)′, implies

that marginal tests, though useful to determine the falseness of the joint null of no
persistence, are of limited use for the goal of identifying the source of persistence once
the joint null is determined to be false. As established by Davidson and MacKinnon
(1987) and Saikkonen (1989), a marginal LM test for one parameter is affected by the
other one being incorrectly set to zero. More concretely, Saikkonen (1989)’s results

1 The matrices X and y are ordered following the usual approach in the literature; see e.g., Bera et al.
(2001) and the vector u defined in Sect. 2. The notation for the matrix [ŷ−1,i t ]t,i is as follows: the (t × i)-th
element of the matrix [ŷ−1,i t ]t,i is ŷ−1,i t . Naturally, L Mω is the classic (Breusch and Pagan 1980) test for
random effects.
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imply that when the source of persistence not tested for is locally misspecified, the
marginal LM for the other source will converge to a non-central asymptotic chi-
square variable, hence leading to spurious rejections due to the misspecified nuisance
parameter and not to the falseness of the null hypothesis.

The precedent argument can be formalized as follows. Consider a ∈ {γ, ω} and
c ∈ {γ, ω}\{a}. Under Ha

0 : a = 0 but c = δc/
√

N T with δc �= 0, the marginal
statistic L Ma converges in distribution to χ2

1 (λa(c)) with λa(c) = δ2
c J 2

ac,b(θ0)/Ja,b(θ0),

where χ2
1 (λ) denotes a chi-square distribution with one degree of freedom and non-

centrality parameter λ; see for example, Bera and Yoon (1993 Eq. 2.2).
After applying this argument to our marginal tests, we obtain the following

results. Under Hγ
0 : γ = 0 but when ω = δω/

√
N T with δω > 0, L Mγ con-

verges in distribution to χ2
1 (λγ (ω)) where the non-centrality parameter λγ (ω) =

[δω(T − 1)]2/[Jγ,b(θ0)T 2], where Jγ,b(θ0) is defined in Eq. (12) of Appendix 1.3.1.
This means that when testing for state dependence, the presence of time-invariant
individual heterogeneity makes the test to wrongly reject the null because of mis-
specification of the alternative hypothesis. In a similar vein, under Hω

0 : ω = 0 but
when γ = δγ /

√
N T with δγ > 0, L Mω converges in distribution to χ2

1 (λω(γ )) with
λω(γ ) = δ2

γ 2(T − 1)/T 2. Consequently, and in an analogous way to the problem
found by Bera et al. (2001), the classic test for random effects by Breusch and Pagan
(1980) will reject its null not only due to the presence of unobserved heterogeneity
but also due to the presence of state dependence.2

In words, when marginal tests reject, they suggest the presence of some persistence
without clear indication about which source (if not both) are relevant. Marginal tests
do not add much information besides the one already provided by the test for the joint
null of no persistence. Hereafter, to identify the source of departure away from the
joint null of no persistence, Hγω

0 , we will follow two strategies.
First, we construct conditional LM tests for Hγ

0 and Hω
0 , where ω and γ , respec-

tively, are estimated by maximum likelihood. By “conditional” we mean a test for
dynamic effects (random effects) considering the presence of non-local random effects
(dynamic effects). The two conditional LM statistics are denoted by L Mγ /ω and
L Mω/γ .

A conditional test for the presence of dynamic effects, Hγ
0 , requires the implemen-

tation of a random effects GLS estimator for (β ′, ω) under γ = 0. Denoting such an
estimator by (β̂ ′

γ , ω̂γ ), the formula for L Mγ /ω is

L Mγ /ω = (N T )
B2

γ

Cγ − 2(T − 1)/T 2 , (6)

2 Although this paper considers N → ∞ and T fixed, we briefly discusses what happens when T also
grows to infinity. Observe first that λω(γ ) → 0 as T → ∞, which implies that a local misspecification of

the form γ = δγ /
√

N T vanishes in large panels. Therefore, L Mω converges in distribution to a central
chi-square with one degree of freedom, and this marginal test can be used in the presence of local state
dependence. In contrast, since λγ (ω) does not necessarily converges to zero when T → ∞, L Mγ is not
robust to a local misspecification in the variance of the random effect component. Whether or not λγ (ω)

converges to zero depends on the time series properties of xit , which are beyond the scope of this paper.
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where

Bγ = (1 + T ω̂γ )
y′−1 Rûγ

ûγ ′HN T ûγ
,

Cγ = 1 + T ω̂γ

ûγ ′ HN T ûγ
{ŷγ ′

−1[R − R X (X ′ R X)−1 X ′ R]ŷγ
−1} + T − 1

T

(
1 + ω̂2

γ

1 + T ω̂γ

)
,

R = IN T − ω̂γ

1 + T ω̂γ

HN T ,

ûγ = y − X β̂γ , and ŷγ
−1 is a (T N × 1) vector obtained from the vectorization of

the (T × N ) matrix [ŷγ

−1,i t ]t,i with ŷγ

−1,i1 = yi0 and ŷγ

−1,i t = x ′
i,t−1β̂γ for t ≥ 2.

Observe that [ŷγ

−1,i t ]t,i is defined in an analogous way to [ŷ−1,i t ]t,i . Under the null Hγ
0 ,

the asymptotic distribution of L Mγ /ω is χ2
1 (0) regardless of the presence of random

effects; see Appendix 1.3.2. This test is similar to that of Holtz-Eakin (1988).
A similar conditional test for Hω

0 involves a simple OLS estimator of (β ′, γ ).
Denoting such estimator by (β̂ ′

ω, γ̂ω), the corresponding LM statistic becomes

L Mω/γ = (N T )
A2

ω

2(T − 1) − Dω

, (7)

where Aω = 1 − (ûω′ HT N ûω)(ûω′ûω),

Dω =
[

(T − 1) + ∑T
t=2(T − t)γ̂ t−1

ω

T

]2
ûω′ûω

û′−1û−1
,

ûω = y − y−1γ̂ω − X β̂ω, and û−1 = Qy−1. Under the null Hω
0 , the asymptotic

distribution of L Mω/γ is χ2
1 (0) regardless of the presence of state dependence; see

Appendix 1.3.3.
A second strategy avoids estimating the nuisance parameters (that is, still based on

the joint null of no persistence) and consists in adjusting the original LM statistic using
the robustification procedure of Bera and Yoon (1993, Sect. 3). This approach allows
the construction of a test for a particular source of persistence that does not require the
estimation of the parameters of the other one, provided that departures from zero in the
nuisance parameters are small. In particular, it is based on assuming local departures
in the nuisance parameter and the validity of the tests for non-local departures need
to be studied for each case. These tests are referred as robust tests. These tests are
useful procedures to evaluate specific departures from a joint null hypothesis. More
specifically, for either a = γ or a = ω, consider a test for Ha

0 : a = 0 that is robust to
local misspecification in the parameter c ∈ {γ, ω}\{a} with c = δc/

√
N T . Observe

that only the parameters b = (β ′, σ 2
ε )′ are estimated. The modified Bera-Yoon statistic

is given by

L M∗
a/c = 1

N T
da/c,b(θ̂)′ J−1

a/c,b(θ̂)da/c,b(θ̂), (8)
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where da/c,b(θ) = da(θ) − Jac,b(θ)J−1
c,b (θ)dc(θ) and

Ja/c,b(θ) = Ja,b(θ) − Jac,b(θ)J−1
c,b (θ)Jca,b(θ)′.

The main result in Bera et al. (2009) implies that the modified locally robust Bera–
Yoon statistics can be constructed in a simple way, once marginal and joint tests
have been derived. Specifically, we have that L M∗

γ /ω = L Mγω − L Mω and L M∗
ω/γ =

L Mγω−L Mγ ; Appendix 1.3.1 also provides an alternative derivation based on formula
(8). As established in Bera and Yoon (1993, Eq. 3.10), the robust tests converge
in distribution to χ2

1 (0) under the corresponding null and in the presence of local
misspecification in the unconsidered parameter. That is, modified tests are locally
robust to unconsidered sources of persistence.

Naturally, when nuisance parameters are indeed zero, the marginal LM tests are
locally optimal implying a sort of “robustification cost.” That is, a power loss for
unnecessarily estimating an additional nuisance parameter that was indeed zero (in
the case of conditional tests), or for robustifying a test statistic when the marginal
one would have sufficed (in the case of the Bera–Yoon tests). These “robustification”
costs can be quantified using the results of Bera and Yoon (1993, Sect. 3). To do so,
consider the local alternative Ha

1 : a = δa/
√

N T with c = 0, where a ∈ {γ, ω}, c ∈
{γ, ω}\{a}, and δa �= 0. Under this alternative, L Ma and L M∗

a converge in distribution
to non-central chi-squares χ2

1 (λa) and χ2
1 (λ∗

a/c), respectively, where the non-centrality

parameters are λa = δ2
a Ja,b(θ0) and λ∗

a/c = δ2
a[Ja,b(θ0) − J 2

ac,b(θ0)/Jc,b(θ0)]. The
presence of a robustification is due to the fact that λa ≥ λ∗

a/c.
The previous argument can be applied to our tests in a straightforward way. When

γ = δγ /
√

N T , δγ > 0, and ω = 0, L Mγ and L M∗
γ /ω converge in distribution to

χ2
1 (λγ ) and χ2

1 (λ∗
γ /ω), respectively. Under ω = δω/

√
N T , δω > 0, and γ = 0, L Mω

and L M∗
ω/γ converge in distribution to χ2

1 (λω) and χ2
1 (λ∗

ω/γ ), respectively. The non-
centrality parameters are given by

λγ = δ2
γ Jγ,b(θ0),

λ∗
γ /ω = δ2

γ

[
Jγ,b(θ0) − 2(T − 1)

T 2

]
,

λω = δ2
ω

(T − 1)

2
, and

λ∗
ω/γ = δ2

ω

[
(T − 1)

2
− (T − 1)2

Jγ,b(θ0)T 2

]
.

As can be noted, since λγ ≥ λ∗
γ /ω and λω ≥ λ∗

ω/γ , the asymptotic power of the
robust statistics is less (or equal) than that of the marginal statistics when there is
no misspecification. Due to the shape of the Fisher information matrix, particularly
Jβσ 2

ε
(θ0) = Jβω(θ0) = 0[k×1] and Jγ σ 2

ε
(θ0) = 0, the statistics L Mγ /ω and L Mω/γ also

converge in distribution to χ2
1 (λ∗

γ /ω) and χ2
1 (λ∗

ω/γ ), respectively. This result implies
that both conditional and Bera–Yoon robust tests have the same asymptotic power. This
is important in practice, since this result implies that when local misspecifications are
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small, there are no power gains of estimating nuisance parameters when the goal is to
detect whether a particular source of persistence is active.

The performance of the robust test in a non-local context, and the importance of the
robustification and conditioning costs in small samples is an empirical question that
will be studied through the extensive Monte Carlo experiment of the following section.

4 Monte Carlo experiments

The results of the previous section suggest three testing strategies to detect persistence
and to identify which source (unobserved heterogeneity, state dependence, or both)
is active. The first strategy is based on estimating the model under the joint null
hypothesis of no persistence effects. This leads to two marginal tests and a joint test.
A second strategy derives conditional tests, that is, tests for one source after having
estimated the relevant parameters that handle the other one. The final strategy, based
on the Bera and Yoon (1993) principle, produces robustified marginal tests, that are
still based on the joint null, and hence avoids estimating nuisance parameters.

There are several concerns that deserve to be explored empirically. First, as men-
tioned before, the use of robustified or conditional tests may imply a power loss when
marginal tests would have sufficed, i.e., when the source not being considered is indeed
inactive. Second, modified tests are meant to be resistant to misspecified alternatives
in a local sense (that is, for small deviations from zero in the nuisance parameter),
so its performance in a non-local context is a matter of concern. Third, the likelihood
framework involves a strict normality assumption whose relevance must be assessed.
Finally, and for all testing procedures, the adequacy of asymptotic approximations for
sample sizes similar to those used in practice, is a much relevant issue. The purpose
of this section is to study these issues empirically, through a Monte Carlo experiment.

To facilitate comparison, we use a design similar to the one used in previous work
on the subject: Bera et al. (2001) and Baltagi et al. (1992). We refer to these papers for
further details. We consider different values of (γ, ω) and (N , T ). The data generating
process (DGP) is:

yit = γ yit−1 + α + xitβ + uit ,

uit = μi + εi t ,

where (α, β) = (5, 0.5), μi ∼ N (0, 20ω), and εi t ∼ N (0, 20). The independent
variable xit is generated following Nerlove (1971), i.e., xit = 0.1t + 0.5xit−1 + wi t ,
where wi t is uniformly distributed on the interval [−0.5, 0.5] and xi0 ∼ 5+U (−5, 5).
The initial value yi0 is taken from the uniform distribution in [−1, 1]. The number of
replications is 5,000, and the nominal size is 5 %.

In order to study the empirical size, Table 1 reports rejection rates for alternative
sample sizes with N ∈ {50, 100} and T ∈ {2, 5, 10} and Table 2, top rows, reports
simulations with N ∈ {10, 20, 50, 100, 200, 1000} and T = 5, while the parameters
are set at the joint null Hγω

0 : γ = ω = 0. As can be noted, the empirical size is in
general below 5%, that is, they are undersized. In all cases, except for L Mγ /ω (see next
paragraph), the empirical size gets closer to the nominal size as T increases (Table
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Table 1 Empirical size

N T L Mγ L Mγ /ω L M∗
γ /ω L Mω L Mω/γ L M∗

ω/γ L Mγω

50 2 0.013 0.052 0.003 0.047 0.009 0.027 0.018

50 5 0.031 0.027 0.024 0.048 0.021 0.042 0.032

50 10 0.044 0.022 0.041 0.042 0.030 0.045 0.040

100 2 0.014 0.048 0.004 0.053 0.010 0.032 0.020

100 5 0.032 0.025 0.026 0.052 0.022 0.045 0.034

100 10 0.039 0.013 0.035 0.045 0.034 0.049 0.040

Monte Carlo simulations based on 5,000 replications. Theoretical size 5 %. (γ, ω) = (0, 0). Panel data
models with (N , T ) = (50, 5)

Table 2 Empirical size: consistency

N T L Mγ L Mγ /ω L M∗
γ /ω L Mω L Mω/γ L M∗

ω/γ L Mγω

γ = 0, ω = 0

10 5 0.027 0.072 0.021 0.032 0.013 0.035 0.025

20 5 0.030 0.036 0.028 0.039 0.017 0.036 0.026

50 5 0.027 0.023 0.024 0.039 0.023 0.035 0.030

100 5 0.028 0.019 0.022 0.047 0.022 0.037 0.028

200 5 0.040 0.023 0.029 0.047 0.022 0.044 0.031

500 5 0.032 0.011 0.024 0.039 0.021 0.031 0.031

1,000 5 0.032 0.010 0.024 0.055 0.023 0.046 0.035

γ = 0.1, ω = 0

10 5 0.048 0.029 0.025 0.059 0.014 0.053 0.043

20 5 0.118 0.013 0.077 0.114 0.021 0.061 0.105

50 5 0.256 0.057 0.161 0.183 0.014 0.073 0.226

100 5 0.547 0.158 0.358 0.262 0.016 0.071 0.436

200 5 0.818 0.390 0.604 0.440 0.022 0.101 0.731

500 5 0.998 0.904 0.971 0.822 0.018 0.135 0.995

1,000 5 1.000 0.958 0.990 0.897 0.020 0.141 1.000

γ = 0, ω = 0.1

10 5 0.038 0.033 0.017 0.116 0.029 0.091 0.082

20 5 0.065 0.009 0.010 0.231 0.066 0.188 0.154

50 5 0.152 0.003 0.019 0.455 0.165 0.349 0.333

100 5 0.302 0.002 0.018 0.726 0.393 0.615 0.627

200 5 0.546 0.002 0.017 0.953 0.725 0.892 0.917

500 5 0.913 0.006 0.018 1.000 0.986 0.999 0.998

1,000 5 0.996 0.006 0.020 1.000 1.000 1.000 1.000

Monte Carlo simulations based on 5,000 replications. Theoretical size 5 %. Panel data models with (N , T ) =
(50, 5)

1), and small changes in the correct direction are observed as N increases (Table 2).
Overall the results show that a small T produces the tests to reject the corresponding
null less often than expected.
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For the conditional test L Mγ /ω, however, increasing either T and N reduce the
rejection rates. The poor performance of this test suggests that estimating the random
effects (i.e. ω) hides the presence of dynamic effects (i.e. γ ) and this effect is larger
as the sample size increases. Despite being undersized, the test shows good power
properties (see below).

Table 2 also studies the power properties of the tests for N ∈ {10,20,50,
100,200,1000} and T = 5. Simulations for (γ = 0.1, ω = 0) show that tests for
detecting dynamic persistence, Hγ

0 : γ = 0, that is, L Mγ , L Mγ /ω and L M∗
γ /ω, are

all consistent as N → ∞. As expected the marginal test L Mγ has the greatest power,
followed by the robust L M∗

γ /ω, and finally the conditional L Mγ /ω.3 In this case, a
value of γ �= 0 affects the marginal test for unobserved heterogeneity, L Mω, making
it to wrongly reject its null hypothesis of Hω

0 : ω = 0. However, the conditional test
L Mω/γ , which estimates γ , corrects the rejection rates and makes them similar to
the top rows. The Bera–Yoon robustification procedure L M∗

ω/γ partially corrects the
rejection rates, which achieve a value of 0.141 with the largest N = 1,000.

Simulations for (γ = 0, ω = 0.1) show that tests for detecting unobserved het-
erogeneity, Hω

0 : ω = 0, that is, L Mω, L Mω/γ , and L M∗
ω/γ , are also consistent as

N → ∞. As in the previous case, the greatest power is achieved by the marginal test,
followed by the robust and the conditional tests. Moreover, a value of ω �= 0 affects
the marginal test for dynamic persistence, L Mγ , making it to wrongly reject its null
hypothesis of Hγ

0 : γ = 0. However, the conditional test L Mγ /ω, which estimates γ ,
reduces the rejection rates but make them very undersized (empirical size goes to 0 as
N → ∞). The Bera–Yoon robust test L M∗

γ /ω fully corrects the rejection rates, with
similar values to those achieved in the top rows.

Table 3 explores power for different values of ω and γ . We report the case
(N , T ) = (50, 5). Results for alternative sizes only reinforce those of this case, and
are omitted to save space, and available from the authors by request. Consider first the
case when the only source of persistence is due to individual random effects, that is,
ω is allowed to vary while keeping γ = 0. First, and as predicted by the theory, the
marginal LM test (L Mγ ) is negatively affected by model misspecification (ω �= 0),
that is, it spuriously rejects the null of no dynamic effects due to the relevance of
random effects. Interestingly, the conditional LM and the Bera–Yoon robust tests have
decreasing size as ω increases. Power is increasing for all tests specifically designed
to react to random individual effects, i.e., L Mω, L Mω/γ , L M∗

ω/γ , and for the joint
tests L Mγω. As expected the highest power is achieved by the optimal marginal test
(L Mγ ), followed by the Bera–Yoon robust test, and then by the conditional LM test. A
very important result is that the Bera–Yoon robustifed procedure has a smaller cost (in
terms of power) than that of the conditional LM test, where the additional ω parameter
is estimated by maximum likelihood. In addition, the robustification cost is very small.

The case where only dynamic effects induce persistence shows comparable results.
The Breusch–Pagan marginal LM test, L Mω, is negatively affected by the presence
of dynamic effects, whereas the conditional test, L Mω/γ , has correct size. The Bera–

3 However, as noted by an anonymous referee power comparisons require size-correction. Given the dif-
ficulty of doing these corrections in empirical work we do not pursue this strategy here, and all power
comparisons are evaluated using the actual rejection rates.
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Table 3 Empirical size: power and robustness

γ ω L Mγ L Mγ /ω L M∗
γ /ω L Mω L Mω/γ L M∗

ω/γ L Mγω

0.000 0.000 0.028 0.023 0.022 0.041 0.020 0.036 0.025

0.000 0.050 0.063 0.009 0.026 0.182 0.062 0.143 0.124

0.000 0.100 0.151 0.005 0.019 0.456 0.179 0.370 0.358

0.000 0.150 0.298 0.005 0.019 0.718 0.342 0.625 0.624

0.000 0.200 0.458 0.004 0.018 0.868 0.509 0.793 0.807

0.000 0.250 0.601 0.003 0.014 0.950 0.647 0.906 0.915

0.000 0.300 0.733 0.003 0.013 0.975 0.746 0.952 0.959

0.000 0.350 0.832 0.002 0.012 0.992 0.828 0.980 0.984

0.000 0.400 0.895 0.003 0.012 0.997 0.875 0.993 0.995

0.050 0.000 0.078 0.014 0.053 0.070 0.020 0.053 0.070

0.100 0.000 0.258 0.050 0.163 0.161 0.019 0.071 0.212

0.150 0.000 0.565 0.192 0.363 0.293 0.018 0.099 0.476

0.200 0.000 0.849 0.420 0.620 0.484 0.014 0.144 0.769

0.250 0.000 0.963 0.666 0.805 0.657 0.014 0.193 0.929

0.300 0.000 0.996 0.871 0.936 0.816 0.013 0.278 0.988

0.350 0.000 1.000 0.964 0.985 0.920 0.012 0.384 0.999

0.400 0.000 1.000 0.995 0.998 0.968 0.014 0.512 1.000

Monte Carlo simulations based on 5,000 replications. Theoretical size 5 %. Panel data models with (N , T ) =
(50, 5)

Yoon test, L M∗
ω/γ , is affected by misspecification (γ �= 0) but its rejection rates are

much better than those of the marginal LM test. This emphasizes the fact that Bera–
Yoon robustification procedure works when local departures from the joint null are
considered. The highest power is again that of the optimal marginal test, followed by
the Bera–Yoon robust test, and then by the conditional LM test. The comparison of
the latter two show that the Bera–Yoon robustification procedure has a smaller cost in
terms of power than that of the conditional LM test, where the additional parameter
γ is estimated by maximum likelihood.

Finally, Table 4 evaluates the performance of the test statistics under non Gaussian
DGPs. Specifically, both μ and ε follow either a t Student with 4◦ of freedom or a χ2

with 1◦ of freedom. In this case, we repeat the same specification as in Table 3 for
different values of ω and γ when (N , T ) = (50, 5). The table shows that our tests
(derived under normality) still have correct empirical size and excellent power even
when other DGPs are used.

5 Empirical application: income growth

As an application of the proposed tests, we study the source of persistent behavior in
the series of real GDP per capita growth in a panel data set of countries. Understanding
the behavior of this series contributes to the long-standing debate about convergence
rates. Both sources of persistence, in the form of unobserved heterogeneity and state-
dependence, are recurrently cited in the empirical literature on economic growth. First,
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Table 4 Empirical size: different DGP

γ ω L Mγ L Mγ /ω L M∗
γ /ω L Mω L Mω/γ L M∗

ω/γ L Mγω

DG P : t4 student

0.000 0.000 0.035 0.033 0.027 0.044 0.020 0.039 0.033

0.000 0.050 0.066 0.007 0.023 0.197 0.076 0.159 0.137

0.000 0.100 0.159 0.003 0.014 0.454 0.190 0.371 0.357

0.000 0.150 0.285 0.005 0.019 0.667 0.349 0.588 0.579

0.000 0.200 0.444 0.004 0.013 0.811 0.490 0.741 0.743

0.000 0.250 0.579 0.003 0.012 0.896 0.618 0.844 0.851

0.000 0.300 0.682 0.006 0.012 0.942 0.696 0.904 0.917

0.000 0.350 0.768 0.004 0.010 0.964 0.767 0.942 0.944

0.000 0.400 0.823 0.004 0.011 0.982 0.819 0.964 0.973

0.050 0.000 0.073 0.015 0.055 0.073 0.022 0.053 0.069

0.100 0.000 0.261 0.056 0.161 0.158 0.020 0.069 0.209

0.150 0.000 0.571 0.196 0.369 0.294 0.018 0.093 0.475

0.200 0.000 0.837 0.417 0.599 0.487 0.017 0.139 0.761

0.250 0.000 0.969 0.683 0.819 0.667 0.013 0.201 0.938

0.300 0.000 0.994 0.876 0.932 0.809 0.012 0.278 0.988

0.350 0.000 0.999 0.960 0.981 0.914 0.011 0.387 0.997

0.400 0.000 1.000 0.993 0.996 0.964 0.013 0.505 0.999

DG P : χ2
1

0.000 0.000 0.030 0.018 0.021 0.041 0.019 0.035 0.030

0.000 0.050 0.076 0.008 0.021 0.195 0.083 0.156 0.147

0.000 0.100 0.173 0.006 0.019 0.461 0.213 0.384 0.372

0.000 0.150 0.324 0.006 0.020 0.642 0.353 0.571 0.569

0.000 0.200 0.436 0.006 0.018 0.770 0.462 0.707 0.703

0.000 0.250 0.560 0.004 0.012 0.853 0.574 0.795 0.799

0.000 0.300 0.650 0.006 0.011 0.903 0.664 0.860 0.866

0.000 0.350 0.734 0.004 0.011 0.939 0.737 0.908 0.909

0.000 0.400 0.791 0.005 0.013 0.962 0.774 0.933 0.937

0.050 0.000 0.079 0.017 0.056 0.074 0.018 0.045 0.073

0.100 0.000 0.255 0.061 0.158 0.157 0.022 0.071 0.208

0.150 0.000 0.565 0.182 0.361 0.296 0.021 0.102 0.463

0.200 0.000 0.848 0.402 0.602 0.472 0.017 0.139 0.755

0.250 0.000 0.973 0.674 0.798 0.667 0.015 0.201 0.938

0.300 0.000 0.998 0.866 0.927 0.830 0.017 0.289 0.994

0.350 0.000 1.000 0.959 0.977 0.911 0.012 0.371 0.999

0.400 0.000 1.000 0.992 0.995 0.969 0.011 0.482 1.000

Monte Carlo simulations based on 5,000 replications. Theoretical size 5 %. Panel data models with (N , T ) =
(50, 5)
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country-specific unobserved effects can be interpreted as differences in the countries”
technology parameters in Solow-Swan production function regressions that corre-
spond to differences in country-specific variables, e.g., institutions, natural resources,
etc.4 This raises the suspicion that underdevelopment is a state of equilibrium and that
there are forces at work that tend to restore the equilibrium every time there are small
improvements in living conditions. Second, dynamic persistence can be associated
with the effect of past shocks or economic decisions on the countries” growth. For
instance, Rosenstein-Rodan’s (1943) “big-push” theory stated that countries needed a
large inflow of capital to break the vicious cycle of poverty. In this case, income shocks
(natural disasters, wars) have enduring consequences on the country’s income growth.
Understanding the specific source of persistence (if any or both) helps to understand
differences between poor and rich countries and the nature of economic development.

To explore these alternative persistence patterns, we consider the model

git = γ gi,t−1 + β1 + β2t + uit ,

uit = μi + εi t ,

where i = 1, 2, . . . , N , t = 1, 2, . . . , T, git is real GDP per capita growth, μi is
the country-specific effect component, and εi t is the general disturbance term. We
consider models with and without a time trend.

We use data on real GDP per capita growth, calculated as the difference of log real
GDP per capita, from the Penn World Tables (series rgdpl, PPP GDP per capita at
2005 constant prices). Our dataset is a balanced panel of 109 countries over the period
1960–2005, containing five year periods. Thus, we have T = 8 with growth periods
1960–1965, 1965–1970,…, 2000–2005; and N = 109.5 The average logarithmic
growth rate is 0.092 with a standard deviation of 0.178.

4 For instance, Graham and Temple (2006) find that multiple equilibria are associated to differences in
aggregate total factor productivity. It is also reasonable to assume that these country-specific effects are
themselves functions of the capital stock, as in Romer (1986) and Azariadis and Drazen (1990), or that they
depend on the initial conditions of the endogenous variables in the presence of historical self-reinforcement
(Mookherjee and Ray (2001)). The theory of different “convergence clubs” (Baumol (1986); DeLong (1988);
Quah (1993, 1996, 1997)) relates to the existence of an exclusionary mechanism that keeps members of
one group or club facing a lower level equilibrium from moving to another group or club with a higher
level equilibrium. Moreover, this gives the idea of a vicious circle of poverty as a “constellation of forces
tending to act and react upon one another in such a way as to keep a poor country in a state of poverty”
(Nurkse (1953), p. 4).
5 The countries included in the sample are Argentina, Australia, Austria, Burundi, Belgium, Benin, Burk-
ina Faso, Bangladesh, Bolivia, Brazil, Barbados, Botswana, Central African Republic, Canada, China,
Switzerland, Chile, Cote d“Ivoire, Cameroon, Congo, Republic of, Colombia, Comoros, Cape Verde, Costa
Rica, Cyprus, Denmark, Dominican Republic, Algeria, Ecuador, Egypt, Spain, Ethiopia, Finland, Fiji,
France, Gabon, United Kingdom, Ghana, Guinea, Gambia, Guinea-Bissau, Equatorial Guinea, Greece,
Guatemala, Hong Kong, Honduras, Haiti, Indonesia, India, Ireland, Iran, Iceland, Israel, Italy, Jamaica,
Jordan, Japan, Kenya, Korea, Republic of, Sri Lanka, Lesotho, Luxembourg, Morocco, Madagascar, Mex-
ico, Mali, Mozambique, Mauritania, Mauritius, Malawi, Malaysia, Namibia, Niger, Nigeria, Nicaragua,
Netherlands, Norway, Nepal, New Zealand, Pakistan, Panama, Peru, Philippines, Papua New Guinea, Puerto
Rico, Portugal, Paraguay, Romania, Rwanda, Senegal, Singapore, El Salvador, Sweden, Seychelles, Syria,
Chad, Togo, Thailand, Trinidad and Tobago, Turkey, Taiwan, Tanzania, Uganda, Uruguay, United States,
Venezuela, South Africa, Congo, Dem. Rep., Zambia, Zimbabwe.
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Table 5 Empirical application: real GDP per capita growth

Dynamic persistence
Hγ

0 : γ = 0
Time-invariant persistence
Hω

0 : ω = 0
Both Hγω

0 :
γ = ω = 0

Marginal
L Mγ

Conditional
L Mγ /ω

Robust
L M∗

γ /ω

Marginal
L Mω

Conditional
L Mω/γ

Robust
L M∗

ω/γ

Joint L Mγω

With time trend

Statistic 42.75 8.52 14.17 51.87 2.51 23.28 66.03

Decision Reject Reject Reject Reject Accept Reject Reject

Without time trend

Statistic 46.37 10.12 16.79 50.90 2.09 21.32 67.69

Decision Reject Reject Reject Reject Accept Reject Reject

See text for details. Tests based on a 5 % significance level

The tests developed in this paper appear in Table 5. The joint test, L Mγω, indi-
cates strong persistence in the panel data in both models, with and without a time
trend. Also both marginal tests, L Mγ and L Mω, indicate that both sources of per-
sistence are present. Nevertheless, as discussed in the Sects. 3 and 4, this conclu-
sion can be misleading because marginal tests are not useful to detect the source
of persistence. Moreover, the parameter estimates differ considerably depending on
the estimated model. The parameter estimate for γ assuming Hω

0 is γ̂ = 0.244 and
γ̂ = 0.249 for the model with and without time trend, respectively. The parameter
estimate for ω assuming Hγ

0 is ω̂ = 0.149 and ω̂ = 0.148 for the model with and
without time trend, respectively. These figures suggest that models with and without
time trend mostly coincide. However, when estimating the full model with maximum
likelihood we obtain (γ̂ = 0.185, ω̂ = 0.055) for the model with time trend and
(γ̂ = 0.249, ω̂ = 0; the binding constraint ω = 0 is reached) for the model with
no time trend. These estimates indicate that only dynamic persistence is present but
individual heterogeneity is not, and that testing for the presence of only one per-
sistence is necessary in order to avoid the unnecessary inclusion of country-specific
heterogeneity.

The conditional tests, L Mγ /ω and L Mω/γ , indeed suggest that only dynamic per-
sistence is observed. In fact, the conditional test for unobserved time-invariant hetero-
geneity with a time trend, L Mω/γ accepts the null hypothesis Hω

0 at the 5% significance
level. The Bera–Yoon robust test L M∗

γ /ω indicates that the null hypothesis of absence
of dynamic persistence is rejected but also the test L M∗

ω/γ indicates rejection. In order
to evaluate the validity of the Bera–Yoon tests we consider that deviations from γ = 0,
the nuisance parameter for testing Hω

0 , are large in all considered models and there-
fore, it might not be valid to take those γ values as local/small departures as analyzed
in the Monte Carlo simulations. Overall these results show that dynamic persistence
appears to explain countries’ growth differences with an autoregressive parameter
of 0.25, and that country-specific heterogeneity does not explain growth persistence
once dynamic persistence is taken into account. Thus, countries’ growth performance
is path-dependent and is not conditioned by the countries’ specific characteristics.
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6 Conclusion

This paper derives simple tests for persistent effects in a dynamic linear panel data
model with unobserved individual effects. It improves upon the previous literature by
handling state persistence through a truly dynamic model, instead of relegating it to first
order serial correlation in the error term, which is seen as just one particular restriction
that arises from imposing a common factor restriction on the general specification.
This is in line with the classical literature on dynamic econometrics, that strongly
emphasizes general dynamic structures. The classic test by Breusch-Pagan (1980)
for random effect is found to be negatively affected by dynamic misspecification,
that is, when it rejects its null it is due to unobserved heterogeneity and/or dynamic
misspecification, along the results previously found by Bera et al. (2001).

We suggest two alternatives to identify the sources of persistence. The first “condi-
tional” strategy involves estimating the parameters handling the source of persistence
not tested for. The second “robust” strategy is based on the Bera–Yoon (1993) prin-
ciple. A main advantage of the latter is that it does not require previous estimation of
nuisance parameters, and hence can be implemented after estimating a pooled panel
model with no persistence.

A Monte Carlo study shows that the conditional and robust tests perform well in
small samples. Specifically, they do not suffer from the oversize of marginal tests,
and also, they have power only in the direction designed even in non-local contexts.
When the alternative hypothesis is correctly specified, the power loss with respect to
the optimal marginal test is very small, although it is not optimal. Furthermore, they
still perform well in non-gaussian contexts.

An important advantage of our tests is that they can be implemented after pooled
OLS estimation of a static model with no random or dynamic effects. This is relevant
in practice, in light of the well known concerns affecting instrumental variables /GMM
strategies, aimed at dealing with biases induced by the presence of lagged dependent
variables in a linear panel model [see Bond (2002), for a useful review of advantages
and disadvantages or linear dynanic panel specifications]. Our proposed tests have
the ability of distinguishing which source of persistence is active (random individual
or dynamic effects) without requiring the estimation of a dynamic structure, based
on simple OLS estimation. Hence the results of our tests should be useful to decide
whether it is relevant to involve a truly dynamic model (when persistences are due to
dynamic misspecification) or whether a simpler, random effects structure would suffice
(when random effects are the sole source of persistence). From a practical perspective,
the results in this paper suggest to start with a joint test for both sources of persistence,
and then if the null hypothesis of no persistence is rejected, conditional, and robust
tests should be used to evaluate which source of persistence is present, while marginal
tests can be misleading.
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Appendix 1: Derivation of the test statistics

1.1 First and second derivatives of the log-likelihood function

The below results are helpful to obtain the Fisher information matrix. The first partial
derivatives of the function L with respect to θ are:
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σ 2
ε
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σ 2
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From these expressions, the second derivatives can be written as
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1.2 Fisher information matrix

Define now J (θ) = −(N T )−1 E[∂2L(θ)/∂θ∂θ ′] as the Fisher information evaluated
at the true parameters θ = (β ′, σ 2

ε , γ, ω)′. Using previous results, it is easy to show
that

J (θ) =

⎛
⎜⎜⎝

Jββ Jβε Jβγ Jβω

J ′
βε Jεε Jεγ Jεω

J ′
βγ Jεγ Jγ γ Jγω

J ′
βω Jεω Jγω Jωω

⎞
⎟⎟⎠ , (9)

with
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E(ỹ1,−1eT e′

T ỹ′
1,−1)

]
,

Jγω = E

[
ỹ1,−1eT e′

T ũ′
1

T σ 2
ε (1 + T ω)2

]
, and

Jωω = T

2(1 + T ω)2 ,

where ũi = (ui1, . . . , uiT ) and ỹi,−1 = (yi0, yi1, . . . , yi(T −1)) are (1 × T ) vectors
whose t-th components are uit and yi,t−1, respectively. To derive above expressions,
recall that the expectation of the score is zero at the true parameters (see for example,
Jεε and Jεγ ), and also that (yi0, x ′

i1, . . . , x ′
iT ) are identically distributed across i , so

the expectations have been written in terms of i = 1.

1.3 Construction of statistics

Before proceeding, the next expressions are helpful to construct the statistics. Under
our assumptions and when γ = 0, for any (β ′, σ 2

ε , ω) ∈ R
k × R>0 × R≥0, we have

that
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E(x̃1 ỹ′
1,−1) = E(x̃1 ỹe′

1 ),

E(x̃1eT e′
T ỹ′

1,−1) = E(x̃1eT e′
T ỹe′

1 ),

E(ỹ1,−1 ỹ′
1,−1) = E(ỹe

1 ỹe′
1 ) + (T − 1)(1 + ω)σ 2

ε , and

E(ỹ1,−1eT e′
T ỹ′

1,−1) = E(ỹe
1eT eT ỹe′

1 ) + (T − 1)[1 + (T − 1)ω]σ 2
ε ,

where ỹe
1 = (y10, x ′

11β, . . . , x ′
1(T −1)β) is a (1 × T ) vector whose t-th component is

the conditional expectation E[y1(t−1)|yi0, x̃1] under γ = 0. In addition, the following
results hold:

1. When γ = 0, for any (β ′, σ 2
ε , ω) ∈ R

k × R>0 × R≥0, we have that

E

[
ỹ1,−1eT e′

T ũ1

T σ 2
ε (1 + T ω)2

]
= T − 1

T (1 + T ω)
.

2. When ω = 0, for any (β ′, σ 2
ε , γ ) ∈ R

k × R>0 × (−1, 1), we have that

E

[
ỹ1,−1eT e′

T ũ1

T σ 2
ε (1 + T ω)2

]
= 1

T

[
(T − 1) +

T∑
t=2

(T − t)γ t−1

]
. (10)

This expression is obtained by induction on T .

In the next subsections, we build the test statistics exploiting the formulas L Ma

and L M∗
a/c detailed in Sect. 3.

1.3.1 Construction of L Mγ , L Mω, L M∗
γ /ω, L M∗

ω/γ , L Mγω

These statistics can be computed by estimating just the restricted model, that is, by esti-
mating (β ′, σ 2

ε ) under (γ, ω) = (0, 0). Denote such estimate by θ̂0 = (β̂ ′, σ̂ 2
ε , 0, 0)′

and recall that we have defined θ0 = (β ′, σ 2
ε , 0, 0)′, as well as, b = (β ′, σ 2

ε )′. From
the general definition of Ja,b(θ) in Sect. 3, we can write

Jγ,b(θ0) = Jγ γ (θ0) − Jγ b(θ0)J−1
bb (θ0)Jbγ (θ0),

Jω,b(θ0) = Jωω(θ0) − Jωb(θ0)J−1
bb (θ0)Jbω(θ0),

Jγω,b(θ0) = Jγω(θ0) − Jγ b(θ0)J−1
bb (θ0)Jbω(θ0), and

J(γ,ω)′,b(θ0) = J(γ,ω)′(γ,ω)′(θ0) − J(γ,ω)′b(θ0)J−1
bb (θ0)Jb(γ,ω)′(θ0).

Note that Jγω,b(θ0) is different from J(γ,ω)′,b(θ0). After combining the above terms
with the expressions of Eq. (9), we obtain

Jγ,b(θ0) = 1

T σ 2
ε

{
E(ỹ1,−1 ỹ′

1,−1) − E(ỹ1,−1 x̃ ′
1)[E(x̃1 x̃ ′

1)]−1 E(x̃1 ỹ′
1,−1)

}
,

Jω,b(θ0) = T − 1

2
,
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Jγω,b(θ0) = T − 1

T
, and

J(γ,ω)′,b(θ0) =
(

Jγ,b(θ0) Jγω,b(θ0)

Jγω,b(θ0) Jω,b(θ0)

)
. (11)

From our assumptions and since (γ, ω) = (0, 0), it can be shown that

Jγ,b(θ0) = 1

T σ 2
ε

{
E(ỹe

1 ỹe′
1 ) − E(ỹe

1 x̃ ′
1)[E(x̃1 x̃ ′

1)]−1 E(x̃1 ỹe′
1 )

}
+ T − 1

T
, (12)

where ỹe
i = (yi0, x ′

i1β, . . . , x ′
i(T −1)β) is a (1 × T ) vector whose t-th component is

the conditional expectation E[yi(t−1)|yi0, x̃i ] under γ = 0.
In order to build feasible test statistics, which can be computed from a random

sample, we replace the unknown expectation of expression (11) with the corresponding
sample analogs; for example, E(x̃1 x̃ ′

1) is replaced by (1/N )
∑N

i=1 x̃i x̃ ′
i . After doing

so,

Ĵγ,b(θ̂0) = ŷ′−1 Qŷ−1

(N T )σ̂ 2
ε

+ T − 1

T
= ê′ê

û′û
+ T − 1

T
,

where second equality follows from the fact that Q is idempotent. Trivially, we have
that Ĵω,b(θ̂0) = (T − 1)/2 and Ĵγω,b(θ̂0) = (T − 1)/T . Then, it is straightforward to
construct Ĵ(γ,ω)′,b(θ̂0).

After plugging-in the above terms in Eq. (2), the marginal and joint test statistics
become

L Mγ = dγ (θ̂0)
′ J−1

γ,b(θ̂0)dγ (θ̂0)/(N T ) = (N T )
B2

C
,

L Mω = dω(θ̂0)
′ J−1

ω,b(θ̂0)dω(θ̂0)/(N T ) = (N T )
A2

2(T − 1)
, and

L Mγω = d(γ,ω)′(θ̂0)
′ J−1

(γ,ω)′,b(θ̂0)d(γ,ω)′(θ̂0)/(N T )

= (N T )

{ [B + (A/T )]2

C − 2(T − 1)/T 2 + A2

2(T − 1)

}
.

Note that the scores dγ (θ̂0), dω(θ̂0), and d(γ,ω)′(θ̂0) can be obtained from Appendix
1.1

Proceeding in a similar manner, we build the robust statistics. After plugging in the
formulas of Ĵγ,b(θ̂0), Ĵω,b(θ̂0), Ĵγω,b(θ̂0), and Ĵ(γ,ω)′,b(θ̂0) in Eq. (8), we obtain that

L M∗
γ /ω = (N T )

[B + (A/T )]2

C − 2(T − 1)/T 2 and

L M∗
ω/γ = (N T )

[A/2 + (T − 1)B/(T C)]2

(T − 1)/2 − (T − 1)2/(T 2C)
.
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Alternatively, and as it was stated in Sect. 3, L M∗
γ /ω and L M∗

ω/γ can be obtained
from Bera et al (2009)’s results. Observe that the above expressions are to equal
L Mγω − L Mω and L Mγω − L Mγ .

1.3.2 Construction of L Mγ /ω

From Eq. (2), the formula for L Mγ /ω becomes

L Mγ /ω = 1

N T
dγ (θ̂γ )′ J−1

γ,bγ
(θ̂γ )dγ (θ̂γ ), (13)

where bγ = (β ′, σ 2
ε , ω)′ and θ̂γ = (β̂ ′

γ , σ̂ 2
ε,γ , 0, ω̂γ )′ denote the maximum likelihood

estimator of (β ′, σ 2
ε , γ, ω)′ under the restriction γ = 0. Under the null γ = 0, L Mγ /ω

converges in distribution to χ2
1 (0); see for example, Bera and Yoon (1993, p. 651).

The score dγ (θ̂γ ) can be easily obtained from Appendix 1.1. To construct Jγ,bγ (θ̂γ ),
note first that

Jγ γ (θγ ) = 1

T σ 2
ε

[
E(ỹ1,−1 ỹ′

1,−1) − ω

(1 + T ω)
E(ỹ1,−1eT e′

T ỹ′
1,−1)

]
,

Jbγ γ (θγ ) =

⎛
⎜⎜⎜⎝

1
T σ 2

ε

[
E(x̃1 ỹ′

1,−1) − ω
(1+T ω)

E(x̃1eT e′
T ỹ′

1,−1)
]

0[1×1]
T −1

T (1+T ω)

⎞
⎟⎟⎟⎠ , and

Jbγ bγ (θγ ) =

⎛
⎜⎜⎜⎝

1
T σ 2

ε

[
E(x̃1 x̃ ′

1) − ω
(1+T ω)

E(x̃1eT e′
T x̃ ′

1)
]

0[k×1] 0[k×1]
0[1×k] 1

2(σ 2
ε )2

1
2σ 2

ε (1+T ω)

0[1×k] 1
2σ 2

ε (1+T ω)
T

2(1+T ω)2

⎞
⎟⎟⎟⎠ ,

where θγ = (β ′, σ 2
ε , 0, ω)′; see expression (9).

Since Jγ,bγ (θ̂γ ) = Jγ γ (θ̂γ )− Jγ bγ (θ̂γ )J−1
bγ bγ

(θ̂γ )Jbγ γ (θ̂γ ), we obtain Jγ,bγ (θ̂γ ) by

using elementary algebra and noting Jγ bγ (θγ ) = J ′
bγ γ (θγ ). Finally, after replacing

the expectations by the sample analoganalogs, we obtain the desired result:

L Mγ /ω = (N T )
B2

γ

Cγ − 2(T − 1)/T 2 .

1.3.3 Construction of L Mω/γ

Again, from Eq. (2), the formula for L Mω/γ becomes

L Mω/γ = 1

N T
dω(θ̂ω)′ J−1

ω,bω
(θ̂ω)dω(θ̂ω), (14)
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where bω = (β ′, σ 2
ε , γ )′ and θ̂ω = (β̂ ′

ω, σ̂ 2
ε,ω, γ̂ω, 0)′ denotes the maximum likelihood

estimator of (β ′, σ 2
ε , γ, ω) under the restriction ω = 0. Under the null ω = 0, L Mω/γ

converges in distribution to χ2
1 (0). To construct Jω,bω(θ̂ω), observe that

Jωω(θω) = T

2
,

Jbωω(θω) =
⎛
⎜⎝

0[k×1]
1

2σ 2
ε

1
T

[
(T − 1) + ∑T

t=2(T − t)γ t−1
]
⎞
⎟⎠ , and

Jbωbω(θω) =

⎛
⎜⎜⎝

1
T σ 2

ε
E(x̃1 x̃ ′

1) 0[k×1] 1
T σ 2

ε
E(x̃1 ỹ′

1,−1)

0[1×k] 1
2σ 4

ε
0[1×1]

1
T σ 2

ε
E(ỹ1,−1 x̃ ′

1) 0[1×1] 1
T σ 2

ε
E(ỹ1,−1 ỹ′

1,−1)

⎞
⎟⎟⎠ .

Finally, following similar arguments to that of the previous subsection, we obtain the
formula of Eq. (7).
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