Genomic diversity of phages infecting probiotic strains of Lactobacillus paracasei

Diego J. Mercanti ${ }^{\text {a }}$, Geneviève M. Rousseau ${ }^{\text {b }}$, María L. Capra ${ }^{\text {a }}$, Andrea Quiberoni ${ }^{\text {a }}$, Denise M. Tremblay ${ }^{\text {b }}$, Simon J. Labrie ${ }^{\mathrm{b}}$, and Sylvain Moineau ${ }^{\mathrm{b}}$ \#
${ }^{\text {a }}$ Instituto de Lactología Industrial (UNL-CONICET), Facultad de Ingeniería Química, Santa Fe, Argentina;
${ }^{\mathrm{b}}$ Département de Biochimie, de Microbiologie et de Bioinformatique \& PROTEO, Faculté des Sciences et de Génie, Félix d'Hérelle Reference Center for Bacterial Viruses \& GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada, G1V 0A6

> Running Head: Genomic characterization of L. paracasei phages

> \#Address correspondence to Diego J. Mercanti (diegojav78@gmail.com)
and Sylvain Moineau (sylvain.moineau@bcm.ulaval.ca)

Abstract

Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. Here we analyze the complete genome sequence of five L. paracasei temperate phages, $\mathrm{C}_{\mathrm{L}} 1, \mathrm{C}_{\mathrm{L}} 2$, $\mathrm{i} L p 84$, $\mathrm{i} L p 1308$ and iA 2 . Only phage iA 2 could not replicate in an indicator strain. Genome length varied from $34,155 \mathrm{bp}(\mathrm{iA} 2)$ to $39,474 \mathrm{bp}\left(\mathrm{C}_{\mathrm{L}} 1\right)$. Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, so far, for phages of the L. casei group. The GC content of the five ranged from 44.8% to 45.6%. As observed with many other phages, their genome was organized as follows: genes coding for DNA packaging - morphogenesis - lysis - lysogeny - replication. Phages $\mathrm{C}_{\mathrm{L}} 1, \mathrm{C}_{\mathrm{L}} 2$ and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages $\mathrm{C}_{\mathrm{L}} 1, \mathrm{C}_{\mathrm{L}} 2, \mathrm{i} L p 1308$ and $\mathrm{i} L p 84$ were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts.

INTRODUCTION

The Lactobacillus casei group includes the species L. casei, L. paracasei and L. rhamnosus, which are very closely related. They are grouped within the larger casei group because their species boundaries have not always been clear and, historically, their nomenclature has been sometimes controversial (1-3). Nonetheless, progress has been made in their classification $(2,4,5)$.

Strains within this group are used in many fermented dairy products, where they contribute to flavor development (6). They can also be introduced into foods at a specific final concentration to provide a functional characteristic (probiotic). They are also used as starter cultures and propagate during the fermentation (7). In all of these cases, lactobacilli cells are targets for phage attacks, as virulent bacterial viruses are natural contaminants of food processing factories (8). Additionally, it is well known that lysogeny is widespread in the genus Lactobacillus $(9,10)$. It was even suggested that these Lactobacillus prophages may evolve to become virulent phages (11). Within the L. casei group, high frequencies of prophage induction by mitomycin C treatment were observed in 10 out of 11 commercial strains, supporting the potential risks of introducing new phages within manufacturing facilities (10).

Genome sequencing has become necessary for the classification of prokaryote viruses and for understanding their evolution (12). Complete genome sequences of several phages infecting lactic acid bacteria (LAB) are now available in public databases. Most of these infect Lactococcus lactis (13), Streptococcus thermophilus (14) as well as Lactobacillus sp. Over 40 Lactobacillus prophage and phage genome sequences are available, including phages infecting diverse Lactobacillus species, such as L. gasseri (15-
18), L. johnsonii (19-21), L. plantarum (22-27), L. casei/paracasei/rhamnosus/zeae (16, 2835), L. helveticus (36), L. delbrueckii (37-42), L. salivarius (16), L. sanfranciscensis (43), L. fermentum $(44,45)$, L. brevis (46), and L. jensenii (47).

Morphology is the historical and still useful parameter for classifying phages. Over 40 phages of the L. casei group have been reported to date, mostly belonging to the Siphoviridae family (isometric capsid, long noncontractile tail) (48). The first casei phages were isolated from abnormal production of the fermented milk, Yakult; phages J-1 in 1965 (49) and PL-1 two years later (50). Their genome sequences were released only recently (32). A few other genome sequences of L. casei group phages are available, namely A2 (28, 33, 34), phiAT3 (29), Lc-Nu (31), Lb338-1 (35) as well as prophages Lca1 (16) and Lrm1 (30). Among these fully sequenced phages, Lb338-1 is the only myophage (contractile tail) and possesses a much larger genome with a particularly low GC-content (35).

Here, we analyzed five L. paracasei phages, $\mathrm{C}_{\mathrm{L}} 1, \mathrm{C}_{\mathrm{L}} 2, \mathrm{iA} 2$, $\mathrm{i} L p 84$, and $\mathrm{i} L p 1308$. Phages $C_{L} 1$ and $C_{L} 2$ were previously isolated from a spontaneously lysed culture of the probiotic strain L. paracasei A used in commercial milk beverages (51). Phage iA2 was previously induced by mitomycin C from the same probiotic strain, L. paracasei A (51). Phage iLp84 was isolated from a mitomycin C-induced strain, L. paracasei 84, and propagated on the indicator strain, L. paracasei INL3 (10). Similarly, phage iLp1308 was isolated from mitomycin C treatment of L. paracasei CNRZ 1308 and replicated in L. paracasei A14 (10). Phage iLp1308 has the same host range as phages $\mathrm{C}_{\mathrm{L}} 1$ and $\mathrm{C}_{\mathrm{L}} 2$, while the host range of phage iLp84 is restricted to fewer strains. We sequenced the genomes of these five phages to shed light on their genetic relationships as well as to increase our understanding of phages infecting probiotic L. paracasei strains.

MATERIALS AND METHODS

Bacterial strains, phages, and culture conditions. L. paracasei strains A, A14 and INL3 were grown at $37^{\circ} \mathrm{C}$ in MRS broth (Difco). Identification of the strains used in this study was previously confirmed (10) by species-specific PCR (5). Prophage iA2 was induced from L. paracasei strain A using mitomycin C (Sigma-Aldrich) at a final concentration of $0.6 \mu \mathrm{~g} / \mathrm{ml}$, as described previously (51). Phage iA2 could not be propagated on any indicator strain. Phages $C_{L} 1$ and $C_{L} 2$, originally isolated from L. paracasei A, were propagated on that strain. Phages $\mathrm{i} L p 84$ and $\mathrm{i} L p 1308$ were propagated on the indicator strains L. paracasei INL3 and A14, respectively (10). Phages were then purified by three rounds of plaque purification using their respective indicator strain. All five phages were confirmed to belong to the Siphoviridae family by electron microscopy, as shown elsewhere $(51,52)$. To amplify the phages, host bacteria were grown to an optical density $(600 \mathrm{~nm})$ of 0.2 in MRS broth supplemented with 10 mM CaCl 2 (MRS-Ca) and infected with phages at approximately $10^{4} \mathrm{PFU} / \mathrm{ml}$, followed by incubation at $37^{\circ} \mathrm{C}$ until lysis. Phage lysates were filtered through a $0.45-\mu \mathrm{m}$ filter (Sarstedt) and kept at $4^{\circ} \mathrm{C}$ until use. Phage enumeration was assessed through the double layer method (53), using MRS-Ca supplemented with 100 mM glycine (MRS-Ca-Gly) to increase plaque size (54). Plates were incubated at $37^{\circ} \mathrm{C}$ for 18 h . Phages and bacterial strains used in this study were stored at $-80^{\circ} \mathrm{C}$ in MRS broth supplemented with $15 \%(\mathrm{v} / \mathrm{v})$ glycerol, at both the INLAIN Collection (Santa Fe, Argentina) and the Félix d'Hérelle Reference Center for Bacterial Viruses of the Université Laval (Québec, Canada). The identification numbers at the Félix d'Hérelle Reference Center are HER510, HER511, HER512, HER513 (phages $\mathrm{C}_{\mathrm{L}} 1, \mathrm{C}_{\mathrm{L}} 2$, iLp84, iLp1308), and HER1510, HER1512, HER1513 (L. paracasei strains A, INL3, A14).

DNA isolation and sequencing. Phage genomic DNA was isolated using a Qiagen lambda maxi kit (Qiagen). To determine the genome extremities, phage DNA was cleaved with BglII (Roche Diagnostics) according to the manufacturer recommendations. Then, DNA fragments were resolved in a 0.8% agarose gel in 40 mM Tris-acetate -1 mM EDTA (TAE) buffer, stained with EZ-Vision Three (Amresco), and visualized under UV light. An aliquot of each digested phage DNA was heated at $75^{\circ} \mathrm{C}$ for 10 min prior to gel electrophoresis. The presence of an extra phage genomic fragment in the heated samples indicated the presence of cos-type genome extremities.

Sequencing libraries were prepared with the Nextera XT DNA Library Preparation Kit (Illumina) according to the manufacturer's instructions. The libraries were sequenced using a MiSeq Reagent Kit v2 (Illumina - 500 cycles) on a MiSeq system. De novo assembly was performed with Ray assembler versions 2.1.1-devel and 2.2.0-devel using a kmer size of 31 (55). A single contig was obtained for all phages with mean coverage depths of $2536,2396,2828,938$, and 2923 for phages $\mathrm{C}_{\mathrm{L}} 1, \mathrm{C}_{\mathrm{L}} 2, \mathrm{iA} 2$, $\mathrm{i} L p 84$, and $\mathrm{i} L p 1308$, respectively. Genome extremities were amplified using converging primers, and the PCR products were sequenced by the Sanger method using an ABI 3730xl apparatus at the sequencing and genotyping platform of the Centre Hospitalier de l'Université Laval. These latter phage sequences were assembled with Staden software (version 2.0.0b9) (56).

Bioinformatics analysis. Complete phage genomes were analyzed with BioEdit (57). Open reading frames (ORFs) were predicted with the command line version of GeneMarkS (version 4.29) using the setting for phage genomes (58). The identified ORFs were confirmed with ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). ORFs were considered candidates for evaluation when they encoded 25 or more amino acids (aa), and
possessed both a conserved Shine-Dalgarno sequence (5'-AAGGAGGT-3') and a start codon (AUG, UUG or GUG). BLASTp was used to compare translated ORF products with known proteins. Hits were considered valid when the E-value was lower than 1×10^{-3}. Conserved domains in protein sequences were identified with the NCBI CD-search interface to search the Conserved Domain Database (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Physicochemical parameters of predicted proteins were calculated with the ProtParam Tool from the ExPASy proteomics server (http://web.expasy.org/protparam/). The bioinformatic tools tRNAscan-SE 1.21 (http://lowelab.ucsc.edu/tRNAscan-SE/) and ARAGORN (59) were used for tRNA gene detection. Phage codon usage was calculated using the Countcodon program (http://www.kazusa.or.jp/codon/) and compared with the codon usage of L. paracasei, obtained from the same database. For the alignment figures, phage and prophage protein sequences were compared using BLASTp 2.2.28+ (60). The percent identity between proteins was calculated by dividing the number of identical residues by the size of the largest protein. The genome maps were generated using the GenoPlotR package (61).

Terminase phylogeny. The phylogenetic tree of the terminase was generated with a dataset including sequences representing the main phage groups (62). The sequences were aligned using MAFFT with the automatic settings. The alignment was converted to the PHYLIP format with compatible name using in-house Python script. The most probable amino-acid substitution model was determined using ProtTest 3.2 (63). The best model was then implemented in Phyml 3.0 to calculate the best tree (64). Branch support value was established using the Shimodaira-Hasegawa-like procedure (65). The leaves of the tree
were renamed using the Newick utility package (66). Finally, the tree was rendered using the web interface ITOL (67).

Nucleotide sequence accession numbers. The complete genome sequences of phages $\mathrm{C}_{\mathrm{L}} 1$, $\mathrm{C}_{\mathrm{L}} 2$, $\mathrm{iA} 2, \mathrm{i} L p 84$, and $\mathrm{i} L p 1308$ have been deposited in GenBank under accession numbers KR905066, KR905067, KR905068, KR905069, and KR905070, respectively.

RESULTS AND DISCUSSION

Phage genomes overview. The five phage genomes analyzed in this study were double-stranded DNA molecules and their general features are shown in Table 1. The genome size of phages $C_{L} 1, C_{L} 2$, and $i L p 84$ ranged from 38,751 to $39,474 \mathrm{bp}$ and were similar to most L. casei group phages already described (Table 1). The genomes of phages iA2 ($34,155 \mathrm{bp}$) and iLp1308 (34,176 bp) were about 2 kb shorter than the genome of phage $\mathrm{Lc}-\mathrm{Nu}(36,466 \mathrm{bp})$, the smallest genome of L. casei phage reported before this study (Table 1). The GC-content (44.8-45.6\%) of the five phages was similar to the other L. casei group phages (Table 1). The previously characterized L. paracasei myophage ϕ Lb338-1 has a much lower GC content (37.4\%) but it differs in structure from the L. casei phages and has a much larger genome (35). The genome of prophage iA2 has cohesive extremities with 3' overhangs that are $10-\mathrm{nt}$ long (CGGCATGCAA). Of note, when this sequence is ligated, it generates an orf coding for a HNH endonuclease. Hence, we elected to end the map of prophage iA2 after this orf and we located the cos-site at the positions 3413534144.

Genome organization. Table 2 provides the analysis of the predicted ORFs for phage $\mathrm{C}_{\mathrm{L}} 1$. Homologous ORFs predicted for phages $\mathrm{C}_{\mathrm{L}} 2$, $\mathrm{i} L p 84$, and $\mathrm{i} L p 1308$ and their respective amino acid identities with the deduced proteins of phage $C_{L} 1$ are indicated as well. Phage $\mathrm{C}_{\mathrm{L}} 1$ was chosen as the reference because it has the highest identity with the other three phages ($\mathrm{C}_{\mathrm{L}} 2$, iLp84, and iLp1308; see Fig. 1, discussed below). Because prophage iA2 does not have significant similarity to these four phages, Table 3 presents the analysis of its 50 predicted ORFs, including 24 with a probable function. The organization of these genomes is modular and resembles that reported for other L. casei phages. Their genomes have clusters of genes involved in DNA packaging, morphogenesis, lysis, lysogeny, and replication (Figure 1; Tables 2 and 3). Still, as illustrated in Figure 1, the five phages described in this study are clearly distinct from the other phages of the L. casei group characterized to date.

Phylogeny and comparative analysis of the phages. We looked at the relationships of these five phages to other phages using one of the most conserved genes: the large terminase subunit. This gene was used previously in attempts to classify phages (70). Casjens et al. (62) also proposed to use the terminase phylogeny for classification of phages into different groups according to their encapsidation mechanism. Figure 2 presents the phylogenic analysis of a dataset of terminase sequences including the five phages of this study and others present in public databases. Based on terminase phylogeny, phages $\mathrm{C}_{\mathrm{L}} 1$, $\mathrm{C}_{\mathrm{L}} 2$, iLp84, and iLp1308 are highly related, and possess a P22-like headful mechanism. Among Lactobacillus phages, only phages Lj965 (infecting L. johnsonii) and LL-H (L. delbrueckii) have this feature, and only Lj965 is related to the five L. paracasei phages. The
other L. casei group phages sequenced, so far, have a 3 '-extended cos packaging system, similar to phage iA2. These findings highlight the diversity in this group of phages.

Among the other phages of the L. casei group presenting 3'-extended cos ends, the large terminase subunits of phages A2, J-1, PL-1, and prophage Lrm1 are closely related. As indicated previously, phages J-1 and PL-1 were isolated during the manufacture of Yakult in the mid-1960s and they are almost identical $(49,50)$. However, phage PL-1 infects a strain insensitive to J-1 $(49,50)$. Prophage iA2 shares a low level of similarity to these phages but it falls within the same cluster based on terminase phylogeny (Figure 2).

Genomic comparison of phages $\mathbf{C}_{\mathbf{L}} \mathbf{1}$ and $\mathbf{C}_{\mathbf{L}} \mathbf{2}$. As shown in Figure 1 , phages $\mathrm{C}_{\mathrm{L}} 1$ and $\mathrm{C}_{\mathrm{L}} 2$ are highly related ($>80 \%$ identity) and they were both amplified on the same strain, L. paracasei A . The differences were mainly found in genes coding for non-structural proteins, probably involved in replication, regulation, and lysogeny. Both phages have homing endonucleases of similar size (ORF61/ $\mathrm{C}_{\mathrm{L}} 1$ and ORF3/ $\mathrm{C}_{\mathrm{L}} 2$), but with low genetic identity. The presence of at least three genes encoding putative transposases in $\mathrm{C}_{\mathrm{L}} 1$ (ORF33, ORF35, and ORF36) and one in $\mathrm{C}_{\mathrm{L}} 2$ (ORF37) (Table 2) was somewhat surprising and may be responsible for phage diversity since transposases can promote genome rearrangements and genetic exchange. In $\mathrm{C}_{\mathrm{L}} 1$, however, only ORF35 and ORF36 seem to be functional, based on their protein size. The former (ORF35) has 381 amino acid residues and transposases of similar length (and with $>71 \%$ identity) as reported for diverse species of Lactobacillus, including L. paracasei phage Lb338-1 but also strains of L. brevis, L. kisonensis, L. pentosus, L. malefermentans, and Sporolactobacillus laevolacticus. The ORF36 transposase has 141 amino acid residues and also seems to be complete, though the identity to enzymes of similar size was lower and corresponded mainly to transposases of L. versmoldensis, L. salivarius and several species of Staphylococcus. Phage C C_{L} 2's ORF37,
which has a very high amino-acid identity to ORF33 of $\mathrm{C}_{\mathrm{L}} 1$, has only 50 amino acid residues and this gene product is likely not functional. Based on BLAST analysis, similarities were found only to partial sequences of reported transposases of Staphylococcus aureus and S. epidermidis.

Genomic comparison of the phages $\mathbf{C}_{\mathbf{L}} \mathbf{1}$ and $\mathbf{i} \operatorname{Lp} 1308$. The genome of phage $\mathrm{i} L p 1308$ is about 5 kb smaller than $\mathrm{C}_{\mathrm{L}} 1$ and $\mathrm{C}_{\mathrm{L}} 2$, but retains a high level of identity with them, especially in genes involved in DNA packaging, morphogenesis and cell lysis. Inverted repetitions (285 bases) flank orf29 and orf34 (4.3 kb apart) in the genome of iLp1308 (Figure 3), but they are absent in the other four phages. The region between these repetitions in the genome of phage $\mathrm{i} L p 1308$ contains six genes encoded on the opposite strand, probably as a result of a recombination event. Similarly, phage $C_{L} 1$ has a 4.9 kb region (from orf32 to orf40) that is missing between orf32 and orf33 in phage iLp1308 (Figure 3). This 4.9 kb region contains genes encoding for antirepressor protein, tcdA-E operon negative regulator and transposases, as discussed. These DNA rearrangements may have occurred during past integration/excision events from bacterial genomes.

Analysis of phage iLp84 genome. Phage iLp84 has a genome size similar to $\mathrm{C}_{\mathrm{L}} 1$ and $\mathrm{C}_{\mathrm{L}} 2$ but the identity is limited to genes/proteins involved in DNA packaging and morphogenesis. The tail tape measure, tail fiber, and tail-host interaction proteins are the largest structural proteins among these phages. Some of them share high amino acid identities $(>80 \%)$. The tail fiber and tail-host interaction protein of phage iLp84 possess 72% to 78% amino acid identity with the corresponding proteins in phages $\mathrm{C}_{\mathrm{L}} 1, \mathrm{C}_{\mathrm{L}} 2$, and iLp1308. In support of the similarities between the tail-host interaction proteins, these four
phages have the same host range (Mercanti et al 2011). Conversely, the tail tape measure protein of phage iLp84 does not have significant identity with the other phages.

Analysis of phage iA2 genome. The genome of phage iA2 is completely different from the other phages infecting the L. casei group, suggesting a different origin. The endolysin (ORF22) is the only protein that has homology with proteins of phages $\mathrm{C}_{\mathrm{L}} 1, \mathrm{C}_{\mathrm{L}} 2$ and iLp1308, whereas ORF38 (putative DNA repair protein) has homology with a protein of phage iLp84. These genomic differences are in accordance with other distinct phenotypes. For example, phage iA2 is readily induced at high level after treatment with mitomycin C but we could not find an indicator strain for this phage. As discussed below, phage iA2 is highly similar to putative prophages extracted from the genomic sequences of strains of the L. casei group available in GenBank (Figure 4).

Comparison with prophages. The occurrence of prophage DNA within bacterial genomes is common and the presence of such sequences can be identified using bioinformatic tools such as PHAST. Bacterial genomes can harbor inducible prophages but also altered/remnants of prophages displaying insertions, deletions or rearrangements (16). The BLAST analyses of the five phage genomes characterized in this study revealed that they are more closely related to prophage sequences found in bacterial chromosomes (data not shown). These prophage sequences were found in the genome of L. casei strains but also in strains of the other two species of the casei group, L. paracasei and L. rhamnosus. This is likely due to the high degree of relatedness among species included in the casei group (5). Some Lactobacillus phages were previously assumed to be able to cross the species barrier.

For example, L. rhamnosus phage $\mathrm{Lc}-\mathrm{Nu}$ is homologous to the L. casei temperate phages phiAT3 and A2 (31).

Phages $\mathrm{C}_{\mathrm{L}} 1$ and $\mathrm{C}_{\mathrm{L}} 2$ showed high identity with sequences found in L. rhamnosus strains ATCC 53103, GG, and LOCK900, and L. casei strains 12A and ATCC 334 (data not shown). However, alignments were always fragmented and covered, in the best cases, just 48 to 50% of phage $\mathrm{C}_{\mathrm{L}} 1$ and $\mathrm{C}_{\mathrm{L}} 2$ genomes. Homology between the genomes of $\mathrm{C}_{\mathrm{L}} 1 / \mathrm{C}_{\mathrm{L}} 2$ and the genome of L. casei ATCC 334 was detected in two different regions, one being the prophage Lcal (16). The genome of phage iLp1308 aligned relatively well with sequences in the genomes of three L. casei strains: W56, BD-II and BL-23 (data not shown). Sequences identical to the phage $\mathrm{i} L p 84$ genome were found in the genomes of the same L. casei strains (data not shown).

Interestingly, the genome of the prophage iA2 was also observed in the above L. casei strains (W56, BD-II, and BL-23) and also in L. casei LC2W (Figure 4). Unlike the other four phages studied, the identity to prophage iA2 sequences found in these four bacterial genomes was very high (from 99.90 to 99.98%) and included virtually the whole prophage genome, though with some rearrangements. Three other fully sequenced Lactobacillus strains contained very large fragments of iA2 prophage (L. paracasei N1115 and 8700:2, L. casei LOCK919) (Figure 4).

We extracted these prophage sequences from the genomes of strains of the L. casei group for a comparative analysis with prophage iA2. The comparison is presented in Figure 4. As expected from the nucleotide identity levels, most of the deduced ORFs of prophages from L. casei strains W56, BD II, and BL-23 (group 1) share high amino acid identity $(>99 \%)$ with the predicted proteins of prophage iA2. A second prophage, found in each of these four bacterial strains, was found to be very well conserved (prophage group 2), but
with noticeably lower identity to group 1. About half of the deduced ORFs of L. casei LOCK919 and L. paracasei N1115 prophages, and only 4 ORFs of L. paracasei 87002 prophage possess amino acid identity over 99\% (Figure 4). Nonetheless, for most ORFs of these three phages, identity with prophages of group 1 is still high, indicating that they could belong to the same group (data not shown). All prophages of group 1 and prophages of L. casei LOCK919 and L. paracasei N1115 are integrated at the same site, in a region coding for a tRNA-Leu. Prophage of group 2 are integrated in a region coding for a tRNAArg.

Taken altogether, these comparisons highlighted the widespread occurrence of phage-related sequences in strains of the casei group. These prophage sequences significantly contribute to their diversity. It is tempting to speculate that perhaps prophage sequences could be used as markers for either strain identification or tracking.

Presence of tRNA in phage genomes. Although the importance of tRNAs in phage genomes is not fully understood, their presence is relatively common, particularly in large genomes (69). One tRNA was detected in the genomes of phages $\mathrm{C}_{\mathrm{L}} 2$ and $\mathrm{i} L p 84$. No tRNA was detected in the smaller genomes of phages iLp1308 and iA2 (Table 4). Table 4 lists the tRNA present in the available phage genomes of the L. casei group. Phage Lb338-1 is the only one with more than one tRNA in its genome. Phage iLp84 tRNA provides the amino acid isoleucine (Ile, ATA). This tRNA is similar to the one found in phage A2, but the A2 tRNA provides the amino acid leucine (TTA). The isoleucine codon ATA is used by L. paracasei at frequencies of 3.7%, while for phage iLp84, it is 13.2%. This observation supports the hypothesis that phages encode tRNAs corresponding to codons less frequently used by the host bacteria to favor the expression of phage proteins (61).

Conclusion. Lactobacillus phages have been studied less than other phages of lactic acid bacteria (48). The interest in this genus has been eclipsed by substantial studies on Lactococcus lactis and Streptococcus thermophilus, the main species of LAB used as starters in the dairy industry (71). However, strains of the L. casei group (L. casei, L. paracasei and L. rhamnosus) are now widely used as probiotics in foods. It is recognized that increased used of LAB will eventually lead to infection by virulent phages (71). Therefore, Lactobacillus phages deserve attention, considering the potential risk of losses associated with phage infections of probiotic bacteria, whose replacement with suitable strains is difficult to achieve.

In previous studies we demonstrated the high occurrence of prophages in probiotic strains added to dairy foods $(10,51)$. Here, we characterize five new phages of the increasingly important L. casei group, including four which can replicate in indicator strains. These phages are distinct from the previously characterized Lactobacillus phages and can be divided into two groups $\left(\mathrm{C}_{\mathrm{L}} 1 / \mathrm{C}_{\mathrm{L}} 2 / \mathrm{i} L p 1308 / \mathrm{i} L p 84\right.$ and iA 2$)$. Our results also point out what appears to be a high frequency of recombination events between phages and their host prophages, leading to phage and host diversity. These findings also suggest that new Lactobacillus phages likely remain to be discovered.

Our comparative genomic analyses also suggest ample distribution of prophages in the genomes of strains across the L. casei group. This offers a reservoir of genes that could be used by virulent phages to rapidly evolve (72, 73). The impact of these phage-host interactions on the properties (including probiotics), phenotypes, and stability of Lactobacillus strains is currently unknown. Future research should look to discover the frequency of these interactions and their impact on strain activities. It would also be of
interest to study the different molecular mechanisms used by Lactobacillus to defend against these phages (74).

ACKNOWLEDGMENTS

We would like to thank Barbara-Ann Conway (Medical Writer \& Editor) for editorial assistance. We are grateful to Pier-Luc Plante and Jacques Corbeil for preliminary genome assembly and access to the Illumina platform. This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Project PIP $\mathrm{N}^{\circ} 112-200801-01206$; Argentina). D.M. acknowledges funding from the CONICET and by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT; Project PICT 2010-0138; Argentina). S.M. holds a Tier 1 Canada Research Chair in Bacteriophages.

Abstract

\section*{REFERENCES} 1. Tindall BJ. 2008. The type strain of Lactobacillus casei is ATCC 393, ATCC 334 cannot serve as the type because it represents a different taxon, the name Lactobacillus paracasei and its subspecies names are not rejected and the revival of the name 'Lactobacillus zeae' contravenes Rules 51b (1) and (2) of the International Code of Nomenclature of Bacteria. Opinion 82. Int J Syst Evol Microbiol 58:17641765. 2. Dicks LM, Du Plessis EM, Dellaglio F, Lauer E. 1996. Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei. Int J Syst Bacteriol 46:337-340. 3. Dellaglio F, Felis GE, Torriani S. 2002. The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. Request for an opinion. Int J Syst Evol Microbiol 52:285-287. 4. Collins MD, Phillips BA, Zanoni P. 1989. Deoxyribonucleic Acid Homology Studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int J Syst Evol Microbiol 39:105-108. 5. Desai AR, Shah NP, Powell IB. 2006. Discrimination of dairy industry isolates of the Lactobacillus casei group. J Dairy Sci 89:3345-3351.

	3	

15. Altermann E, Klaenhammer TR. 2011. Group-specific comparison of four lactobacilli isolated from human sources using differential blast analysis. Genes \& nutrition 6:319-340.
16. Ventura M, Canchaya C, Bernini V, Altermann E, Barrangou R, McGrath S, Claesson MJ, Li Y, Leahy S, Walker CD, Zink R, Neviani E, Steele J, Broadbent J, Klaenhammer TR, Fitzgerald GF, O'Toole P W, van Sinderen D. 2006. Comparative genomics and transcriptional analysis of prophages identified in the genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei. Appl Environ Microbiol 72:3130-3146.
17. Altermann E, Klein JR, Henrich B. 1999. Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage (phi)adh. Gene 236:333-346.
18. Baugher JL, Durmaz E, Klaenhammer TR. 2014. Spontaneously induced prophages in Lactobacillus gasseri contribute to horizontal gene transfer. Appl Environ Microbiol 80:3508-3517.
19. Ventura M, Canchaya C, Pridmore D, Berger B, Brussow H. 2003. Integration and distribution of Lactobacillus johnsonii prophages. J Bacteriol 185:4603-4608.
20. Ventura M, Canchaya C, Pridmore RD, Brussow H. 2004. The prophages of Lactobacillus johnsonii NCC 533: comparative genomics and transcription analysis. Virology 320:229-242.
21. Desiere F, Pridmore RD, Brussow H. 2000. Comparative genomics of the late gene cluster from Lactobacillus phages. Virology 275:294-305.
22. Kodaira KI, Oki M, Kakikawa M, Watanabe N, Hirakawa M, Yamada K, Taketo A. 1997. Genome structure of the Lactobacillus temperate phage phi g1e:

23. Durmaz E, Miller M, Azcarate-Peril M, Toon S, Klaenhammer T. 2008. Genome sequence and characteristics of Lrm1, a prophage from industrial Lactobacillus rhamnosus strain M1. Appl Environ Microbiol 74:4601-4609.
24. Tuohimaa A, Riipinen KA, Brandt K, Alatossava T. 2006. The genome of the virulent phage $\mathrm{Lc}-\mathrm{Nu}$ of probiotic Lactobacillus rhamnosus, and comparative genomics with Lactobacillus casei phages. Arch Virol 151:947-965.
25. Dieterle ME, Jacobs-Sera D, Russell D, Hatfull G, Piuri M. 2014. Complete genome sequences of Lactobacillus phages J-1 and PL-1. Genome Announc 2(1): 000998-13.
26. Herrero M, de los Reyes-Gavilán CG, Caso JL, Suárez JE. 1994. Characterization of $\varnothing 393-\mathrm{A} 2$, a bacteriophage that infects Lactobacillus casei. Microbiology 140:2585-2590.
27. Proux C, van Sinderen D, Suarez J, Garcia P, Ladero V, Fitzgerald GF, Desiere F, Brussow H. 2002. The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria. J Bacteriol 184:6026-6036.
28. Alemayehu D, Ross RP, O'Sullivan O, Coffey A, Stanton C, Fitzgerald GF, McAuliffe O. 2009. Genome of a virulent bacteriophage Lb338-1 that lyses the probiotic Lactobacillus paracasei cheese strain. Gene 448:29-39.
29. Zago M, Scaltriti E, Rossetti L, Guffanti A, Armiento A, Fornasari ME, Grolli S, Carminati D, Brini E, Pavan P, Felsani A, D'Urzo A, Moles A, Claude JB, Grandori R, Ramoni R, Giraffa G. 2013. Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage $\{$ Phi $\}$ AQ113. Appl Environ Microbiol 79:4712-4718.
30. Vasala A, Dupont L, Baumann M, Ritzenthaler P, Alatossava T. 1993. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages. J Virol 67:3061-3068.
31. Mikkonen M, Alatossava T. 1994. Characterization of the genome region encoding structural proteins of Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H. Gene 151:53-59.
32. Mikkonen M, Raisanen L, Alatossava T. 1996. The early gene region completes the nucleotide sequence of Lactobacillus delbrueckii subsp. lactis phage LL-H. Gene 175:49-57.
33. Riipinen KA, Forsman P, Alatossava T. 2011. The genomes and comparative genomics of Lactobacillus delbrueckii phages. Arch Virol 156:1217-1233.
34. Casey E, Mahony J, O'Connell-Motherway M, Bottacini F, Cornelissen A, Neve H, Heller KJ, Noben JP, Dal Bello F, van Sinderen D. 2014. Molecular characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages. Appl Environ Microbiol 80:5623-5635.
35. Casey E, Mahony J, Neve H, Noben JP, Bello FD, van Sinderen D. 2014. Genome and proteome analysis of bacteriophage Ldll reveals the existence of a novel phage group infecting Lactobacillus delbrueckii subsp. lactis. Appl Environ Microbiol 81:1319-1326.
36. Ehrmann MA, Angelov A, Picozzi C, Foschino R, Vogel RF. 2013. The genome of the Lactobacillus sanfranciscensis temperate phage EV3. BMC Res Notes 6:514.
37. Yoon BH, Chang HI. 2011. Complete genomic sequence of the Lactobacillus temperate phage LF1. Arch Virol 156:1909-1912.
38. Zhang X, Wang S, Guo T, Kong J. 2011. Genome analysis of Lactobacillus fermentum temperate bacteriophage ϕ PYB5. Int J Food Microbiol 144:400-405.
39. Jang SH, Yoon BH, Chang HI. 2011. Complete nucleotide sequence of the temperate bacteriophage LBR48, a new member of the family Myoviridae. Arch Virol 156:319-322.
40. Martin R, Escobedo S, Suarez JE. 2010. Induction, structural characterization, and genome sequence of Lv1, a prophage from a human vaginal Lactobacillus jensenii strain. Int Microbiol 13:113-121.
41. Villion M, Moineau S. 2009. Bacteriophages of Lactobacillus. Front Biosci 14:1661-1683.
42. Hino M, Ikebe N. 1965. Studies on the lactic acid bacteria employed for beverage production II. Isolation and some properties of a bacteriophage infected during the fermentation of lactic acid beverage. J Agric Chem Soc Jpn 39:472-476.
43. Watanabe K, Takesue S, Jin-Nai K, Yoshikawa T. 1970. Bacteriophage active against the lactic acid beverage-producing bacterium Lactobacillus casei. Appl Microbiol 20:409-415.
44. Capra ML, Mercanti DJ, Reinheimer JA, Quiberoni AL. 2010. Characterisation of three temperate phages released from the same Lactobacillus paracasei commercial strain. Int J Dairy Technol 63:396-405.
45. Mercanti DJ, Ackermann HW, Quiberoni A. 2015. Characterization of two temperate Lactobacillus paracasei bacteriophages: morphology, kinetics and adsorption. Intervirology 58:49-56.
46. Svensson U, Christiansson A. 1991. Methods for phage monitoring. Bulletin -FIL-IDF 263:29-39.
47. Lillehaug D. 1997. An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages. J Appl Microbiol 83:85-90.
48. Boisvert S, Laviolette F, Corbeil J. 2010. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol 17:15191533.
49. Staden R. 1996. The Staden sequence analysis package. Mol Biotechnol 5:233241.
50. Hall TA. 1999. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95-98.
51. Lukashin AV, Borodovsky M. 1998. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107-1115.
52. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11-16.
53. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:1471-2105.
54. Guy L, Roat Kultima J, Andersson SGE. 2010. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26:2334-2335.
55. Casjens SR, Gilcrease EB, Winn-Stapley DA, Schicklmaier P, Schmieger H, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, Hendrix RW. 2005. The generalized transducing Salmonella bacteriophage ES18: Complete genome sequence and DNA packaging strategy. J Bacteriol 187:1091-1104.
56. Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164-1165.

57. Capra ML, Quiberoni A, Ackermann HW, Moineau S, Reinheimer JA. 2006. Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. J Dairy Sci 89:2414-2423.
58. Labrie S, Samson J, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317-327.

| |
| :--- | :--- | :--- | :--- | :--- | :--- |

(1)

575
576

List of Figures.

Figure 1. Schematic representation of the genome organization of different Lactobacillus phages. Each line corresponds to a different genome and starts from its physical end. Predicted ORFs are represented by arrows. ORFs with the same color in different phages possess amino acid identity higher than 80%. The white ORFs have less than 80% identity with any another ORF. Asterisks indicate transposases in the genomes of phages $\mathrm{C}_{\mathrm{L}} 1$ and $\mathrm{C}_{\mathrm{L}} 2$.

Figure 2. Maximum-likelihood tree for the taxonomy of several phages and prophages according to amino acid sequences of the large terminase subunit. Sequences were obtained in this study and from multiple phage genomes available in databases. Phage names are indicated at the end of each terminal branch. Colors categorize phages with different encapsidation systems: Blue, 3'-extended cos ends; orange, Mu-like headful; violet, lambda-like 5'-extended cos; light blue, T7-like direct terminal repeats; light green, T4-like headful; dark green, P2-like 5'-extended cos ends; pink, GTA headful; red, P22-like headful.

Figure 3. Comparison of the DNA and amino acid identity (blue-filled arrows) between the phages $\mathrm{C}_{\mathrm{L}} 1$ and $\mathrm{iLp1308}$. The level of amino-acid identity is shown with a white-blue gradient where ORFs represented by white arrows share less than 90% identity. The ORFs represented by blue arrows share 90% identity or more, with the shade of blue increasing with the level of identity as indicated by the legend. DNA identity between both genomes is

Abstract

also indicated for sequences running in the same (red shadows) or in opposite directions (blue shadows). Asterisks indicate transposases in the genome of phage $\mathrm{C}_{\mathrm{L}} 1$. Black triangles indicate a $285-\mathrm{nt}$ inverted repeats in the genome of phage iLp1308.

Figure 4. Genome organization of prophage iA2 and prophages extracted from the available genomic sequences of L. casei group strains. Genomes start from the attachment sites. ORFs are indicated by arrows. ORFs with the same color in different prophages possess amino acid identity higher than 99%. White ORFs are unique. Groups indicate prophages that are highly conserved in different strains.

$\left[\begin{array}{c}\text { L. casei LC2W - prophage } 2 \\ \text { L. casei BL23 - prophage } 2 \\ \text { L. casei BDII - prophage } 2 \\ \text { L. casei W56 - prophage } 2\end{array}\right]$

