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In this article, static light scattering (SLS) measurements are processed to estimate the particle size dis-
tribution of particle systems incorporating prior information obtained from an alternative experimental
technique: scanning electron microscopy (SEM). For this purpose we propose two Bayesian schemes
(one parametric and another non-parametric) to solve the stated light scattering problem and take advan-
tage of the obtained results to summarize some features of the Bayesian approach within the context of
inverse problems. The features presented in this article include the improvement of the results when some
useful prior information from an alternative experiment is considered instead of a non-informative prior as
it occurs in a deterministic maximum likelihood estimation. This improvement will be shown in terms of
accuracy and precision in the corresponding results and also in terms of minimizing the effect of multiple
minima by including significant information in the optimization. Both Bayesian schemes are implemented
using Markov Chain Monte Carlo methods. They have been developed on the basis of the Metropolis–

Hastings (MH) algorithm using Matlab
®

and are tested with the analysis of simulated and experimental
examples of concentrated and semi-concentrated particles. In the simulated examples, SLS measurements
were generated using a rigorous model, while the inversion stage was solved using an approximate model
in both schemes and also using the rigorous model in the parametric scheme. Priors from SEM micro-
graphs were also simulated and experimented, where the simulated ones were obtained using a Monte
Carlo routine. In addition to the presentation of these features of the Bayesian approach, some other top-
ics will be discussed, such as regularization and some implementation issues of the proposed schemes,
among which we remark the selection of the parameters used in the MH algorithm.

Keywords: Bayesian estimation; particle size distribution; inverse problem; Metropolis–Hastings;
static light scattering
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1. Introduction

Inverse problems arise in many fields of science and engineering. Typical examples include
tomography [16,21], geophysics [23], heat transfer [1,22] and image processing [35] among
many others. The ill-posedness of inverse problems requires an effective use of some sort of pro-
cess to introduce additional information. Traditionally, classical deterministic approaches such
as regularized least-squares using initially Tikhonov regularization [31] and more recently total
variation regularization [32] have been used to obtain a single solution to the problem. However,
instead of obtaining a unique solution, it might be more valuable to achieve a confidence inter-
val for the model parameters. In this case, it is worth recalling that once we have regularized a
least-squares problem, we lose the ability to obtain statistically valid confidence intervals for the
parameters. This is because regularization brings about the appearance of a bias in the solution
[2]. A different point of view is developed in the Bayesian approach, in it all the parameters
and variables of the models are modeled as random variables and the solution of the inverse
problem is a probability distribution of these model parameters. This approach makes the cal-
culation of the respective confidence intervals a straightforward task. Another characteristic of
the Bayesian approach is the inclusion of additional information as a prior probability distri-
bution of the unknown variables. However, as Lopes and Tobias stated in [20], to say that the
Bayesian approach is unique or clearly differentiated from the classical approach to inference
because of its reliance on prior information is misleading. In fact, from a Bayesian point of
view, many classical regularization techniques are equivalent to imposing certain prior distribu-
tions on model parameters and, furthermore, the Bayesian approach can be effectively used for
the selection of the so-called regularization parameter as can be seen in some articles [19,36].
It is also important to remark that although the Bayesian approach allows us to compute con-
fidence intervals, single values for the model parameters can also be obtained, such as the
mode of the posterior distribution, that is, the maximum a posteriori (MAP), and the median
which has been suggested as a robust estimator in the bibliography [28,29]. Fraley and Raftery
showed in [8] the advantage of computing the MAP solution instead of the traditional max-
imum likelihood estimation (MLE) in order to avoid singularities or degeneracies. Finally, a
fourth advantage of the Bayesian approach is that it explicitly addresses the uncertainty in the
model.

Algorithms for solving the inverse problems whether they are based on a Bayesian approach or
not, have two main issues to be considered: robustness and efficiency. Even when these attributes
are problem-specific, we may understand by robustness of the algorithm its ability to attain the
best estimate of the model parameters starting with much wider guess values of them. Efficiency,
on the other hand, is attributed to the degree of compute-intensiveness [27]. In this sense, most of
the studies using the Bayesian approach to inverse problems are related to the Bayesian robust-
ness, that is, the sensitivity of Bayesian answers to the uncertain inputs: the model, the prior
distribution or some combination thereof [3]. In particular, the selection of the prior distribution
is a matter of continuous debate. In fact, one of the major critics to the Bayesian approach is due
to de Finetti’s subjectivist conception of Bayesianism which has led to the personal choice of
prior. However, there also have been several tries to formalize the choice of priors. For instance,
non-informative (NI) priors were considered to yield robust answers since the time of Laplace,
but it was after a century later when formal rules were introduced for its construction as it can
be seen in the excellent review by Kass and Wasserman in reference [18]. On the other side,
there are many times when the state of knowledge before the data recollection is far from being
a state of ignorance and some robustness has to be sacrificed in order to effectively use this
prior information. In this sense, one of the biggest challenges in statistical inversion theory is the
design of methods that incorporate all prior information [17]. Furthermore, it has been seen that
for data with a high signal-to-noise ratio, a Bayesian analysis can frequently yield many orders
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996 F.A. Otero et al.

of magnitude improvement in model parameter estimation, through the incorporation of relevant
prior information [13].

In this paper many of the features described above will be shown when we examine a par-
ticular inverse problem in the area of static light scattering (SLS). Several articles have been
written using a Bayesian approach to estimate the particle size distribution (PSD) of different
materials [7,37]. A prior distribution acting as a regularization term will be seen as mentioned in
a previous paragraph and corresponding results will show how the Bayesian approach can help
to solve a multiple local minima problem. An alternative procedure will be detailed also for the
consideration of model errors, equivalent to the one presented in [17]. Finally, the potentiality
of the Bayesian approach in the improvement in model parameter estimation will be presented
during a comparison of the results between a NI prior and an informative prior obtained from a
previous experiment.

2. The inverse problem of estimating the PSD using SLS

2.1 General description

There are numerous materials appearing in diverse industrial applications composed of particles
either suspended in a fluid or embedded in a solid matrix. In many cases, these particle systems
can be characterized through their PSD’s. The estimation of the PSD can be achieved using dif-
ferent particle sizing techniques. Optical techniques stand out because they are non-destructive.
One of the most important optical techniques is the so-called SLS which has been widely used
in practice for particles from about 50 nm to several micrometers [12]. The basic process con-
sists in illuminating a sample of particles by a laser light and measuring the intensity of the light
scattered at different angles.

Estimation of the PSD using SLS measurements requires solving an ill-conditioned inverse
problem using a predefined model. In this article, the estimated PSD corresponds to a number-
PSD. The inverse problem can be formulated as estimating the PSD represented by a function
f (R) (considering that particles are spherical and therefore the PSD can be expressed as a function
of a radius R) by using the intensity of light scattered as data, noted by Is(q), where the variable
q makes reference to the magnitude of the scattering vector and it is computed as

q = 4πnm

λ0
sin

θ

2
, (1)

where nm is the refractive index of the suspending media, λ0 is the wavelength of the incident
light in vacuum and θ is the scattering angle.

When the inverse problem is solved and the used model makes it possible, also the volume
fraction of particles, η, can be estimated, and in some cases, previous information about the
statistical parameters of the PSD can be incorporated in the estimation process. For these cases,
the inverse problem is solved by combining the SLS measurements with the results of scanning
electron microscopy (SEM) which brings the previous information mentioned above through the
analysis of micrographs of the studied systems. Examples of these micrographs can be seen in
Figure 1(a) and 1(b), while the corresponding SLS intensities are shown in Figure 1(c) and 1(d).
These examples, labeled as 30PIB5 and 50PIB25, correspond to samples of polymer particles
embedded in a solid polymer matrix. The details of these samples will be given in a later section.
It must also be pointed out that in the process of solving the inverse problem other parameters
proper to the corresponding used models must also be estimated as we will see in the following
section.
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Figure 1. SEM micrographs for the experimental examples: (a) 30PIB5, and (b) 50PIB25; and their
corresponding SLS measurements: (c) 30PIB5, and (d) 50PIB25.

2.2 SLS models

Estimation of the PSD using SLS measurements requires solving an ill-conditioned inverse prob-
lem using a predefined model. The well-known model derived under the so-called Mie regime for
one particle can be straightforwardly extended to a system of many particles only if the assump-
tion of independent single scattering is valid, which means that the system is diluted [5,15].
However, for concentrated particle systems which cannot be controlled by dilution, approxi-
mated models based on the Rayleigh–Gans theory have been developed [4,14]. In the works of
Vrij [33,34] a model is formulated for finite mixtures of particles treated as impenetrable spheres
which cannot be overlapped in space, that is, hard spheres (HS). Vrij’s HS model provides an
analytical solution to the SLS problem of a concentrated system of spherical particles in the so-
called Percus–Yevick approximation. Vrij’s HS model provides a matrix form for the calculation
of the scattered intensities. In this model, the observable magnitude is the differential scattering
cross section (DSCS), proportional to the intensity of the scattered light Is(q)

d
∑
(q)

d�
= Is(q)Ad

E2
0(Ad/D2)

= KiIs(q), (2)
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998 F.A. Otero et al.

where d
∑
(q)/d�is the DSCS per unit volume, E0 is the intensity of the incident electric field,

D is the distance from the sample to the detector, Ad is the area of the detector and Ki is an
instrumental constant which merges all involved parameters.

The complete formulation for Vrij’s HS model can be seen in Appendix 1. Estimated parame-
ters on this model are in addition to the PSD, the volume fraction η, a proportionality constant C
between particle radii and HS radii and a global constant K ′, a constant which is reciprocal to Ki.

Vrij’s HS model constitutes an exact solution when particles can be modeled by ‘hard spheres’.
However, this model, which has a strong nonlinear dependence on the PSD, has several problems,
including high error propagation and a very time-consuming computational implementation
when used in an inverse problem. Thus, some approximate models were built to be used instead.
Pedersen [24,25] developed the local monodisperse approximation (LMA) assuming that the par-
ticles are spatially distributed according to their sizes. Under this assumption the scattered light
intensity becomes mathematically related in a linear fashion to the PSD and can be written as

Is(q) = K
∫ ∞

0
f (R)S(p, q, R)F2(q, R) dR, (3)

where K is a global constant, f (R) is the PSD and F2(q, R) is the form factor of each particle of
radius R. The factor S(p, q, R) is the so-called structure factor where p is an effective parameter
of the model, equivalent to the volume fraction in monodisperse systems but losing its physical
meaning as polydispersity increases. Analytical expressions for F(q, R) and S(p, q, R) used in
this article correspond to spherical particles and they are described from Equations (A9)–(A14)
in Appendix 2.

Parameters to be estimated in the LMA are besides the PSD, the effective parameter p and the
global constant K.

3. Description of the developed Bayesian schemes

Given SLS measurements (simulated or experimental) as the problem data, the inverse prob-
lem pursuits the objective of determining the PSD and also sometimes the volume fraction
of particles. In order to make this information retrieval possible, all the remaining unknowns
involved in each considered model must also be estimated. The estimated unknowns depend
on both the model and the scheme which is used. Once a Bayesian approach has been devel-
oped these unknowns are defined by means of their probability density functions (pdfs). In this
work, parametric and non-parametric Bayesian schemes (NPBSs) are implemented through the
Metropolis–Hastings (MH) algorithm. Although this algorithm has a relatively simple imple-
mentation, its correct performance is related to the correct selection of several parameters. In
the same way, even when the Bayes theorem is the keystone of the Bayesian approach, explicit
forms of this theorem and its specific application differ in every developed scheme explained
below.

3.1 Parametric Bayesian scheme

The first proposed scheme is applied to both SLS models described above and is called the para-
metric Bayesian scheme (PBS) because it makes use of a parametrical distribution to represent
the PSD. In this article, a log-normal distribution (with PSD mean radius R̄ and standard devia-
tion) was utilized because it allows a relative skewness of the distribution. It is important to point
out that under this scheme, there is no need of an additional regularization term for the PSD since
its representation in a parametrical family converges already to a stable solution. In the PBS, the
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Bayes theorem is applied in the form of Equation (4)

πposterior(P) = π (P/Iε) = πprior(P)π(Iε/P)
π(Iε)

, (4)

where πposterior(P) is the so-called posterior pdf, πprior(P) is the prior pdf (which refers to the
parameters information previous to measurements), π(Iε/P) is the likelihood function and π(Iε)
is the measurements pdf where Iε corresponds to noisy scattered light intensities (simulated or
experimental) while P represents a vector of estimated parameters. When Vrij’s HS model is used
in the inversion stage, the vector of parameters is given by P = [R̄, σ , η, C, K ′]. Where parameter
C appears as a result of considering that the ‘hard spheres’ radius can be modeled as proportional
to the particle radius by a proportionality factor named C; and parameter K ′ is obtained as K ′ =
1/Ki since K ′ appears as a proportionality factor between the scattered intensities and the DSCS
in the form of Equation (5):

Is(q) = 1

Ki

d
∑
(q)

d�
= K ′ d

∑
(q)

d�
= −K ′D(q)	(q)−1. (5)

When the LMA model is used instead, the corresponding parameter vector is given by P =
[R̄, σ , p, K].

All prior information available before the SLS measurements is incorporated into πprior(P).
In this work, NI and partially informative priors were used and statistical independence and
normality in informative priors are considered as it will be explained in the prior information
subsection inside the implementation section.

A simplified analytical expression can be derived for the likelihood function π(Iε/P) when
measurements are modeled as a discrete variable and noise as a normal random variable:

π (Iε/P) = 1

(
√

2π)
M √

|W |−1
exp

{
−1

2
[Iε − Is(P)]

TW [Iε − Is(P)]

}
, (6)

where Is(P) = [Is(q1, P)Is(q2, P) · · · Is(qM, P)]T, M is the number of measurements, W is the
inverse of the covariance matrix of the measurements and Is(qi, P) are SLS intensities generated
by the considered model according to Equations (3) and (A9)–(A14) or Equations (A1)–(A7) for
the LMA model and Vrij’s HS model, respectively.

It is important to explain a particular consideration involving Equation (6). At this point it
seems important to remark differences between treatments with Vrij’s HS model and the LMA
model. In cases where Vrij’s HS model has been used or when the LMA model has been used
where modeling errors can be neglected (i.e. low concentration or diluted or quasi-monodisperse
particle systems), light scattering measurements can be modeled as

Iε(qi) = Is(qi, P)+ ε(qi), (7)

where Is(qi, P) is the scattered intensity generated according to the corresponding model, and
ε(qi) is a gaussian additive noise. However, when the LMA model is used and modeling errors
cannot be neglected, then we can approximate light scattering measurements as

Iε(qi) = Is(qi, P)+ E(qi, P)+ ε(qi), (8)

where E(qi, P)corresponds now to the errors between LMA model and Vrij’s HS model once
again for some set of parameters P. This approach for the approximation error was introduced
in [17].
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1000 F.A. Otero et al.

Matrix W of Equation (6) must be estimated before solving the inverse problem for some pre-
viously obtained set of parameters P = P0. If measurements are modeled as in Equation (7), W
should be estimated from the error between Iε and Is(P) for P = P0. On the other side, if mea-
surements are modeled as in Equation (8), it is also necessary to add the errors between the LMA
and Vrij’s HS models taking a predefined set of parameters P0. In the developed implementation,
the predefined set P0 used for the estimation of W was computed from a previously performed
deterministic least-squares estimation.

3.2 Non-parametric Bayesian scheme

The NPBS has only been developed for the LMA model since it requires an important amount of
computational resources and the use of the analytical Vrij’s HS model would imply an excessive
cost. In the NPBS scheme the corresponding weights to each particle size proportional to the PSD
are estimated. The global constant K is absorbed in these weights. The corresponding PSD can
be obtained from a simple normalization of these weights and it can be represented as a vector
f = [f (R1), f (R2), . . . , f (RN )] where the respective particle system is composed of N different
sizes. It is convenient that, as it will be presented later, the total number of particles Np is also
included in the estimation process. It can be noticed that the mathematical model described in
Equation (3) displays a linear relation between f (R) and Is(q) for a given value of parameter p,
which is limited to the interval [0,1]. Taking advantage of this situation, an alternative version of
Bayes theorem can be written as

π(f/Iε, p) = π(Iε/f, p)π(f/p)∫
f π(Iε/f, p)π(f/p)df

, (9)

where π(f/Iε, p) is the conditional pdf for the PSD given the measurements Iε and the parameter
p and π(f/p) is the prior pdf for the PSD given the parameter p; π(Iε/f, p) is the likelihood
function which is similar to Equation (6) and the integral is a normalizing factor.

When no assumption on the shape of f (R) is considered, as in this case, an explicit regular-
ization is needed. This regularization is carried out by including in the prior pdf the so-called
smoothness condition defined as the following pdf:

πs(f) = 1

(
√

2π)
N exp

(
−1

2
γ fT HT Hf

)
, (10)

where N is the number of components of the discretized PSD, H is a regularization matrix and γ
is an adjustable regularization parameter.

It is also worth to say that besides the regularization term, any additional prior information
related to the PSD statistical parameters can be included in π(f/p) as in the PBS. This will be
explained later in the implementation section of the NPBS when the form will be detailed.

Finally, an iterative Bayesian method (IBM) using the Bayes theorem in the form of
Equation (9) is proposed to solve the NPBS. It can be described in the following steps:

(1) Choose a value for the parameter p and a seed function for the PSD.
(2) Compute a value for γ using some method such as generalized cross validation (GCV),

L-curve (LC) and the principle of discrepancy (PD).
(3) Estimate the pdf of f (R), applying MH algorithm in the form of Equation (9).
(4) Repeat the first three steps for the whole range of possible values of p.
(5) Select the pdf of f (R)with the maximum product.
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4. Implementation

4.1 MH algorithm

The PBS as well as the NBPS have been implemented using the MH algorithm; its choice is based
on the versatility shown in many applications. It also allows us to create a simplified program
with the assumed considerations. The goal of the MH algorithm is to build an adequate Markov
chain X which simulates a distribution that has a density π (P), defining a density qT(P

(t+1)/P(t)),
called candidate-generating density, between a state of the Markov chain at a time t (i.e. a value
of the set of parameters P(t)) and the next one P(t+1). Then, the MH algorithm is defined by two
steps: a first step in which a proposed value is drawn from the candidate-generating density and
a second step in which the proposed value P∗ is accepted as the next iterate in the Markov chain
according to the probability αMH(P∗/P(t)) defined as

αMH
(
P∗/P(t)

) = min

(
π(P∗/Iε)qT(P∗/P(t))
π(P(t)/Iε)qT(P(t)/P∗)

, 1

)
. (11)

If αMH(P∗/P(t)) > υ, where υ is a random variable of uniform distribution U[0,1], then the
drawn sample P(t+1) is accepted and P∗ = P(t+1); if αMH(P∗/P(t)) ≤ υ, P(t+1) is rejected and
P∗ = P(t). An important aspect of the algorithm is that the acceptance probability given by
αMH(P∗/P(t)) avoids the computation of π(Iε). A detailed analysis of the MH algorithm can
be found elsewhere in the literature [6]. As it was mentioned before, a correct performance of the
MH algorithm requires an appropriate selection of its own parameters. Such parameters include
initial sample, acceptance ratio, candidate-generating density, total length of the Markov chain
and samples considered and discarded in this chain. For a full discussion on these parameters see
also [6].

Convergence tests have been performed for different initial samples in order to determine
whether differences between obtained chains are significant. These tests must determine also if
the influence of the initial samples is reduced as long as the chains grow. Furthermore, the MH
algorithm cannot warranty the solution when multiple local minima problems are present. An
alternative solution is to slightly modify the algorithm by including concepts from the simu-
lated annealing (SA) algorithm [11]. In this case the parameter αMH(P∗/P(t)) of Equation (11) is
changed to

αMH
(
P∗/P(t)

) = min

([
π(P∗/Iε)
π(P(t)/Iε)

]t qT(P∗/P(t))
qT(P(t)/P∗)

, 1

)
, (12)

which accelerates, for convergence purposes, the achievement of the maximum of the distribu-
tion, that is, the MAP solution. After the MAP solution is reached using Equation (A9) when the
parameter vector P converges, a new application of the MH algorithm using Equation (A8) is
performed starting from this MAP solution for computing the respective confidence intervals.

Acceptance ratio is the percentage of times a new sample is accepted; so, if a too small value is
selected, then, the chain slowly covers (or even does not cover) the whole distribution. However,
choosing a too large value produces jumps very often. Best results in all cases showed that
acceptance ratio should be set between 0.23 and 0.33, in agreement with a previous work [10].

A candidate-generating density must also be specified, typically from a family of distributions
with tuning parameters such as scale and location. The corresponding implemented densities
will be detailed in the following subsections. Finally, the length of the generated chain must be
large enough to be a good approximation to the final distribution and first samples until reaching
stationary regime should be discarded. These specific aspects related to both schemes, PBS and
NPBS, will be discussed in the implementation sections of each developed scheme.
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4.2 Prior information

Selection of a prior distribution is a critical and controversial factor in the Bayesian approach and
depends on the state of knowledge at the time of measurements. In this work, we consider non-
informative priors and partially informative priors. We include in the partially informative prior
distributions based on alternative SEM experiments to study their effects on estimations. In this
context, SEM micrographs were obtained from experiments or simulations. SEM simulations
have been generated with a Monte Carlo routine. Corresponding prior densities for both types
of micrographs (simulated and experimental) for R̄ and σ were approximated to be normal-
shaped according to the large-sample confidence interval for a size of sample Ns ≥ 30 [9]. As a
consequence of this, R̄ has been described by a normal density where its mean corresponds to the
sample mean μR̄ of the mean radius and its standard deviation is s/

√
Ns where s is the sample

standard deviation of the PSD, which leads to

πprior(R̄) = 1

(
√

2π)
exp

{
−1

2
[R̄ − μR̄]

T Ns

s2
[R̄ − μR̄]

}
. (13)

In a similar manner, σ can be described by

πprior(σ ) = 1

(
√

2π)
exp

{
−1

2
[σ − μσ ]T 2Ns

s2
[σ − μσ ]

}
, (14)

where μσ is the sample mean of the PSD standard deviation.
The prior information used for the other involved parameters will be detailed in the next sec-

tions for each developed scheme. In all cases we have made the assumption that priors for each
parameter are statistically independent.

4.3 Parametric Bayesian scheme

Implementation of the PBS in the MH algorithm is a straightforward task once all the MH
parameters are selected. As it was specified in the general description of the implementation,
a modification of the algorithm as expressed by Equation (12) was necessary in order to improve
convergence to the MAP and avoid local minima. πprior(P) has been built as an independent com-
bination of priors for each parameter. For both models prior information about PSD statistical
parameters is presented as the normal densities of Equations (13) and (14). In addition to this,
in Vrij’s HS model, parameter η has uniform distribution in the range [0,1] according to all pos-
sible values, while parameter C has been chosen to follow an uniform distribution in the range
[1,3], based on its physical meaning and according to some previous experimental results, and
parameter K ′ has a NI prior. On the other side, in the LMA model, parameter p has a uniform
distribution in the range [0,1] and K has a NI prior. The candidate-generating density follows an
independent generation for parameters R̄ and σ , while the so-called random walk was chosen for
the rest of the parameters in each model. After studying simulated examples we conclude that
around 20,000 samples must be taken to reach the stationary regime and that the length of the
chain which is created to build the final distribution must be of the order of 50,000 samples.

4.4 Non-parametric Bayesian scheme

In general, in the studied examples the NPBS has shown worse convergence problems than the
PBS because of the large quantity of variables involved in the iteration process. This situation
requires the use of the SA algorithm as explained before, where in this case Equation (12) takes
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the following form:

αMH(f∗/f(t)) = min

([
π(f∗/Iε, p)

π(f(t)/Iε, p)

]t qT (f∗/f(t))
qT (f(t)/f∗)

, 1

)
. (15)

The prior density involved in the NBPS, π(f/p), can be expressed just as the smoothness
condition, πs(f), when no prior information is included, and as a product of πs(f) and the priors
for mean radius πprior(R̄) and for PSD standard deviation πprior(σ ) when information from the
micrographs is used. The computation of these two last densities πprior(R̄) and πprior(σ ) for every
PSD computed at each iteration in the IBM is performed using the corresponding number density,
since

R̄ = 1

N

N∑
k=1

N (k)
p R(k), (16)

σ =
[

1

N

N∑
k=1

N (k)
p (R(k) − R̄)

2

]1/2

. (17)

The candidate-generating density used in the NBPS was the random walk. However, this
method of generation of samples limits the number of variables as it will be discussed in the next
paragraph. Final distributions obtained from simulated examples were generated from 100,000
samples after reaching the stationary regime.

The NPBS has some other aspects which make its implementation more complicated. These
include discretization of the PSD, selection of the regularization matrix H and selection of a
method for computing the regularization parameter γ . The random walk process was used to
generate the samples of the chain. In this process, each candidate is generated changing one
parameter at a time. However, even when the implementation of this method is very simple, it has
performance and convergence problems when there is a large number of components of the PSD.
Thus, a maximum number of around 40 points for the PSD were considered to make the problem
tractable. A few traditional regularization matrices were studied including the identity matrix,
and first and second derivative matrices. Best results in simulations were obtained for the second
derivative matrix. The computation of the regularization parameter was an important point to
analyze since it has a great influence on the computed solution. In this work three methods were
analyzed: GCV, LC and PD. It has been shown that GCV usually produces data overfitting [36]
and hence it may have a bad performance on systems were modeling errors are important. LC, on
the other hand, produces an over-regularization of the solution loosing a good part of information
provided by the data. Finally, PD seemed to bring an intermediate solution. This method requires
an estimation of the noise level which has to be according to the modeling of measurements
proposed in Equations (7) and (8).

5. Examples, results and discussion

We have selected three simulated examples of particle systems described exactly by a log-normal
distribution where all measurements were generated using Vrij’s HS model. The first example
has been analyzed with the PBS using Vrij’s HS model and the two last examples have been
analyzed with both schemes using the LMA model. The first example (Example 1) corresponds
to a concentrate particle system with parameters R̄ = 0.35μm, σ = 0.1μm, η = 0.1, C = 1.8
and K ′ = 1. The second example (Example 2) corresponds to a sample with a PSD having R̄ =
0.2μ, σ = 0.02μ, η = 0.01, C = 1 and K ′ = 1. The third example (Example 3) corresponds
to a sample with a PSD of R̄ = 0.35μ and σ = 0.10μ, η = 0.03 and once again C = 1 and
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K ′ = 1. Three corresponding SEM micrographs of 50, 100 and 40 particles where simulated for
Examples 1–3, respectively.

We also have analyzed two experimental examples. Experimental examples were taken from
a previously reported publication [30]. In this work, blends of polyisobutilene (PIB) labeled
PIB5 and PIB025 in isobornyl methacrylate (IBoMA) were reacted until vitrification. The blends
contained 50% of PIB025 (50PIB025) and 30% of PIB5 (30PIB5). During reaction, the PIB is
phase separated forming micron-sized particles. Thus, the resulting final sample is made of poly-
mer particles embedded in the solid polymer matrix. Refractive indices were 1.51 for PIB5 and
PIB025 and 1.48 for the IBoMA. SLS measurements were performed using a flat cell light scat-
tering apparatus which consists of a linear array of photodiodes that detects the light scattered by
a thin sample illuminated by a 17 mW He–Ne laser with random polarization. SEM micrographs
were obtained using a Jeol JSM 6460 LV device and they can be seen in Figure 1(a) and 1(b).
The example 30PIB5 was used with Vrij’s HS model using the PBS, while the example 50PIB25
was used with the LMA model using both schemes.

Corresponding results are presented from Tables 1–6 and from Figures 2–10. We include only
the results of the parameters of interest (R̄, σ and eventually η) and the corresponding 95%
confidence intervals for the simulated SEM micrographs and for the chains obtained using both a
NI prior and SEM micrograph information as discussed in the previous section. We also compute
the median and the MAP solution. In the presented figures, with the exception of Figure 8 in

Table 1. Results for Example 1 (R̄ = 0.35μ and σ = 0.1μ, η = 0.1, N s = 50) using the PBS.

SEM SLS (NI prior) SLS (SEM prior)

Mean radius 95% C.I. [0.3331–0.3857] [0.3031–0.3757] [0.3280–0.3802]
Median 0.3397 0.3535
MAP 0.3402 0.3422

PSD std. deviation 95% C.I. [0.0762–0.1134] [0.0831–0.1125] [0.0890–0.1066]
Median 0.0978 0.0980
MAP 0.0971 0.0988

Volume fraction 95% C.I. [0.0761–0.1055] [0.0923–0.1045]
Median 0.0908 0.0973
MAP 0.0911 0.0932

Table 2. Results for Example 2 (R̄ = 0.2μ and σ = 0.02μ, η = 0.01, N s = 100) using the PBS and NPBS.

SEM SLS (NI prior) SLS (SEM prior)

PBS
Mean radius 95% C.I. [0.2004–0.2106] [0.1875–0.2083] [0.1941–0.2019]

Median 0.1976 0.1978
MAP 0.1984 0.1981

PSD std. deviation 95% C.I. [0.0183–0.0285] [0.0121–0.0243] [0.0167–0.0225]
Median 0.0183 0.0196
MAP 0.0174 0.0204

NPBS
Mean radius 95% C.I. [0.2004–0.2106] [0.1856–0.2138] [0.1956–0.2079]

Median 0.1972 0.1997
MAP 0.1840 0.2040

PSD std. deviation 95% C.I. [0.0183–0.0285] [0.0129–0.0340] [0.0158–0.0288]
Median 0.0208 0.0194
MAP 0.0238 0.0269
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which we have used the MAP values of the parameters, and to improve visualization we only
have included PSDs and data fitting computed from the medians of the parameters.

The discussion may start with the analysis of the chosen implementation of the priors. This
problem has been solved using NI priors and partially informative priors; in this last case we have
specified informative priors on the parameters of interest and NI priors on the nuisance parame-
ters. We have selected normal priors for R̄ and σ mainly as we have mentioned before, with the
purpose of simplifying the implementation. Nevertheless, this selection of informative priors has
robustness problems. In fact, the price to be paid for utilization of inherently robust procedures
is computational [3]. As Berger pointed out in [3], standard choices such as the normal prior can
lead to the non-robust design in several ways: models can be very sensitive to outliers in the data

Table 3. Results for Example 3 (R̄ = 0.35μ and σ = 0.1μ, η = 0.03, N s = 40) using the PBS and NPBS.

SEM SLS (NI prior) SLS (SEM prior)

PBS
Mean radius 95% C.I. [0.3111–0.3805] [0.3377–0.4019] [0.3121–0.3749]

Median 0.3699 0.3439
MAP 0.3705 0.3636

PSD std. deviation 95% C.I. [0.0874–0.1364] [0.0665–0.1049] [0.0843–0.1027]
Median 0.0857 0.0941
MAP 0.0855 0.0853

NPBS
Mean radius 95% C.I. [0.3111–0.3805] [0.3471–0.4291] [0.3357–0.3655]

Median 0.3869 0.3496
MAP 0.4027 0.3425

PSD std. deviation 95% C.I. [0.0874–0.1364] [0.1034–0.1300] [0.0965–0.1149]
Median 0.1168 0.1050
MAP 0.1159 0.1013

Table 4. Multiple minima found in 30PIB5 using deterministic MLE.

R̄ σ η C K ′ Residue

0.2702 0.0622 0.0152 1.84 19.04 0.072
0.2037 0.0788 0.0933 3.24 8.42 0.073
0.3071 0.045 0.0125 1.82 20.14 0.074
0.2318 0.0948 0.2441 2.26 5.25 0.074

Table 5. Results for 30PIB5 using the PBS.

SEM SLS (NI prior) SLS (SEM prior)

Mean radius 95% C.I. [0.1980–0.2220] [0.1934–0.3470] [0.1978–0.2218]
Median 0.2654 0.2099
MAP 0.2702 0.2133

PSD std. deviation 95% C.I. [0.0456–0.0624] [0.0295–0.0949] [0.0489–0.0693]
Median 0.0643 0.0593
MAP 0.0622 0.0703

Volume fraction 95% C.I. [0.0054–0.0212] [0.0076–0.0177]
Median 0.0134 0.0106
MAP 0.0152 0.0142
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Table 6. Results for 50PIB25 using the PBS and NPBS.

SEM SLS (NI prior) SLS (SEM prior)

PBS
Mean radius 95% C.I. [0.2035–0.2565] [0.2066–0.4587] [0.2047–0.2576]

Median 0.2876 0.2301
MAP 0.3263 0.2734

PSD Std. deviation 95% C.I. [0.1039–0.1420] [0.0871–0.1912] [0.1030–0.1298]
Median 0.1372 0.1173
MAP 0.1390 0.1161

NPBS
Mean radius 95% C.I. [0.2035–0.2565] [0.2168–0.4006] [0.2254–0.2410]

Median 0.3293 0.2350
MAP 0.3293 0.2378

PSD Std. deviation 95% C.I. [0.1039–0.1420] [0.0963–0.1737] [0.1070–0.1268]
Median 0.1438 0.1173
MAP 0.1430 0.1161
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(a) (b)

Figure 2. (a) Retrieved PSDs for Example 1 using the PBS and the parameters medians: actual PSD, full
line; PSD from SEM simulations, plot bars; PSD from SLS with NI prior, dashed line; and PSD from SLS
with SEM prior, dotted line. (b) SLS model fitting to simulated measurements for Example 1 using the
PBS and the parameters medians: simulated measurements, unfilled squares; model fitting with a NI prior,
dashed line; and model fitting with SEM prior, full line.

(this effect will be seen in some results) and conjugate priors can have a pronounced effect on
the answers even if data are in conflict with the specified prior information. However, this last is
not always a problem, in fact in this work this situation is preferred when the LMA model has
been used and modeling errors are significant or when noise in measurements is really impor-
tant. In this case, when data are being analyzed with an approximate model or prior information
is sufficiently strong compared with measurement errors, data fitting does not play the main role
in the inverse problem solution.
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Figure 3. (a) Retrieved PSDs for Example 2 using the PBS and the parameters medians: actual PSD, full
line; PSD from SEM simulations, plot bars; PSD from SLS with NI prior, dashed line; and PSD from SLS
with SEM prior, dotted line. (b) SLS model fitting to simulated measurements for Example 2 using the
PBS and the parameters medians: simulated measurements, unfilled squares; model fitting with a NI prior,
dashed line; and model fitting with SEM prior, full line.
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Figure 4. (a) Retrieved PSDs for Example 2 using the NPBS and the PSDs ordinate medians: actual PSD,
full line; PSD from SEM simulations, plot bars; PSD from SLS with NI prior, dashed line; and PSD from
SLS with SEM prior, dotted line. (b) SLS model fitting to simulated measurements for Example 2 using the
NPBS and the PSDs ordinate medians: simulated measurements, unfilled squares; model fitting with a NI
prior, dashed line; and model fitting with SEM prior, full line.
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Figure 5. (a) Retrieved PSDs for Example 3 using the PBS and the parameters medians: actual PSD, full
line; PSD from SEM simulations, plot bars; PSD from SLS with NI prior, dashed line; and PSD from SLS
with SEM prior, dotted line. (b) SLS model fitting to simulated measurements for Example 3 using the
PBS and the parameters medians: simulated measurements, unfilled squares; model fitting with a NI prior,
dashed line; and model fitting with SEM prior, full line.
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Figure 6. (a) Retrieved PSDs for Example 3 using the NPBS and the PSDs ordinate medians: actual PSD,
full line; PSD from SEM simulations, plot bars; PSD from SLS with NI prior, dashed line; and PSD from
SLS with SEM prior, dotted line. (b) SLS model fitting to simulated measurements for Example 3 using the
NPBS and the PSDs ordinate medians: simulated measurements, unfilled squares; model fitting with a NI
prior, dashed line; and model fitting with SEM prior, full line.
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Figure 7. (a) Retrieved PSDs for Experimental Example 30PIB5 using the PBS and the parameters medians:
PSD from SEM measurements, plot bars; PSD from SLS with NI prior, dashed line; and PSD from SLS
with SEM prior, full line. (b) SLS model fitting to measurements for Experimental Example 30PIB5 using
the PBS and the parameters medians: SLS measurements, unfilled squares; model fitting with a NI prior,
dashed line; and model fitting with SEM prior, full line.
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Figure 8. (a) Retrieved PSDs for Experimental Example 30PIB5 using the PBS and the parameters MAPs:
PSD from SEM measurements, plot bars; PSD from SLS with NI prior, dashed line; and PSD from SLS
with SEM prior, full line. (b) SLS model fitting to measurements for Experimental Example 30PIB5 using
the PBS and the parameters MAPs: SLS measurements, unfilled squares; model fitting with a NI prior,
dashed line; and model fitting with SEM prior, full line.
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Figure 9. (a) Retrieved PSDs for Experimental Example 50PIB25 using the PBS and the parameters medi-
ans: PSD from SEM measurements, plot bars; PSD from SLS with NI prior, dashed line; and PSD from
SLS with SEM prior, full line. (b) SLS model fitting to measurements for Experimental Example 30PIB5
using the PBS and the parameters medians: SLS measurements, unfilled squares; model fitting with a NI
prior, dashed line; and model fitting with SEM prior, full line.
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Figure 10. (a) Retrieved PSDs for Experimental Example 50PIB25 using the NPBS the PSDs ordinate
medians: PSD from SEM measurements, plot bars; PSD from SLS with NI prior, dashed line; and PSD
from SLS with SEM prior, full line. (b) SLS model fitting to measurements for Experimental Example
30PIB5 using the PBS and the PSDs ordinate medians: SLS measurements, unfilled squares; model fitting
with a NI prior, dashed line; and model fitting with SEM prior, full line.
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Example 1 corresponds to a concentrated and polydisperse system analyzed with Vrij’s HS
model. Results from applying the PBS appear in Table 1. In this table, it may be seen how
including a prior information from SEM slightly improve the predicted confidence interval in
the parameter σ and how barely more accurate estimations are obtained using SEM priors for
the computed median as well as for the MAP solution. This improvement is in this case, not
particularly remarkable in the PSD retrieval as can also be seen in Figure 2. In this figure, it may
also be observed that differences between data fitting using a NI prior and a partially informative
prior are not significant.

Example 2 corresponds to a narrow PSD where SLS modeling errors can be neglected and
both techniques, SLS and SEM, obtain good results. For this example it can also be seen in
Table 2 how more accurate are estimations of both statistical parameters of the PSD and how
combining prior SEM information with the SLS measurements reduces the 95% confidence
interval with respect to the Bayesian approach with a NI prior. It can also be observed how
biased information from the prior SEM, which has the true mean radius value (0.20µ) out of the
95% confidence interval, is improved in the corresponding posterior confidence intervals after
applying both Bayesian schemes, even when no greater precision is achieved in this case.

Corresponding results from retrieved PSDs and histograms from the micrographs are shown
in Figures 3(a) and 4(a) while Figures 3(b) and 4(b) show a bigger discrepancy in the data fitting
than the one observed in Example 1.

Example 3 corresponds to a wider PSD with a more vague SEM prior information and
considerable SLS modeling errors. Results of combining both techniques show in addition to
Example 1, a remarkable improvement in the resulting confidence interval for the PSD standard
deviation σ and also for the mean radius R̄ obtained in the NPBS. In this case, biased estima-
tions, a consequence from the use of an approximate model when a NI prior has been used,
are considerably improved using prior information as it can be seen when comparing the corre-
sponding estimated medians and MAP solutions in Table 3. While improvement in the estimated
medians may be clearly seen in Figure 5(a), no significant differences in data fitting are observed
in Figure 5(b). Significant differences between using a NI prior and SEM information can be
seen using the NPBS in Figure 6(a) with a respective difference in the data fitting observed in
Figure 6(b).

When analyzing experimental cases, the example 30PIB5 shows an important issue observed
in Vrij’s HS model, which is the appearance of multiple local minima with a very similar value
of residue. This can be observed in Table 4 when a deterministic MLE approach has been per-
formed. Multiple local minima are the result of a high correlation between some of the model
parameters. It has also been seen that the global character of a minimum cannot be guaranteed in
the experiments when no additional information is included. As a proof of this behavior, Monte
Carlo simulations of noisy measurements from known model parameters have shown that global
minima and local minima can change from a simulated experiment to another. This exchange
between locality and globality has been also observed when addressing a model error, specifically
by modifying the relation between particle radii and ‘hard sphere’ radii as R(k)hs = (C +	C)R(k)

when	C is a normal random variable of zero mean and standard deviation of 0.01. Applying the
PBS in this example with a NI prior takes into account such uncertainty with a large confidence
interval including all the local minima. As an alternative to this issue, the inclusion of parameter
information in a statistical manner solves the problem in a similar way to that of a constrained
optimization, but in a more flexible performance allowing a direct calculus of the confidence
intervals. In this case, as expected, results of statistical parameters of the PSD are close to those
from the SEM micrograph, considering that SLS measurements are particularly noisy and the
prior information term is stronger than the likelihood function. In fact no particular improvement
in the confidence interval has been made. Corresponding medians for the obtained PSDs can be
seen in Figure 7(a). It is interesting to notice in this example how this influence from the prior is
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clearly showed in the median which has not a good fitting to the experimental measurements in
Figure 7(b). However, taking the MAP solution instead improves remarkably the data fitting as
it can be seen in Figure 8(b) while it still conserves much influence from the prior as it can be
observed in Figure 8(a). The MAP solution shows a greater difference with respect to the prior
SEM information. This is reflected in its estimated value of the PSD standard deviation which
falls out of the 95% confidence interval. This situation is a consequence of choosing a prior in
conflict with the scattered intensity measurements. The considerable improvement in data fitting
using the MAP solution (when the used model is more accurate) may lead to a preference of
this solution over the median, however this is not always the case as we have seen before in
Example 1. In general, the MAP solution is only a ‘good’ estimate to pick up the best value
without caring how far of the confidence interval it is. The posterior median, on the other side,
penalizes in a proportional manner to the distance to the ‘true’ value. In this problematic case,
an alternative procedure, for instance changing the shape of the prior for a type more robust or
achieving additional information, can be useful to solve this difficulty.

Finally, we consider a last experimental example (50PIB25) which was solved using the LMA
model and both schemes. In this case, using prior information from SEM micrographs only
shows some improvement in confidence intervals for the parameter σ , when once again the prior
has a stronger influence than the likelihood function as it can be seen in Table 6 and also in
Figure 9(a). In this case, important differences between median and MAP solutions are observed
when the PBS has been used with both a NI prior and SEM information. The sum of model error,
noisy data and a conflictive prior (in the case this one has been utilized) leads to a poor fitting in
Figure 9(b). However, when the NPBS has been performed, results of the MAP solution and the
median are very similar and data fitting is acceptable as it can be observed in Figure 10(b). The
considerable improvements in the 95% confidence interval are shown in Table 6 and once again
using a partially informative prior produces a retrieved PSD very similar to the SEM which is
presented in Figure 10(a).

6. Conclusions

We have developed two Bayesian schemes for solving an inverse problem in SLS, a PBS and an
NPBS both implemented through the MH algorithm. In this work we have shown the potentials
of the Bayesian approach within the framework of these two proposed schemes in the studied
problem and also have presented some limitations found in the development of the methodol-
ogy. The Bayesian approach may improve estimations combining deductive and inductive logic,
specially in cases where informative priors are used to complete the uncertainty in the likelihood
function and weights of both prior and likelihood are similar (as was detailed when discussing
results from Example 3). An application of the method was also presented in terms of decreas-
ing the effect of multiple minima, reducing in this form the estimated confidence intervals when
using informative priors on the parameters of interest (as was described in the experimental
example 30PIB5). The use of an approximate model using the Bayesian approach made possible
a simplified treatment of modeling errors in both schemes with a very simple implementation in
practice.

However, some limitations have been also found. A considerable difficulty appears when the
term of prior information is much stronger than the likelihood function. In those cases, apply-
ing the Bayesian approach (especially when priors are normal shaped and conflicted with data)
may result in controversial estimations, for instance, median and MAP solutions may result quite
different, this last solution even out of the 95% confidence interval (as it has been seen in the
example 30PIB5). In those cases, some limitations of the performed implementation using the
MH algorithm may also be mentioned, related to many involved factors. While the PBS has a
straightforward implementation, the NPBS has many significant issues, such as the tuning of
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parameters some of them proper to the MH algorithm (such as the candidate-generating den-
sity) and some other parameters proper to the scheme such as the selection of the regularization
matrix and the regularization parameter. Another difficulty involving the implementation, specif-
ically the selection of normal prior densities on the parameters of interest, leads to failures of
robustness, which can be improved by changing the shape of the priors, as it has been discussed
before. It is also important to notice that the chosen implementation using Markov Chain Monte
Carlo methods (in this specific case, through the MH algorithm) is not essential to the devel-
oped schemes and therefore it can be changed. In fact, when working with normal distributions,
the optimal estimation method (OEM) can be used instead [26]. The OEM is also based on the
Bayes theorem and searches to transform the mathematical model into a conditional probabil-
ity and model parameters and measurements into probability distributions by assuming normal
statistics and empirically determined covariance matrices. However, OEM has its own issues too.
In the two proposed schemes OEM has to consider a nonlinear problem in the PBS and a linear
problem which has to be iteratively solved with a cost function hard to build in the NPBS.
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Appendix 1. Vrij’s HS model

Vrij’s HS model gives an analytic formula for the DSCS per unit volume for a mixture of spherical particles of different
sizes, which is expressed as:

d
∑
(q)

d�
= −D(q)	(q)−1, (A1)

where the expressions for the computation of D(q) and 	(q) can be obtained using Equations (A2)–(A8)

−π
6
(1 − 〈d3〉)4D(q) = 〈b(q)2〉T1T∗

1 + 〈d6φ2〉T2T∗
2 + 9〈d4ψ2〉T3T∗

3

+ 〈b(q)d3φ〉(T1T∗
2 + T∗

1 T2)+ 3〈b(q)d2ψ〉(T1T∗
3 + T∗

1 T3)

+ 3〈d5φψ〉(T2T∗
3 + T∗

2 T3) (A2)

and

	(q) = 1

(1 − 〈d3〉)4
(F11F22 − F12F21)(F

∗
11F∗

22 − F∗
12F∗

21) (A3)
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with

T1(q) = F11F12 − F12F21

T2(q) = F21〈db(q) eiX 〉 − F12〈b(q) eiX 〉 (A4)

T3(q) = F12〈b(q) eiX 〉 − F11〈db(q) eiX 〉,
F11(q) = 1 − 〈d3〉 + 〈d3φ eiX 〉
F12(q) = 〈d4φ eiX 〉 (A5)

F22(q) = 1 − 〈d3〉 + 3〈d3ψ eiX 〉
F21(q) = 1

2 (1 − 〈d3〉)iq − 3〈d2〉 + 3〈d3ψ eiX 〉
d = 2Rhs

X = qRhs

ψ = sin X

X
(A6)

φ = 3

X 3
(sin X − X cos X ),

b(q) = 	ρ

(
4π

3
R3

)[
3

(qR)3
(sin qR − qR cos qR)

]
. (A7)

The used brackets indicate in the general case that

〈A1A2 · · · An〉 = π

6

N∑
k=1

N (k)
p A(k)1 A(k)2 · · · A(k)n ,

where A(k)j is the value of the function Aj evaluated for the kth particle, with N (k)
p as the number of particles per unit

volume of particles of kth size; N is the number of different sizes in the sample; 	ρ is the difference of length scattering
densities between medium and particles. On the other side, R(k) and R(k)hs , make reference, respectively, to the radii of the

particles and to the radii of the ‘hard spheres’ both corresponding to the kth size, with R(k) ≤ R(k)hs . This last consideration
is due to the nature of Vrij’s HS model which states that interaction between particles is given by spheres of greater size,
that is, the ‘hard spheres’. Physically, the radii of both particles and ‘hard spheres’ can be related in two main forms:
R(k)hs = CR(k) and R(k)hs = R(k) +	R. It seems important to remark that for computation of the so-called form factor b(q)
the true radii of the different particles is used as it can be seen in Equation (9). Finally, the so-called volume fraction of
the particles can be calculated according to Equation (10):

η = 4π

3

N∑
k=1

N (k)
p (R(k))

3
. (A8)

In a similar manner, ηhs, the volume fraction of the ‘hard spheres’ can be obtained replacing R(k) by R(k)hs in Equation (10).

Appendix 2. Local monodisperse approximation

Expressions for F(q, R) and S(p, q, R) used in Equation (3) are displayed below:

F(q, R) = 1

q

∫ R

0
r sin(qr) dr = 1

q3
[sin(qR)− qR cos(qR)], (A9)

S(p, q, R)−1 = 1 − 24p

[
α + β + δ

u2
cos(u)− α + β + δ

u3
sin(u)

− 2(β + 6δ)

u4
+ 2β

u4
+ 24δ

u5
sin(u)+ 24δ

u6
[cos(u)− 1]

]
, (A10)
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where

α = (1 + 2p)2

(1 − p)4
, (A11)

β = −6p
(1 + p/2)2

(1 − p)4
, (A12)

δ = p(1 + 2p)2

2(1 − p)4
, (A13)

u = 2qR. (A14)
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