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Abstract. We consider a class of one-dimensional nonhermitian oscillators and

discuss the relationship between the real eigenvalues of PT-symmetric oscillators and

the resonances obtained by different authors. We also show the relationship between

the strong-coupling expansions for the eigenvalues of those oscillators. Comparison

of the results of the complex rotation and the Riccati-Padé methods reveals that

the optimal rotation angle converts the oscillator into either a PT-symmetric or

an Hermitian one. In addition to the real positive eigenvalues the PT-symmetric

oscillators exhibit real positive resonances under different boundary conditions. They

can be calculated by means of the straightforward diagonalization method. The

Riccati-Padé method yields not only the resonances of the nonhermitian oscillators

but also the eigenvalues of the PT-symmetric ones.

1. Introduction

In a recent paper Jentschura et al[1] discussed the resonances for the anharmonic

oscillator H = −1
2

d2

dq2
+ 1

2
q2 +

√
gq3and their weak- and strong-coupling expansions.

They showed analytical expressions for the coefficients of the former and numerical

estimates for those of the latter. In particular, the leading coefficients of the strong-

coupling expansions are the eigenvalues of H = −1
2

d2

dq2
+ q3.

Some time earlier Bender and Boettcher[2] had discussed the eigenvalues of PT-

symmetric oscillators of the form H = − d2

dx2 − (ix)N that exhibit a finite number of real

positive eigenvalues for 1 < N < 2 and an infinite number when N ≥ 2.

Alvarez[3] discussed the analytical properties of the solutions of the Hamiltonian

operator H = 1
2
p2+ 1

2
kx2+gx3 and showed that it supports real and complex resonances

depending on the complex values of the coupling constant g. His results suggest that

the resonances calculated by Jentschura et al[1] and the real eigenvalues obtained by

Boettcher and Bender[2] (see also Bender[9]) may by related in a simple way by means

of the Symanzik scaling[4] already invoked by Alvarez is his investigation[3]. In exactly

the same way the strong-coupling expansion obtained by Jentschura et al[1] may be

related to that obtained some time earlier by Fernández et al[5] for the PT-symmetric
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oscillator H = p2 + ix3 + λx2. The purpose of this paper is the exploration into such

relationships as well as into other properties of a class of nonhermitian oscillators.

In section 2 we investigate the relationship among some of the earlier results on

one-dimensional nonhermitian oscillators. In section 3 we discuss the application of

the complex-rotation[6] and Riccati-Padé[7, 8] methods to those oscillators. Finally, in

section 4 we summarize the main results and draw conclusions.

2. Real and complex eigenvalues

As outlined above, Jentschura et al[1] discussed several properties of the resonances for

the anharmonic oscillator

Hc = −1

2

d2

dq2
+

1

2
q2 +

√
gq3 (1)

as well as their weak-coupling

En(g) =
∞
∑

k=0

En,kg
k (2)

and strong-coupling expansions

En(g) = g1/5
∞
∑

k=0

Ln,kg
−2k/5 (3)

The coefficients of the former can be obtained exactly by means of perturbation theory

and those of the latter in a numerical way. In particular, the leading coefficients of

the strong-coupling expansions Ln,0 are the eigenvalues of the pure cubic anharmonic

oscillator

Hl = −1

2

d2

dq2
+ q3 (4)

On the other hand, the closely related PT-symmetric oscillators

HPT = − d2

dx2
− (ix)N (5)

exhibit an infinite number of real positive eigenvalues when N ≥ 2[2] and accurate

results for N = 3 and N = 4 are available for comparison[9].
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It is not difficult to obtain a connection between the results outlined above by

means of the Symanzik scaling

U †pU = γ−1p, U †xU = γx (6)

where U is a well known unitary operator[4]. This transformation was already used by

Alvarez in his investigation of the cubic anharmonic oscillator[3]. For example, if we

take into account that 2γ2U †HlU = HPT when γ = (i/2)1/5 then we realize that the

complex eigenvalues Ln,0 of Hl calculated by Jentschura et al[1] and the real positive

eigenvalues EPT
n of HPT for N = 3 calculated by Boettcher and Bender[2] and Bender[9]

are related by

Ln,0 = 2−3/5i−2/5EPT
n (7)

Some time ago Fernández et al[5] obtained the perturbation expansion for the PT-

symmetric oscillator

HF = p2 + ix3 + λx2 (8)

in the form

En(λ) =
∞
∑

j=0

Wn,jλ
j (9)

Arguing as before, we can obtain the coefficients of the strong-coupling expansion (3)

from those of the perturbation series (9) as follows:

Ln,j = 2−(4j+3)/5i(4j−2)/5Wn,j (10)

The first coefficients are shown in Table 1 as an illustrative example.

3. Complex-rotation and Riccati-Padé methods

For concreteness we consider the family of anharmonic oscillators

HK =
1

2
p2 − xK ,

HKψ = Eψ (11)
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The complex-rotation method (CRM) consists of the diagonalization of the rotated

Hamiltonian operator

U †HKU = γ−2
(

1

2
p2 − γK+2xK

)

(12)

where γ = ηeiθ. The parameter η > 0 produces a dilatation or contraction of the scale

and θ a rotation of the coordinate in the complex x-plane. On tuning η we improve the

rate of convergence of the diagonalization method as the matrix dimension increases and

the value of θ enables us to uncover the resonances[6]. For the diagonalization method

we choose the basis set of eigenfunctions of the harmonic oscillator H = p2 + x2.

For comparison purposes we also apply the Riccati-Padé method (RPM) for

asymmetric potentials[8]. It consists of the expansion of the logarithmic derivative

of the eigenfunction ψ(x)

f(x) = −ψ
′(x)

ψ(x)
(13)

in a Taylor series about the origin

f(x) =
∞
∑

j=0

fjx
j (14)

where the coefficients fj depend on the two unknowns E and f0 = −ψ′(0)/ψ(0).

From the coefficients of the even and odd powers of the coordinate fe,j = f2j

and fo,j = f2j−1, j = 1, 2, . . ., respectively, we construct the Hankel determinants

Hed
D (E, f0) = |fe,i+j+d−1|Di,j=1, H

od
D (E, f0) = |fo,i+j+d−1|Di,j=1 and obtain both E and f0

from the roots of the system of nonlinear equations {Hed
D (E, f0) = 0, Hod

D (E, f0) = 0}.

For every fixed value of d = 0, 1, . . . we look for convergent sequences of roots E[D,d],

D = 2, 3, . . .. Commonly, we obtain reasonable results for d = 0 but calculations with

other values of d enable us to test the consistency of the method.

Since the rate of convergence of the RPM is considerably greater than the one

for the CRM we choose the results of the former as exact or reference eigenvalues.

Figure 1 shows log
∣

∣

∣

(

ERPM
n − ECRM

n

)

/ERPM
n

∣

∣

∣ as a function of θ for the first resonances

of the cubic oscillator (K = 3). Those results suggest that the minimum of the

logarithmic deviation appears at θ = π/10 (in all our calculations we have chosen
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η = e−1 that provides a reasonable rate of convergence). In order to understand this

empirical result we resort to the scaling transformation (12) for K = 3, 5, . . .. It is clear

that U †HKU = γ−2
j

[

1
2
p2 − γK+2

j xK
]

is proportional to the PT-symmetric oscillator

1
2
p2− (−1)jixK when γj = e(2j+1)iπ/[2(K+2)], j = 0, 1, . . . , K+1. For K = 3 and j = 0 we

obtain θ = π/10 as suggested by Figure 1. The obvious conclusion is that the optimal

rotation angle converts each of the anharmonic oscillators of this particular class into a

PT-symmetric one.

It also follows from equation (12) that γ2jU
†HKU = HK when γj = e2πij/(K+2).

Therefore, instead of just one eigenvalue En we expect K + 1 replicas located at

En,j = e4πij/(K+2)En, j = 0, 1, . . . , K + 1 (15)

The RPM yields all these eigenvalues simultaneously as limits of different sequences of

roots of the same sequence of pairs of Hankel determinants. On the other hand, the CRM

uncovers them at different values of θ. Figure 2 shows log
∣

∣

∣

(

ERPM
0,j − ECRM

0,j

)

/ERPM
0,j

∣

∣

∣

as a function of θ for the lowest resonance of the cubic oscillator. We appreciate that

the closest agreement between both methods takes place exactly at the rotation angles

θj = (2j+1)π/10 derived above. Table 2 shows these results more precisely and Table 3

a similar calculation for the quintic oscillator.

The case j = 0 for the cubic oscillator agrees with the resonance calculated by

Jentschura et al[1]. These authors claimed to have chosen the rotation angle θ = π/5

for all their calculations on the cubic oscillator (in particular for the strong-coupling

expansion). However, we could not obtain acceptable results for this rotation angle. In

fact, our calculations for the cubic oscillator suggest that the multiples of θ = π/5

are the worst choices. Figure 3 shows the real and imaginary parts of the first

resonance as functions of θ. We appreciate that the regions of stability appear at

jπ/5 < θ < (j + 1)π/5, j = 0, 1, 2, 3, 4 (the boundaries are marked by vertical dashed

lines). The optimal rotation angles discussed above (those that convert the anharmonic

oscillator into a PT-symmetric one) bisect each of these regions and the rotation angle

chosen by Jentschura et al corresponds to one of the boundaries. Present results agree
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with those of Alvarez[3] who proposed to integrate the differential equation along the

rays arg(±x) = π/10 − arg(g)/5 in the case of a harmonic oscillator perturbed by

the cubic term gx3. More precisely, he also showed that the left and right boundary

conditions for the resonances hold in the common sector 0 < 1
2
arg(g) + 5

2
arg(x) < π

2

so that 0 < arg(x) < π
5
for g = 1 in agreement with the first region of stability shown

in Figure 3. The appearance of the optimal rotation angle θ = π/5 in the paper by

Jentschura et al[1] is merely due to a misprint[12].

Table 4 shows the first resonances for the cubic and quintic oscillators calculated

by means of the RPM. They may be useful as benchmark for testing other approximate

methods. For example, the first three of them for K = 3 agree with those of Jentschura

et al[1].

From the results just discussed one may be tempted to conclude that the CMR with

θ = 0 should yield the eigenvalues of the PT-symmetric oscillators. This conjecture is

supported by the convergence of this method towards the accurate RPM eigenvalues

shown in Table 5. However, such conclusion is wrong. Although the eigenvalues

produced by two quite different methods like the RPM and CRM agree accurately for

all N = 3, 5, 7 . . . only in the case N = 3 they are those of the PT-symmetric oscillators.

For N = 5, 7, . . . both methods yield the resonances discussed above rotated in the

complex plane. In fact, Bender and Boettcher[10] clearly stated that the diagonalization

method is useful only for 1 < N < 4 because in the other cases the wedges in which the

eigenfunction vanishes as |x| → ∞ do not contain the real x axis. More precisely, since

those wedges are not symmetric about the origin the complex rotation outlined above

is insufficient to take into account both the left and right PT boundary conditions[2].

Table 6 shows the first eigenvalues for the PT-symmetric oscillators (5) with N = 5

and N = 7 calculated by means of the RPM, CRM (θ = 0, η = 0.4) and WKB

method. The first two approaches agree between them but not with the WKB method

that provides estimates to the actual eigenvalues of the PT-symmetric oscillators[2].

Note that the discrepancy increases with the quantum number that makes the WKB
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increasingly accurate. On the other hand, it is well known that the eigenvalues of

the Hamiltonian matrix agree with the WKB ones for the N = 3 case[11]. As an

additional confirmation that the eigenvalues of the CRM are not those of the PT-

symmetric oscillators compare the results of Table 6 with the accurate upper and lower

bounds derived by Yan and Handy[13]. Although the functional form of the operators is

the same the boundary conditions are different[2]. For simplicity, from now we will refer

to resonance[3] and PT-symmetric boundary conditions[2]. Although the CRM takes

into account only the former, it is interesting that it yields real positive eigenvalues for

the PT-symmetric oscillators (5) with N = 5, 7, . . .. The reason is discussed below.

In order to understand the results just outlined we inspect the form of the

eigenfunctions provided by the CRM for the PT-symmetric oscillators. We calculated

the eigenfunctions ψn(x), n = 0, 1, 2 and their absolute squares are shown in Figure 4 for

N = 3, 5, 7. We appreciate that they all look similar and satisfy |ψn(−x)|2 = |ψn(x)|2as

expected from the fact that ψn(−x)∗ = λψn(x), where |λ| = 1[9]. More precisely, our

numerical calculations suggest that in these particular cases ψn(−x)∗ = (−1)nψn(x).

Even though the resonance boundary conditions are different from the PT-symmetric

ones for N = 5, 7, . . . there appears to be an unbroken symmetry that produces real

eigenvalues. Besides, all those eigenfunctions are strongly localized about x = 0 as

expected for a resonance. It is interesting that both the RPM and the CRM yield real

and positive eigenvalues with localized eigenfunctions for the PT-symmetric oscillators

although they are not the true eigenvalues and eigenfunctions of the PT-symmetric

oscillators for N > 3.

In addition to the resonances just discussed the RPM also yields the true eigenvalues

of the PT-symmetric oscillators for all N = 3, 5, . . .. For example, for N = 5 we

estimated E0 = 1.9082646 from determinants of dimension D = 10, . . . , 20. Note that

this eigenvalue is considerably greater than that in Table 6 obtained from the resonance

boundary condition. We will discuss this issue again below.
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The situation is remarkably different for K = 4, 6, . . .. The PT-symmetric

oscillators require asymmetric boundary conditions[2] and, consequently, one should

apply the RPM for asymmetric potentials outlined above. However, in the case of

resonances the boundary conditions are symmetric (for example, outgoing waves to the

right and left) and the oscillator exhibits true even parity. In this case the appropriate

logarithmic derivative of the wavefunction is of the form

f(x) =
s

x
− ψ′(x)

ψ(x)
(16)

where s = 0 or s = 1 for even or odd eigenfunctions, respectively. From the coefficients

of the Taylor expansion

f(x) =
∞
∑

j=0

fjx
2j+1 (17)

we construct the Hankel determinants Hd
D(E) = |fi+j−1+d|Di,j=1 that depend on the only

unknown E and obtain the eigenvalues from sequences of roots of Hd
D(E) = 0[7].

On the other hand, we can apply the CRM exactly in the same way discussed

above. In this case the optimal rotation angles are given by γj = e(2j+1)iπ/(K+2),

j = 0, 1, . . . , K + 1 that make U †HU = γ−2
j

(

p2

2
+ xK

)

proportional to the Hermitian

operator p2

2
+ xK . Table 7 compares the CRM and RPM results for the first resonance

of the quartic oscillator (K = 4). There are K/2 + 1 replicas of every resonance given

by

En,j = e−2πij/(K/2+1)En, j = 0, 1, . . . ,
K

2
(18)

In this case the RPM for asymmetric potentials yields the eigenvalues of the

corresponding PT-symmetric oscillator. Table 8 shows the first three eigenvalues of

the PT-symmetric oscillators (5) with N = 4 and N = 5. The results in the first

column agree with those obtained earlier by means of numerical integration[2, 9] and

those in the second column lie within the upper and lower bounds derived by Yan and

Handy[13]. The rate of convergence of the RPM is considerably greater for N = 4; in

addition to it, we experienced considerable numerical difficulties in obtaining the roots

of the pair of Hankel determinants for N = 5 by means of the Newton-Raphson method.
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4. Conclusions

In section 2 we have shown that a simple scaling argument enables one to connect

the results obtained earlier by several authors for a class of nonhermitian oscillators.

Although this relationship is contained in Alvarez’s work[3] the actual connection

formulas have not been made explicit as far as we know. For example, the resonances of

the cubic oscillator are straightforwardly related to the eigenvalues of the corresponding

PT-symmetric oscillator. Such connection is not possible for other oscillators because

the boundary conditions that give rise to the resonances and PT-symmetric eigenvalues

are different.

The comparison of the RPM and CRM results enabled us to obtain the optimal

rotation angle for the latter approach. We have shown that the effect of the optimal

coordinate rotation is to convert the nonhermitian oscillators (11) into either a PT-

symmetric or Hermitian one, for K odd or even, respectively. Such results are consistent

with Alvarez’s analysis of the harmonic oscillator with a cubic perturbation[3].

We have also shown that both the RPM and CRM yield real positive eigenvalues for

the PT-symmetric oscillators (5) with N = 3, 5, 7, . . . but those results are not the actual

eigenvalues of the PT-symmetric oscillators when N > 3 because the resonance and PT-

symmetric boundary conditions are different. The CRM eigenfunctions are strongly

localized and their absolute squares exhibit the symmetry coming from unbroken

symmetry. It is also interesting that the eigenfunctions for the case N = 3 (where

the CRM yields the actual eigenvalues of the PT-symmetric oscillator) are similar to

those of N = 5, 7 (where the boundary conditions are those for the resonances).

On the other hand, the RPM yields both the real positive resonances mentioned

above for odd N as well as the actual PT-symmetric eigenvalues obtained by Bender and

Boettcher[2] and Bender[9]. In the case of N = 3, 5, 7, . . . all the eigenvalues are limits of

sequences of roots of the same Hankel determinants given by the RPM for nonsymmetric

potentials. In the case of even-parity potentials N = 4, 6, . . . the RPM for even parity

potentials yields the resonances and the approach for nonsymmetric potentials provides
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the eigenvalues of the corresponding PT-symmetric oscillators. The main disadvantage

of this approach as a practical tool is that it provides results for so many different

problems that it is sometimes difficult to pick up the correct sequence of roots of

the system of two Hankel determinants necessary for the treatment of nonsymmetric

problems. On the other hand, from a mathematical point of view, this property of the

RPM is most intriguing and interesting.
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Table 1. Coefficients L0,j of the strong-coupling expansion

(3)

j Ref.[1] From Ref.[5]

0 0.617160050− 0.448393023i 0.617160049536− 0.448393022571i

1 −0.013228193 + 0.040712191i −0.0132281928671 + 0.0407121914135i

2 0.009259259 + 0.000000000i 0.0925925925868

3 −0.000294361− 0.000905951i −0.000294361224639− 0.000905950695052i

Table 2. Lowest resonance for the cubic oscillator (K = 3). The first column shows

the value of j that determines the optimal rotation angle θj = 2j+1

10
π for the CRM.

The first and second entries in the second and third columns correspond to the CRM

and RPM eigenvalues, respectively).

j ℜ (E) ℑ (E)

0
0.6171600495373 −0.448393022575

0.61716004953893673754 −0.44839302257593285633

1
−0.2357341624247 −0.725515150844

−0.23573416242530496269 −0.72551515084615828994

2
−0.762851774225 0.00000000000000

−0.76285177422726354970 0.00000000000000000000

3
−0.2357341624247 0.725515150844

−0.23573416242530496269 0.72551515084615828994

4
0.617160049537 0.448393022575

0.61716004953893673754 0.44839302257593285633
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Table 3. Idem Table 2 for the quintic oscillator (K = 5); in this case the optimal

rotation angle is θj =
2j+1

14
π.

j ℜ (E) ℑ (E)

0
0.639629797817 −0.308029476062

0.63962979781725182920 −0.30802947606177966696

1
0.1579755139908 −0.692135950055

0.15797551399078843452 −0.69213595005459668245

2
−0.442637553984 −0.555049936656

−0.44263755398395529372 −0.55504993665591387838

3
−0.709935515648 0.00000000000000

−0.70993551564816994002 0.00000000000000000000

4
−0.442637553984 0.555049936656

−0.44263755398395529372 0.55504993665591387838

5
0.1579755139909 0.692135950055

0.15797551399078843452 0.69213595005459668245

6
0.639629797817 0.308029476062

0.63962979781725183008 0.30802947606177966739

0.0 0.1 0.2 0.3 0.4 0.5 0.6
-12

-10

-8

-6

-4

-2

0

θ

lo
g|

(E
R

P
M

n
-E

C
R

M
n

)/
E

R
P

M
n

|

n=0
n=1

n=2
n=3

Figure 1. log
∣

∣

(

ERPM
n − ECRM

n

)

/ERPM
n

∣

∣ for the first resonances of the cubic

oscillator.
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Table 4. First resonances for the cubic and quintic oscillators calculated by means of

the RPM.

n ℜEn ℑEn

K = 3

0 0.617160049538936737543 −0.4483930225759328563

1 2.1933097310211208676 −1.5935327966748432597

2 4.0363800198348283252 −2.9326017436011248866

3 6.03909710846479453 −4.38766088005387693

4 8.16189987482112373 −5.92996736837917780

5 10.3822957279796942 −7.54317938470562561

K = 5

0 0.6396297978172518292 −0.3080294760617796669

1 2.396357680279750382 −1.154025036407214392

2 4.9177001900469598 −2.3682395944315758

3 7.91746214032848 −3.812848812151728

4 11.31798850540404 −5.450456000157942

5 15.062218927774 −7.253582338538

0 1 2 3
-12

-10

-8

-6

-4

-2

0

θ

lo
g|

(E
R

P
M

0
-E

C
R

M
0

)/
E

R
P

M
0

)|

Figure 2. Logarithmic error log
∣

∣

(

ERPM
0,j − ECRM

0,j

)

/ERPM
0,j

∣

∣ for the first set of

eigenvalues of the cubic oscillator (K = 3) as functions of θ.
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Table 5. Rayleigh-Ritz method for H = p2 + ixN with basis sets of M harmonic-

oscillator eigenfunction

M N = 5 N = 7

10 1.13770276661976 1.29785656512558

20 1.16571028907153 1.22599499851804

30 1.16477239347223 1.22470989807491

40 1.16477042677832 1.22471162741409

50 1.16477040815780 1.22471168644715

60 1.16477040794314 1.22471168904864

70 1.16477040794343 1.22471168965977

80 1.16477040794342 1.22471168936849

RPM 1.16477040794341499419 1.2247116893311451

Table 6. First eigenvalues of the PT-symmetric oscillators H = p2 + ixN calculated

by means of the RPM, CRM and WKB method

RPM CRM WKB

N = 5

1.16477040794341499419 1.1647704079434150203 1.771244715

4.3637843677121091602 4.3637843677121073149 8.509035978

8.9551669982406716852 8.955166998240678966 17.65253759

N = 7

1.2247116893311451 1.2247116896597694535 2.855548625

4.72146253539246 4.72144769127068 15.77168804

10.0754495630818 10.0757623417291 34.91212093
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Table 7. First resonance for the quartic oscillator (K = 4); in this case the optimal

rotation angle is θj =
2j+1

6
π.

j ℜ (E) ℑ (E)

0
0.33399312957789 −0.57849306980780

0.33399312957788855414 −0.57849306980783854716

1
−0.66798625915576 0.00000000000000

−0.66798625915577710827 0.00000000000000000000

2
0.3339931295779 0.57849306980787

0.33399312957788855414 0.57849306980783854716

Table 8. Eigenvalues of the PT-symmetric oscillators (5) for N = 4 and N = 5

n N = 4 N = 5

0 1.4771497535779945721 1.9082645782

1 6.0033860833082771515 8.58722083623

2 11.802433595134781580 17.7108090118
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Figure 3. Real and imaginary parts of the first resonance E(θ) for the cubic oscillator

(K = 3). The vertical lines mark multiples of π/5.
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Figure 4. |ψn|2, n = 0 (solid line, red), n = 1 (dashed line, green), n = 2 (dotted

line, blue) for the PT-symmetric oscillators (5) with N = 3, 5, 7


	1 Introduction
	2 Real and complex eigenvalues
	3 Complex-rotation and Riccati-Padé methods
	4 Conclusions

