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A road map for multi-way calibration models

Graciela M. Escandar * and Alejandro C. Olivieri *

A large number of experimental applications of multi-way calibration are known, and a variety of chemo-

metric models are available for the processing of multi-way data. While the main focus has been directed

towards three-way data, due to the availability of various instrumental matrix measurements, a growing

number of reports are being produced on order signals of increasing complexity. The purpose of this

review is to present a general scheme for selecting the appropriate data processing model, according to

the properties exhibited by the multi-way data. In spite of the complexity of the multi-way instrumental

measurements, simple criteria can be proposed for model selection, based on the presence and number

of the so-called multi-linearity breaking modes (instrumental modes that break the low-rank multi-linear-

ity of the multi-way arrays), and also on the existence of mutually dependent instrumental modes. Recent

literature reports on multi-way calibration are reviewed, with emphasis on the models that were selected

for data processing.

Introduction

Multi-way calibration carries the potentiality of realizing the
dream of analytical chemistry,1,2 because: (1) the second-order

advantage can be achieved: analytes can be quantitated in the
presence of uncalibrated interferents,3,4 (2) only small, pure-
analyte calibration sets are needed, instead of large calibration
sets containing all possible interferents (as required by first-
order multivariate calibration), (3) sample clean-up steps may
no longer be needed, (4) full chromatographic resolution is
not required and separation experiments are shorter and
simpler,5 and (5) the selectivity and sensitivity increase as the
number of instrumental modes increases.6
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It is important to first define the term ‘mode’, a specific
expression relevant to multi-way calibration which will be
referred to in the remainder of this work. When measuring
complex instrumental data, a mathematical object can be built
with the collected multi-way data array. The number of instru-
mental modes is the number of directions in the multi-dimen-
sional space spanned by the latter array.

Many different multi-way mathematical models have been
described in the literature, and model selection often puzzles
the analyst. In this context, it is important to have a unified
scheme which would allow one to select a data processing
model in a rational manner. This requires some knowledge on
the relationship between model features and data properties.
As we shall see, the latter greatly depend on the mutual
relationship among the profiles describing the behavior of
sample constituents in various data modes.

Multi-way calibration has been compiled in recent books,1,2

and also in several literature reviews.4,5–9 New developments in
both the theory and application of multi-way calibration make
the present review timely. We have organized it in two major
blocks: (1) a description of various multi-way data types and
the models which should in principle be employed for data
processing according to the data properties, and (2) a discus-
sion of recent literature reports on second- and third-order
experimental calibration (three- and four-way). The primary
experimental examples to be described involve excitation–
emission fluorescence matrices (EEFM) and chromatography
with spectral detection, although various other sources of
multi-way signals are gradually appearing in the scene.

Data classification and model
selection
Second-order/three-way data and models

We first recall the distinction between order and ways: the
order is the number of modes of the data array measured for a
single sample, whereas the number of ways is the number of
modes of an array which can be built with data for a sample
set. Thus, first-order and two-way calibration are synonymous,
as are second-order and three-way, third-order and four-way, etc.

Second-order data for a group of samples can be arranged
into a three-way array with three modes: the sample mode and
the two instrumental modes. A key concept for properly classi-
fying these data is whether a constituent profile in a given
instrumental mode is constant across samples or not. Sample-
dependent modes occur in an important group of experi-
ments, and it is thus critical to be able to identify them for
adequate model choice.

In certain experiments, the (normalized) instrumental pro-
files for all constituents are independent of each other and are
also independent of the sample composition. This situation
defines a trilinear three-way array, although the correct
expression should be low-rank trilinear, meaning that it can be
modeled using a small number of components, ideally equal
to the number of chemical constituents present in the system.1

The array can be graphically represented as in Fig. 1A, and the
data are adequately modeled by the trilinear equation:

xijk ¼
XN

n¼1

ainbjnckn þ eijk ð1Þ

where xijk is a generic element of the three-way array of signals,
ain is proportional to the concentration of constituent n in
sample i, bjn is proportional to the profile in one instrumental
mode at channel j, ckn is proportional to the profile in the
other instrumental mode at channel k and eijk is the error
model. The most popular model for trilinear data is least-
squares parallel factor analysis (PARAFAC),10 because eqn (1) is
precisely its defining expression. Other variants are known
which attempt to decompose a trilinear three-way array using
different strategies, as will be reviewed below.1

Another important group of three-way experiments leads to
the loss of trilinearity of the three-way array by a number of
causes. The most common one is when profiles in one of the
instrumental modes are not constant across samples. The
sample-dependent mode is responsible for breaking the trili-
nearity, and is called a trilinearity breaking mode, or a break-
ing mode in short. These datasets have been classified as non-
trilinear type 1.1 Since these data are not trilinear, eqn (1)
cannot be applied. A wise alternative is to unfold the three-way
array into a matrix, with one direction defined by the profiles
which do not change, and the other one by the concatenation
of samples and the breaking mode. The obtained object is

Fig. 1 Graphical illustration of two types of second-order data. (A)
Trilinear. A three-way array (right) is built by stacking data matrices (left).
The sample mode is represented by a, while both instrumental modes
are represented by b and c. (B) Non-trilinear type 1. An augmented data
matrix is built by placing individual data matrices for each sample adja-
cent to each other in the direction of the breaking mode (baug). The
profiles for the other instrumental mode (c) are constant across
samples.
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called an augmented matrix, because it can be thought as
being obtained by placing all data matrices adjacent to each
other along the direction of the breaking mode (a process
called matrix augmentation, represented in Fig. 1B). The
matrix is bilinear (more precisely low-rank bilinear) and can be
conveniently studied using a bilinear model:1,11

xjk ¼
XN

n¼1

baug;jncnk þ ejk ð2Þ

where xjk is a generic matrix element, baug,jn is proportional to
the concentration profile along the augmented mode (concate-
nating the sample and breaking modes), cnk is the corres-
ponding profile in the other mode and ejk is an error term. The
model of choice here is multivariate curve resolution-alternat-
ing least-squares (MCR-ALS) in the so-called extended
format,11 subjected to a number of chemically reasonable con-
straints during least-squares fit, with a model defining
expression which is precisely eqn (2).

Trilinear and non-trilinear type 1 are, by far, the most
common three-way data. However, there are additional causes
for the loss of trilinearity: both instrumental modes, not
depending on each other, may depend on the sample, defining
the so-called non-trilinear type 2 data.1 Data of this type show
changes in the profiles in both modes, with specific shapes
which depend on the sample composition, and thus vary from
sample to sample, defining both modes as breaking,1 and
maintaining the test sample as bilinear. A suitable model for
calibrating these data is unfolded partial least-squares with
residual bilinearization (U-PLS/RBL), which unfolds all cali-
bration data matrices into vectors, but maintains the test
sample in its matrix form to achieve the second-order advan-
tage, because this matrix is low-rank bilinear.

Finally, instrumental profiles may depend on each other, in
the sense that constituent profiles along one mode are
different for each experimental channel in the other mode,
even when they are normalized. These data are called non-
trilinear type 3,1 which may involve further sub-types. Mutually
dependent instrumental modes may be independent of the
sample, or may be accompanied by a further dependence on
samples. The best approach here is apparently to unfold all
data matrices into vectors prior to processing. However,
very few reports exist in this regard,12–14 and further work
would be necessary to establish the conditions under which
the second-order advantage can be achieved from these types
of data.

As a summary of the present discussion, the first question
to be answered concerns the mutual dependence of the instru-
mental modes, followed by assessing of the number of trili-
nearity breaking modes. This helps to properly classify the
data and select the model for successful processing.

Third-order/four-way data and models

More complex situations can be found in higher-order
systems. When classifying these data and models, focus is
again directed to the existence of multi-linearity and to the

manners in which multi-linearity may be broken in the pres-
ence of breaking and/or dependent modes. In this case, the
number of mathematical objects that can be built with the
data for a group of samples increases with respect to three-way
calibration. The prime candidate is a four-way array, obtained
by arranging the data into a four-dimensional object (Fig. 2A).
The latter are called quadrilinear, and can be conveniently
studied by using a quadrilinear four-way PARAFAC model.1

When a single breaking mode occurs, a trilinear three-way
array can be built by unfolding the four-way array along the
direction defined by the breaking mode. This can also be done
by placing the three-way arrays for different samples adjacent
to each other in the direction of the breaking mode, leading to
an augmented trilinear three-way array (Fig. 2B). These data
are non-quadrilinear type 1,1 and can be modeled using a

Fig. 2 Graphical illustration of three types of third-order data.
(A) Quadrilinear. A four-way array is built with a number of third-order
data for a group of samples (the sample and instrumental modes are
indicated). (B) Non-quadrilinear type 1. An augmented three-way array is
built by placing third-order data for a group of samples adjacent to each
other in the direction of the breaking mode. The other instrumental
modes are constant across samples. (C) Non-quadrilinear type 2.
A super-augmented matrix is built by first concatenating the two instru-
mental breaking modes for each sample, and then placing the obtained
matrices adjacent to each other. The profiles in the remaining instru-
mental mode are constant across samples.
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three-way PARAFAC model, which has been called augmented
PARAFAC.15

Another case of interest occurs in experiments showing two
breaking modes. Here a good alternative is to unfold the four-
way array into a matrix, with directions given by the concatena-
tion of the sample and the two breaking modes on one hand,
and the additional mode on the other. This can also be ima-
gined to be obtained by first unfolding each three-dimensional
array into a matrix, by concatenating the two breaking modes,
and then placing each of these matrices adjacent to each other
to produce a super-augmented matrix (Fig. 2C). These data are
non-quadrilinear type 2.1 Since the super-augmented matrix is
bilinear, it can be successfully processed by extended
MCR-ALS.11

No systems have been described yet having three breaking
modes, which would lead, analogously to second-order/three-
way data, to arrays that can be unfolded into vectors, keeping
the test sample data in the original three-dimensional fashion
for achieving the second-order advantage. These data are non-
quadrilinear type 3,1 and could be tackled by the analogue
U-PLS/RTL, i.e., U-PLS with residual trilinearization.16

Likewise, no four-way systems have been experimentally
produced having instrumental modes depending on each
other. They would define non-quadrilinear type 4 data,1 which
would include a number of sub-types, depending on the
number of mutually dependent instrumental and sample-
depending modes. In the special case where only two modes
are mutually dependent, they could be concatenated, produ-
cing three-way arrays that could be submitted to the previously
discussed analysis of three-way data.

The situation is obviously more complex for fourth-order/
five-way data.17,18 Similar consideration to those discussed
above should apply to these datasets.

Experimental examples
Model selection

The above discussion presented the recommendations which
should in principle be followed when employing multi-way
calibration, i.e., to choose the model which is best suited for
the data properties. However, in practical cases, the model of
choice differs from these directions, as would be probably con-
firmed in some of the cases to be reviewed in the next sections.
A number of reasons exist for this outcome: (1) trilinear data
may require a more flexible model than PARAFAC (e.g., U-PLS/
RBL),19 either because of extensive spectral overlapping or
linear dependency among constituent profiles, (2) PARAFAC
variants are adapted to the presence of breaking modes, e.g.
PARAFAC2,20 whose generality and usefulness in the presence
of interferents have been questioned,21 (3) data were aligned
along the breaking mode to produce a trilinear three-way array
and subsequently processed by PARAFAC, although this may
not be possible, in general, in the presence of interferents,21

(4) road maps for model selection were not considered. The
authors of the present review openly admit to have sometimes

fallen in case (4), showing that the shoemaker’s son always goes
barefoot (in Spanish, in the smith’s house, the knife is a stick).

Second-order/three-way excitation–emission fluorescence data

From the pioneering work in 1978 concerning the quantitative
determination of perylene in the presence of interferents by
EEFMs and three-way calibration,22 numerous papers were
published on the subject. The most popular model to be
applied to EEFM data (which are in principle trilinear) is
PARAFAC,10 which should be the first option for these data. In
fact, PARAFAC has been profusely applied to second-order
EEFM data for the simultaneous quantitation of fluorescent
analytes (or analytes that can be transformed into fluorescent
products) in biological, environmental and food samples,
among others. PARAFAC is able to overcome the interference
cause by both intrinsic and extrinsic fluorescence species
potentially present in complex matrices, achieving uniqueness
in the data decomposition and thus obtaining the second-
order advantage.

There are two general PARAFAC calibrations of EEFM data-
sets: (1) the experimentally simpler external calibration, which
consists of building a calibration set prepared with standard
solutions of the analytes, and (2) standard addition, where the
analyte standard is added to aliquots of the analyzed sample
before reading the data. The latter strategy is experimentally
more laborious, but is the alternative to be applied when the
so-called matrix effect is corroborated in the system under
study. The matrix effect modifies the signal-concentration
relation in a sample dependent manner, and thus breaks the
trilinearity of EEFM data. In this case, PARAFAC cannot be suc-
cessfully applied using the usual external calibration pro-
cedure. The matrix effect is frequently present in complex bio-
logical or environmental samples, and specifically in plasma
and urine, where it is usually caused by the quenching action
of proteins when they bind to the analyte. Table 1 shows
selected examples from recent years of PARAFAC analyte deter-
minations based on EEFM and either external or standard
addition calibration.

In the presence of a matrix inner-filter effect, an easier pro-
tocol than standard addition is to apply U-PLS/RBL to the
resulting non-trilinear EEFM data. In 2006, Piccirilli et al.
demonstrated the ability of this model to overcome the signifi-
cant changes produced by the fungicide thiabendazole in both
the excitation and emission spectra of the fungicide carbenda-
zim.23 The poor PARAFAC analytical results were attributed to
this inner-filter phenomenon. A subsequent report confirmed
that U-PLS/RBL is the most successful model for analyte pre-
diction when EEFMs suffer inner-filter effects24 on the basis of
both simulated and experimental data. The latter included
calibration mixtures of the analyte chrysene and the inner-
filter producing benzopyrene, and test samples containing the
interferent pyrene.

Trilinear models may also fail under conditions of near-
identical excitation or emission spectral profiles for sample
constituents, either analytes or analytes and interferents. In
these cases, degeneracy phenomena may preclude the
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decomposition of the three-way data in physically reasonable
profiles. More flexible models can be conveniently applied to
these data, namely U-PLS/RBL and MCR-ALS. Table 2 displays
selected examples related to this latter topic.

We now discuss in detail two working examples of the
determination of fluorescent analytes in the presence of inter-
ferents through EEFMs and PARAFAC. A very simple and green
method following this strategy was developed for PAH determi-
nation in aqueous solution.34 EEFMs were directly recorded on
the nylon surface, after analyte extraction in a rotating Teflon
disk system attached to the nylon membrane. The assayed
compounds were heavy PAHs of environmental concern,
namely benzo[a]pyrene, dibenz[a,h]anthracene, benz[a]anthra-
cene and chrysene. They were quantified in the presence of
other PAHs selected as potential intereferents. The EEFMs
were arranged in a three-way array, which complied with
the trilinearity condition, and the chemometric analysis
was successfully performed using PARAFAC through external
calibration.

On the other hand, PARAFAC with the standard addition
method was applied for the determination of enantiomers of
propranolol (beta blocker) in human plasma and urine.45 The
method is based on chiral recognition by the formation of
inclusion complexes with β-cyclodextrin in the presence of
1-butanol. Standard addition is required due to the individual
matrix effect caused by the quenching action of the proteins
present in the plasma and urine.25 See all examples in Tables
1 and 2.25–61

Second-order/three-way chromatographic-spectral data

In the chromatographic context, the use of appropriate models
has the relevant advantage of mathematically solving incom-
pletely resolved bands, dealing with the presence of inter-
ference through the second-order advantage, and with the
inherent lack of repeatability in the elution profiles (which
becomes the breaking mode).4 The most applied model for
second-order chromatographic data processing is thus
MCR-ALS, which has become the standard for these types of

Table 1 Selected examples for analytical quantitation using EEFM and PARAFAC

Compound Action/function Highlight Sample Ref.

External calibration
Fluphenazine Antipsychotic Fluorescent derivative (KMnO4 oxidation) Urine 25
DEX, QUIN Antitussive, anticonvulsant (DEX);

antimalarial (QUIN)
Plasma and urine 26

BTZ Herbicide EEFMs measured on a nylon membrane
surface

Stream, canal,
underground waters

27

IRI, THAL Anticancer drugs Analytes with very different fluorescence
quantum yields

Urine 28

E1, E3 Estrogens Liquid cosmetic 29
AFs, OCH A Mycotoxins Solvent methanol : water 75 : 25 (v/v) Sorghum grains 30
AFs B2 and G2 Mycotoxins Peanuts 31
AF B2a Mycotoxin Derivatization with bromine Peanuts 32
CAT, HQ, TRY Dihydroxybenzenes Aqueous solution 33
BaP, DBA, BaA, CHRY Potentially carcinogenic PAHs Nylon-attached rotating disks Aqueous solution 34
PHEN, TYR, TRYP Amino acids Cell culture; human

plasma
35

MAG, HON Polyphenolic compounds Herb and plasma 36
VAL, AMB Antihypertensives SDS as a fluorescence enhancer Plasma 37
MG, CV, LG, LV Antimicrobials and antiparasitics in

aquaculture
Dispersive liquid–liquid microextraction
(preconcentration)

Grass carp and
shrimp

38

MOX, CIPRO Fluoroquinolones Urine 39
NP ethoxylate,
NAPH sulfonate

Industrial contaminants Waste water 40

Fe(II) ion Metal ion Fe2+/H2O2 enhance MoS2 nanosheet catalytic
activity for OPD oxidation to DAPN. EEFMs
are read from the MoS2/OPD/H2O2 sensor

Lake water 41

AR, HQb Tyrosinase inhibitors Cosmetic products 42

Standard-addition calibration
Glutathione Antioxidant Fluorescent adduct with o-phthaldehyde Plasma 43
t-Resveratrol Antioxidant Plasma 44
PRO enantiomers Beta-blocker β-CD for chiral recognition Plasma and urine 45
IBU enantiomers Antiinflammatory β-CD for chiral recognition Plasma and urine 46
CBL, CBZ, NAP Carbamate pesticides Quenching minimized by dilution Lime tree flowers 47

a In the presence of AF G2. b Resolved with the alternating trilinear decomposition (ATLD) model. Abbreviations: AF, aflatoxin; AMB, amlodipine
besylate; ARB, arbutin; BAA, benz[a]anthracene; BaP, benzo[a]pyrene; BTZ, bentazone; CAT, catechol; CBL, carbaryl; CBZ, carbendazim; CD, cyclo-
dextrin; CHRY, chrysene; CIPRO, ciprofloxacin; CV, crystal violet; DAPN, 2,3-diaminophenazine; DBA, dibenz[a,h]anthracene; DEX, dextromethor-
phan; E1, estrone; E3, estriol; HON, honokiol; HQ, hydroquinone; IBU, ibuprofen; IRI, irinotecan; LG, leucomalachite green; LV, leucocrystal
violet; MAG, magnolol; MG, malachite green; MoS2, molybdenum disulfide; MOX, moxifloxacin; NAP, 1-naphthol; NAPH, 2-naphthalene; NP,
nonylphenol; OCH, ochratoxin; OPD, o-phenylenediamine; PAHs, polycyclic aromatic hydrocarbons; PHEN, L-phenylalanine; PRO, propanolol;
QUIN, quinidine; SDS, sodium dodecyl sulfate; THAL, thalidomide; TRY, tryptophan; TYR, tyrosine; VAL, valsartan.
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data. Selected examples where second-order liquid chromato-
graphic data were successfully processed with MCR-ALS are
shown in Table 3.

Table 4 shows relatively recent examples where liquid
chromatography second-order data were successfully processed
by other models. As explained above, when trilinear models
were applied, chromatographic bands did not significantly
change between successive runs, or data were aligned applied
before data processing. However, it should be borne in mind
that the latter are not the general solutions to the universal
problem of lack of chromatographic reproducibility and the
presence of interferents. Slight trilinearity losses were also
resolved by latent structured RBL models.

Two examples are detailed here. Mancha de Llanos et al.
reported a typical work showing the advantages of coupling
MCR-ALS to HPLC-FLD second-order data aimed at the quanti-

tation of five marker pteridines (neopterin, biopterin, pterin,
xanthopterin and isoxanthopterin) in urine samples.65 A fast-scan-
ning spectrofluorimeter connected to a chromatograph allowed
obtaining the data matrices of fluorescence intensity as a function
of retention time and emission wavelength. MCR-ALS enabled the
determination of the analytes, some of them with severely over-
lapped profiles, in the presence of coeluting interference, in a
short experimental time with low reagent consumption.

Vosough et al. compared the performances of MCR-ALS and
U-PLS/RBL as applied to HPLC-DAD matrix data, analyzing the
prediction results for six antibiotics (amoxicillin, metronida-
zole, sulfamethoxazole, ofloxacine, sulfadiazine and sulfamer-
azine) in the sewage treatment plant influent and effluent
samples.69 Although in most cases both models yielded good
results, MCR-ALS proved to be more efficient for modeling
datasets with elution profile changes from sample to sample,

Table 2 Selected examples for analytical quantification using EEFMs and models other than PARAFAC

Compound Action/function Highlight Model Reason Sample Ref.

CBS-X, CXT Used in the detergent
industry

SWATLD;
APTLD

Spectral similarity
analyte-interferencea

Laundry powder,
agriculture soil,
wastewater

48

CBZ Anticonvulsant, emerging
pharmaceutical pollutant

EEPIFMs
(UV irradiation in
acid medium)

MCR-ALS Spectral similarity
analyte-interference

Tap, underground,
river waters

49

CBZ, OFLO, PX Anticonvulsant (CBZ),
fluoroquinilone(OFLO),
antiinflammatory (PX)

EEPIFMs
(UV irradiation)

U-PLS/RBL Spectral similarity
among analytes

River,
underground,
tap waters

50

BaA, BfF, BkF, BaP,
DBA, Bp, Ip

Potentially carcinogenic
PAHs

U-PLS/RBL Spectral similarity
among analytes

Olive and
sunflower oils

51

BaA, BfF, BkF, BaP,
DBA, Bp, Ip

Potentially carcinogenic
PAHs

EEFMs on nylon
membranes

U-PLS/RBL Spectral similarity
among analytes

Edible oils 52

BaP, DBA, BAA CHRY,
BbF, BkF,

Potentially carcinogenic
PAHs

flow-through
optosensor

U-PLS/RBL Spectral similarity
analyte-interference

River waters,
sludges

53

PY, AN, FL FLU, ACE,
PHE

Potentially carcinogenic
PAHs

U-PLS/RBL ACE and FL spectral
overlapping, low FL
fluorescence

River and reservoir
waters

54

GAL Acetylcholinesterase
inhibitor

EEFMs in SDS
medium

U-PLS/RBL Spectral similarity
analyte-interference

River, tap,
well waters

55

TBZ, FBZ Fungicides Flow-through
optosensor. EEFMs
on C18

U-PLS/RBL Spectral overlapping
and difference of
quantum efficiencies

Underground,
tap, mineral,
river waters

56

ISO, LIN, MONU, RIM Urea-derivative herbicides EEPIFMs/HTAC
medium

U-PLS/RBL Photoproducts
spectral overlapping

Water and soil
samples

57

TBT Organotin species EEFMs of its morin
complex

MCR-ALS Excitation profiles of
interference and free
morin overlap

Tap, river, lagoon,
sea waters

58

TBT Organotin species EEFMs of TBT-morin
complex after CPE

MCR-ALS Emission overlapping
of TBT-morin, free
morin and
interference

Marine sediments 59

E2 Estrogen EEFMs on a C18
surface

U-PLS/RBL,
MCR-ALS

Analyte-interference
spectral similarity

Fish/chicken
tissues

60

BPA, NP Xenoestrogens CD-enhanced EEFMs U-PLS/RBL Analytes spectral
similarity

Plastics 61

a PARAFAC fails only in wastewater samples. Abbreviations: ACE, acenaphthene; AN, anthracene; APTLD, alternating penalty trilinear decompo-
sition; BaA, benzo[a]anthracene; BaP, benzo[a]pyrene; BbF, benzo[b]fluoranthene; BkF, benzo[k]fluoranthene; BP, benzo[g,h,i]perylene; BPA,
bisphenol A; CBS-X, benzenesulfonic acid, 2,2′([1,1′-biphenyl]-4,4′-diyldi-2,1-ethenediyl) bis-disodium; CBZ, carbamazepine; CD, cyclodextrin;
CHRY, chrysene; CPE, cloud point extraction; CXT, disodium 4,4′-bis[(4-anilino-6-morpholion-1,3,5-trizin-2-yl)amino]stilbene-2,2′-disulphonate;
DBA, dibenz[a,h]anthracene; E2, 17β-estradiol; EEPIFMs, excitation–emission photoinduced fluorescence matrices; FBZ, fuberidazole; FL, fluor-
anthene; FLU, fluorene; GAL, galantamine; HTAC, hexadecyltrimethylammonium chloride; IP, indeno[1,2,3-c,d]-pyrene; ISO, isoproturon; LIN,
linuron; MONU, monuron; NP, nonylphenol; OFLO, ofloxacin; PAHs, polycyclic aromatic hydrocarbons; PHE, phenanthrene; PX, piroxicam; PY,
pyrene; RIM, rimsulfuron; SDS, sodium dodecyl sulfate; SWATLD, self-weighted alternating trilinear decomposition; TBT, tributyltin; TBZ,
thiabendazole.
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whereas U-PLS/RBL appeared to be better for components with
high spectral similarity.

In the cases where the analytes have very similar UV or fluo-
rescence profiles, e.g. estrogens and some sex hormones, a

wise alternative is to divide the time axis in different regions
for data processing, each one including a single analyte.71,72 It
is also important to highlight the ability of MCR-ALS to suc-
cessfully process fused second-order chromatographic data.85

Table 3 Selected examples for analytical quantification using second-order liquid-chromatographic data and MCR-ALS

Compound Action/function Detection Highlight Sample Ref.

BIO, NEO, PT, XAN, ISO Metabolic disorder
markers

FLD Urine 65

BIO, NEO, PT, XAN, ISO Metabolic disorder
markers

FLD Augmented in spectra Urine 66

Daidzein, genistein Phytoestrogens DAD River water 67
MNZ, SMX, CPL, SDZ, SM Antibiotics DAD Wastewaters 68
MNZ, SMX, OFL, SDZ, SM, AMOXa Antibiotics DAD Sewage 69
13-cis-RA, 9-cis-RA, 9,13-di-cis-RA Expression gene

regulators during growth
DAD Plasma 70

E3, E2, EE2, E1 Estrogens DAD ET axis divided in regions due to
spectral similarities

Tap, mineral, river
underground waters

71

E3, E2, E1, EE2, DES, HEX, MEST,
PROG, AE NOR, LEV

Sex hormones DAD-FLD Dual detection in single isocratic
runs

Mineral, river,
underground waters.
Sediments

72

ENO, NRF, OFL, SRF, CPF, DIF,
EN

Fluoroquinolones FLD Fluorescence enhancement by
addition of yttrium

Stream, waste, well
waters

73

PHENO, CAR Antiepileptics DAD Human serum 74
PPX, CBL, CBZ, TBZ, FBZ Pesticides DAD Fruits, juices 75
BPA, NP, OP, DBP, DEHP, DEP Endocrine-disruptors DAD-FLD Dual detection. Elution gradient

for shortening the run time:
14 min per sample

Beer, wine, soda,
juice, water, distilled
beverages

76

ALDSX, OXA, ALDSN, MET, 3HOC,
ALD, PPX, CBF, CBL, NAP, METH

Pesticides DAD River water 77

SOT, ATE, NAD, PIN, METR, TIM,
BIS, PRO, BE, PARA, PHEN

Beta-blockers and
analgesics (PARA, PHEN)

DAD Precolumn replaced by a short
C18 column allowing
preconcentration/clean-up

River water 78

METHAM, PSEPHE Central nervous system
stimulants

DAD Groundb, riverc waters 79

GAL, EPI-GAL, OD-GAL, ND-GAL,
NO-GAL

Cholinesterase inhibitor
(GAL) and its
metabolites

FLD ET axis divided in regions due to
spectral similarities

Serum 80

TRY, PHE, PUT, CAD, HIS Biogenic amines DAD Derivatization. Alignment before
MCR-ALS augmented in spectra

Fish 81

TBZ, FBZ, CBZ, FM, DICAM,
IMZQ, NFZ, CBL, METH, NAP

Agrochemicals DAD-FLD Dual detection. FLD-ET data at
two excitation wavelengths

Mushroom, lettuce,
alfalfa sprout,
cucumber, celery

82

SYR, VAN, PABA, CAFd Antioxidant phenolics DAD Olive oils 83
TMP, EN, IMD, CLB,DIF, CFT,
CPL, CTC, FLUM, PSL, PYRA,
MBT, ABZ, FXN, DZP, FEN, NIC,
IBU, DICL, BMV, PROG

Veterinary active
ingredients

DAD-FLD Optimization through
experimental design for
improving the analyte extraction
efficiency

Poultry litter 84

DMP, CBL, BPA, NAP, NFZ Endocrine disruptors Fused
DAD-FLD
data

Analytes that cannot be
quantified from individual
detectors. High selectivity

Tap, underground,
river waters

85

aMCR-ALS and U-PLS/RBL rendered comparable results. b External calibration method. c Standard addition method. dMCR-ALS and PARAFAC2
(MCR provided significantly better results both in terms of modeling and predictive ability). Abbreviations: ABZ, albendazole; AE, androstene-
dione; ALD, aldicarb; ALDSX, aldicarb sulfoxide; ALDSN, aldicarb sulfone; AMOX, amoxicillin; ATE, atenolol; BE, betaxolol; BIO, biopterin; BIS,
bisoprolol; BMV, betamethasone; BPA, bisphenol A; CAD, cadaverine; CAF, caffeic acid; CAR, carbamazepine; CBF, carbofuran; CBL, carbaryl;
CBZ, carbendazim; CFT, ceftiofur; CLB, clenbuterol; CPF, ciprofloxacin; CPL, chloramphenicol; CTC, chlortetracycline; DBP, dibutyl phthalate;
DEHP, diethylhexyl phthalate; DEP, diethyl phthalate; DES, diethylstilbestrol; DICAM, dicamba; DICL, diclofenac; DIF, difloxacin; DMP, dimethyl
phthalate; DZP, diazepam; E1, estrone; E2, 17β-estradiol; E3, estriol; EE2, 17α-ethynylestradiol; EN, enrofloxacin; ENO, enoxacin; EPI-GAL, epiga-
lantamine; ET, elution time; FBZ, fuberidazole; FEN, fenbendazole; FLUM, flumequine; FM, fenarimol, FXN, flunixin; GAL, galantamine; HEX,
hexestrol; HIS, histamine; 3HOC, 3-hydroxy-carbofuran; IBU, ibuprofen; IMZQ, imazaquin; IMD, imidacloprid; ISO, isoxanthopterin; LEV, levo-
norgestrel; MBT, menbutone; MEST, mestranol; MET, methomyl; METH, methiocarb; METHAM, methamphetamine; METR, metoprolol; MNZ,
metronidazole; NAD, nadolol; NAP, 1-naphthol; NEO, neopterin; ND-GAL, N-demethylgalantamine; NFZ, norflurazon; NIC, nicarbazin; NO-GAL,
galantamine N-oxide; NOR, norethisterone; NP, nonylphenol; NRF, norfloxacin; OD-GAL; O-demethylgalantamine; OFL, ofloxacin; OP, octylphe-
nol; OXA, oxamyl; PABA, p-hydroxybenzoic acid; PARA, paracetamol; PHE, 2-phenylethylamine; PHEN, phenazone; PHENO, phenobarbital; PIN,
pindolol; PSL, prednisolone; PPX, propoxur; PRO, propanolol; PROG, progesterone; PSEPHE, pseudoephedrine; PT, pterin; PUT, putrescine;
PYRA, pyrantel; 9-cis-RA, 9-cis-retinoic acid; 13-cis-RA, 13-cis-retinoic acid; 9,13-di-cis-RA, 9,13-di-cis-retinoic acid; SDZ, sulfadiazine; SM, sulfamer-
azine; SMX, sulfamethoxazole; SOT, sotalol; SRF, sarafloxacin; SYR, syringic acid; TBZ, thiabendazole; TIM, timolol; TMP, trimethoprim; TRY,
tryptamine; VAN, vanillic acid; XAN, xanthopterin.
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Data fusion is useful when analytes cannot be quantitated
from individual detectors and enhances the advantages
already achieved with the coupling of dual chromatographic
detection to multivariate calibration.

In general, liquid or gas chromatography with mass spectral
detection provides enough selectivity to successfully determine
individual analytes in mixtures, with no need for three-way
calibration assistance. However, highly complex samples or
analytes with very similar structures may require the use of
chemometrics. Pertinent examples include the analysis of
nearly co-eluting 12C and 13C isotopically labeled metabolites
by GC-MS data, which were first aligned and then processed
with PARAFAC,62 polycyclic aromatic hydrocarbons in water
samples by GC-MS and MCR-ALS,63 and amphetamines in bac-
terial lipid extracts by LC-MS data and MCR-ALS.64 See all
examples in Tables 3 and 4.64–96

Third-order/four-way data

Although third-order data can be generated by different strat-
egies, the most applied ones include the measurement of: (1)
EEFMs as a function of either reaction time or chromato-
graphic elution time, and (2) comprehensive two-dimensional
chromatography with spectral detection. If the data are quadri-
linear, four-way PARAFAC is the option to be applied for data
processing, with small deviations from quadrilinearity resolved

with more flexible PLS-RTL models. This is the case with non-
chromatographic third-order data (EEFM-reaction time),
whose examples are shown in Table 5 for the determination of
pollutants and compounds with biological activity.

Few studies have been reported introducing an additional
mode to EEFMs, other than the reaction time. One example is
the pH mode, introduced by collecting EEFMs with a fast-scan-
ning spectrofluorimeter at the output of a flow injection system
where a double pH gradient was created.97 In this case, four-way
PARAFAC was successfully employed to quantitate fluoroquino-
lone antibiotics in human urine following this protocol.

Other alternatives to create the additional data mode in
EEFM detection include: (1) variations in dilution factors, as
in the quantitation of the pollutants carbaryl, carbendazim
and 1-naphthol in iceberg lettuce,98 (2) solvent changes, as in
the detection of schizandrols A and B (active ingredients of
anti-free radical and anti-HIV Schisandra chinensis) in
Dulbecco’s modified Eagle’s medium samples,99 and in the
quantitation of aflatoxins B1 and B2 in peanuts.100 All of these
systems were successfully resolved using PARAFAC.

On the other hand, chromatographic systems call for the
application of non-quadrilinear models because of the occur-
rence of one or two breaking modes: the elution time mode(s).
Liquid chromatographic data with EEFM detection have a
single breaking mode (the elution time mode) and can be pro-

Table 4 Selected examples for analytical quantifications using second-order liquid-chromatographic data and models other than MCR-ALS

Compound Action/function Detection Model Sample Ref.

AFs B1, B2, G1 and G2 DAD PARAFAC Pistachio nuts 86
ATR, AME, PROM Herbicides DAD APTLD River sediment,

wastewaters
87

Twenty free amino acids Amino acids influence
the flavor of tea

FLD APTLD Tea infusions 88

PROM, NAPRO, ALA Herbicides DAD SWATLD River sediment,
wastewaters

89

CIPRO, DAN, DIF, ENO, ENR, FLE,
LOM, MAR, OFLO, ORB, PEF, SAR

Quinolones (antibiotics) DAD ATLD Honey 90

PG, TBHQ, NDGA, EQ, BHA, OG,
DG, Ionox-100, BHT

Synthetic phenolic
antioxidants

DAD APTLD Oil samples 91

PG, BHA, BHT, OG, TBHQ, DG,
NDGA

Synthetic phenolic
antioxidants

FLD ATLD Oil samples 92

SC, SM, SMX, PIP, PEF, DAN,
LOM, TC, MNZ, ORN, OTC

Antibiotics DAD PARAFACa Tap waters 93

RU, QUE, LUT, KAE, ISOR, API,
GALA, CHRYS

Flavonoids DAD ATLD Propolis capsules 94

ISO, MONU, RIM Urea-derivative herbicides PIF U-PLS/RBLb Tap, river,
underground waters

95

CAR, NX, DICL, GEM, MEF Pharmaceuticals
(emerging pollutants)

DAD (1) COW alignment and PARAFAC.
(2) MCR-ALS with trilinearity
constraintc

Well, river waters 96

a Chromatographic background drift correction using a strategy based on orthogonal spectral signal projection. b Post-column photoirradiation.
c Similar results were obtained with both procedures. Abbreviations: AF, aflatoxin; ALA, alachlor; AME, ametryn; API, apigenin; APTLD, alternat-
ing penalty trilinear decomposition; ATLD, alternating trilinear decomposition; ATR, atrazine; BHA, 3-tert-butyl-4-hydroxyanisole; BHT, 3,5-di-
tert-butyl-4-hydroxytoluene; CAR, carbamazepine; CHRYS, chrysin; CIPRO, ciprofloxacin; COW, correlation optimized warping; DAD, diode-array
detector; DAN, danofloxacin; DICL, diclofenac; DIF, difloxacin; ENO, enoxacin; ENR, enrofloxacin; DG, dodecyl gallate; EQ, ethoxyquin; FLD, fluo-
rescence detector; FLE, fleroxacin; GALA, galangin; Ionox-1002, 6-di-tert-butyl-4-hydroxymethyphenol; GEM, gemfibrozil; ISO, isoproturon; ISOR,
isorhamnetin; KAE, kaempferol; LOM, lomefloxacin; LUT, luteolin; MAR, marbofloxacin; MEF, mefenamic acid; MNZ, metronidazole; MONU,
monuron; NAPRO, napropamide; NDGA, nordihydroguaiaretic acid; NX, naproxen; OFLO, ofloxacin; OG, octyl gallate; ORB, orbfloxacin; ORN,
ornidazole; OTC, oxytetracycline; PEF, pefloxacin; PG, propyl gallate; PIP, pipemidic acid; PROM, prometryne; QUE, quercetin; RIM, rimsulfuron;
RU, rutin; SAR, sarafloxacin; SC, sulfacetamide; SM, sulfamerazine; SMX, sulfamethoxazole; SWATLD, self-weighted alternating trilinear
decomposition; TC, tetracycline; THBP, 2,4,5-trihydroxybutyrophenone; TBHQ, tert-butylhydroquinone.
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cessed by three-way augmented PARAFAC. In cases of no sig-
nificant peak changes and high collinearity among spectra,
however, PLS/RTL gave the best results. Examples of such
systems, resolved by different models, are summarized in
Table 5.

Finally, an important group of third-order applications
includes two-dimensional liquid chromatography with a diode
array detector (DAD) or MS detection and gas chromatography
with mass spectral detection (GC-GC-MS). Changes in profiles
from sample to sample in both columns make it necessary to
process the data by building a super-augmented matrix with
sample data which are previously unfolded by concatenating
both elution time modes. Two breaking modes are present in
these systems, and the model of choice for decomposing the

bilinear super-augmented matrix is MCR-ALS. In some cases
alignment in both time modes may be possible, recovering
quadrilinearity before PARAFAC processing. We collect
selected examples in Table 6.

Conclusions

With the expansion of the multi-way calibration field to new
multi-dimensional signals and analytical systems, there is a
need for a rational scheme to aid the analyst in selecting the
most appropriate model for successful data processing. The
present review provides one such alternative, based on a
simple analysis of two relevant data properties: (1) the number

Table 5 Selected examples of third-order data including EEFM measurements

Analyte Action/function Highlight Model Sample Ref.

EEFM-kinetic third-order data
TYR, LEV Dopamine precursors Reaction involved: enzyme-induced AQLD Human plasma 101
BaP, DBA, BbF,
BkF, BAA

PAHs Reaction involved: Fenton degradation PARAFAC Natural waters 102

Thiamine Vitamin B1 Reaction involved: oxidation in alkaline medium
catalyzed by Hg2+

PARAFAC Multivitamin
complexes

103

AZM Reaction involved: UV-light irradiation PARAFAC and
U-PLS/RTLa

Fruits 104

CBL, NAP, PPX Pesticides Reaction involved: alkaline hydrolysis of the
pesticides

U-PLS/RTL and
N-PLS/RTL

Natural water
stream

105

EEFM-liquid chromatography third-order data
Chl a, Chl b,
Pheo a, Pheo b

Natural pigments of
virgin olive oil

ETMs recorded at different excitation wavelengths
(the same sample is injected several times)

U-PLS/RTL and
N-PLS/RTL

Olive oils 106

Chl a, Chl b,
Pheo a, Pheo b

Natural pigments of
virgin olive oil

ETMs recorded at different excitation wavelengths
(the same sample is injected several times)

Augmented
PARAFAC

Olive oils 18

OFL, CIPRO Fluoroquinolones EEFMs at different elution timesb MCR-ALS Tap water 107
OFL, CIPRO, DAN Fluoroquinolones EEFMs at different elution timesb Augmented

PARAFAC
Drinking water
samples

108

CBZ, TBZ, FBZ,
CBF, CBL, NAP

Pesticides Each sample is injected several times, and ETMs
are recorded each time at a different excitation
wavelength

U-PLS/RTL Fruit juice 109

a Both models rendered good results. b At the end of the chromatographic procedure, each fraction is collected in an ELISA (enzyme-linked
immunosorbent assay) 96-well plate (several fractions are collected for each run). Abbreviations: AQLD, alternating quadrilinear decomposition;
AZM, azinphos-methyl; BAA, benz[a]anthracene; BaP, benzo[a]pyrene; BbF, benzo[b]fluoranthene; BkF, benzo[k]fluoranthene; CBF, carbofuran;
CBL, carbaryl; CBZ, carbendazim; Chl, chlorophyll; CIPRO, ciprofloxacin; DAN, danofloxacin; DBA, dibenz[a,h]anthracene; EEFM, excitation–
emission fluorescence matrix; ETM, emission wavelength–elution time matrix; FBZ, fuberidazole; LEV, levodopa; NAP, 1-naphthol; OFL, ofloxa-
cin; Pheo, pheophytin; PPX, propoxur; TBZ, thiabendazole; TYR, tyrosine.

Table 6 Selected examples of two-dimensional chromatographic third-order data

Analyte Action/function Highlight Model Sample Ref.

GC-GC-MS third-order data
PAHs Pollutants MCR-ALS North Sea crude oil

extract
110

PAHs Pollutants MCR-ALS Heavy fuel oils 111

LC-LC-DAD third-order data
Furanocoumarins Pollutants MCR-ALS Apiaceous vegetables 112
Phenytoin Pollutant Semi-automated peak alignment

to restore quadrilinearity
PARAFAC Waste waters 113

Nitrate, TRY, OH-TRY, IAc, IPr,
Ian, TYR

Metabolites and xenobiotics MCR-ALS Human urine 114

IAc, indole-3-acetic acid; IAn, indole-3-acetonitrile; IPr, indole-3-propionic acid; OH-TRY, hydroxytryptophan; PAHs, polycyclic aromatic
hydrocarbons; TRY, tryptophan; TYR, tyrosine.
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of modes which break the multi-linearity due to sample-depen-
dent profile changes, and (2) the number of mutually depen-
dent instrumental modes. The importance of model selection
cannot be overemphasized: it is the first step towards the
success of any multi-way calibration protocol.
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