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Ionization of N2 in collisions with fast electrons: Evidence of an interference effect
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Absolute double differential cross sections (DDCS) of electron emission were measured for ionization of
N2 by fast electrons with energy 7 keV. Measurements were performed for different electron emission angles
and energies. Evidence of oscillation due to Young-type interference was observed in the DDCS ratios for all
angles. The frequency for large backward angle is found to be larger compared to that for small forward angle.
Consequently, the forward-backward asymmetry parameter reveals the oscillatory structure even more clearly.
The oscillations observed for both experimental-to-theoretical DDCS ratios and forward-backward asymmetry
were well explained by the Cohen-Fano model of interference in a molecular double slit. A periodic deviation
of the Cohen-Fano model from the asymmetry parameter data reveals the presence of a higher-frequency
component. The first Born model was employed to explain the results of molecular nitrogen for which a
complete-neglect-of-differential-overlap approximation was used along with an effective atomic number.
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I. INTRODUCTION

Electron-impact ionization of atoms and molecules is an
important field in the study of basic atomic collision physics.
There have been numerous experimental and theoretical
investigations in this field for many decades. Many aspects
of electron-induced ionization are being investigated, such
as total cross sections, single and double differential cross
section (DDCS), e-2e and e-3e collision processes, as well as
double and multiple ionizations [1,2]. The e-DDCS spectrum
carries rich information regarding the collision mechanisms
compared to the single differential and total cross sections.
Such measurements of the absolute cross sections at the DDCS
level are scarce, although it has major applications in other
fields, such as plasma physics, astrophysics, cluster physics,
and, in general, atomic collision physics involving photons,
electrons, and ions as projectiles.

However, other fundamental processes which have implica-
tions for basic quantum physics, such as Young-type electron
interference from a molecular double slit which is a relatively
new feature, can be well investigated from an electron DDCS
spectrum arising from such collisions. Such an interference
and the resulting oscillation in the electron spectrum was
predicted by Cohen and Fano in 1966 [3]. Investigation of the
interference effect in the electron emission spectrum arising
from a diatomic molecule in collision with photons, electrons,
and fast heavy ions has been the subject of intensive exper-
imental and theoretical studies. For homonuclear diatomic
molecules, since the two atomic centers are indistinguishable,
the probability of electron emission from either atom is
expected to add coherently, resulting in an interference effect.
The two atoms are analogous to the two slits in Young’s double-
slit experiment on light scattering, which played a major role
in the formation and progress of quantum mechanics.

Experiments on ionization of H2 by heavy ions, electrons,
and photons [4–11] were performed to investigate the inter-
ference effect. Similarly, other diatomic molecules, such as
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N2, O2, and CO [11–23], have been the subject of study in
recent years to look for an interference effect. Although in the
case of H2, evidence of an interference effect was seen for both
heavy-ion and electron impact, for multielectronic targets such
as O2 and N2, there is an ambiguity in such observation in the
case of heavy-ion impact. For the N2 molecule, the oscillation
which was observed by proton impact [12] has been interpreted
to have the signature of a second-order scattering process only.
On the other hand, in the case of H2, a double-collision model
was used [24,25] to explain the observed double-frequency
component (second-order process), along with the presence
of a first-order Cohen-Fano oscillation. According to the
continuum distorted wave–eikonal initial state (CDW-EIS)
model [26], for proton impact ionization of N2, oscillations
are visible in individual orbitals, which are phase shifted from
each other. Thus, adding up the contributions from all orbitals
leads to the cancellation of intensities and therefore the DDCS
spectra may not reveal any signature of oscillation. The recent
experimental work on the DDCS measurement of N2 [16] did
not show any appreciable oscillation, also for O2, where no
oscillation was observed [17]. On the contrary, Ilchen et al. [18]
demonstrated the existence of interference oscillation in
photoionization of 1σg and 1σu orbitals of N2 molecule.
There exists a phase mismatch in the oscillations of these
two individual orbitals. Similarly, interference oscillation was
observed clearly in the vibrationally resolved states of N2 [11].

Fast electrons impart much weaker perturbation to the
target as compared to fast heavy ions during collision. It
is well known that heavy ions cause simultaneous multiple
ionization of outer shells of atoms along with single ionization.
Thus, multiple ionization of different orbitals complicates the
process, which as a result may create difficulty in observing
the oscillations. In the case of fast electron collisions, the
probability of multiple ionization is much less compared to
that for heavy-ion collisions [27]. In this work, we present
the DDCS spectra of the secondary electrons ejected due to
the collision of fast electrons with N2 and a clear signature of
first-order interference effect is visible from the DDCS ratios,
which is in partial agreement with the observation in [14].
The DDCSs are measured as a function of emitted electron
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energy and angle. The forward-backward angular asymmetry
parameter and the details of the interference oscillation are
deduced from the measured DDCS spectra.

II. EXPERIMENTAL DETAILS

We present a brief sketch of the experimental setup used
for the measurement of energy and angular distributions of
the secondary electrons. The experiment has been performed
with a 7 keV (projectile velocity vp ∼ 22.7 a.u.) electron
beam obtained from a commercially available electron gun.
These fast electrons were initially focused using a set of einzel
lens and deflectors present within the electron gun assembly.
Electron being a light mass particle and the distance between
the electron gun filament and interaction region in the scatter-
ing chamber being quite large (∼1.5 m), one set of lens and
deflectors was not sufficient to get a well-collimated parallel
beam near the interaction region. Another set of einzel lens,
a pair of electrostatic deflectors, and a collimator stack with
three collimators were incorporated in the beam line to focus
the beam. The last aperture of 2.5 mm diameter was used to cut
the beam before it reached the interaction region. For better
alignment, two sets of magnetic coils were also introduced in
the beam line. Finally, a well-collimated parallel beam was
directed to the N2 target gas present in the scattering chamber.
The beam current was typically around 900 nA, which
remained almost stable throughout the experimental process
with minor fluctuation in the presence and absence of gas.

The collision processes took place in a high vacuum
scattering chamber made of stainless steel having diameter
of 18 inches. It is equipped with a motorized turntable
and a hemispherical electrostatic analyzer. A base pressure
of 7 × 10−8 mbar was achieved with a 2000 l/sec turbo
molecular pump backed by a triscroll pump. The chamber was
flooded with the target gas (molecular nitrogen) at an absolute
pressure of 0.15 mTorr, which was measured by a capacitance
manometer (MKS Baratron). The Earth’s magnetic field was
reduced to about 5–10 mGauss near the interaction region by
placing two μ metal sheets on the inner side of the scattering
chamber. In addition, it was also ensured that the electric and
magnetic field due to the lens and deflectors in the beam line did
not have any effect on the emitted secondary electron spectrum,
particularly for the low-energy electrons. The electrons ejected
from the target after the collision process were energy analyzed
by the hemispherical electrostatic analyzer sitting on the
turntable. The hemispherical analyzer has an inner and outer
diameter of 25 and 35 mm, respectively. A preacceleration
voltage of 6 V was applied at the entrance and exit slit
of the spectrometer to enhance the collection efficiency of
the low-energy electrons (<5 eV) which otherwise may be
deflected by the presence of any stray electric or magnetic
field near the interaction region. The energy-analyzed electrons
were detected by a channel electron multiplier (CEM) placed
after the exit slit of the hemispherical analyzer. The cone of
the CEM was kept at a positive potential of 100 V because
the detection efficiency of the CEM remains constant (0.85)
for electron energies between 100–500 eV, as obtained from
the operation manual of the detector. Since the chamber is
flooded with target gas, the collision volume is extended along
the electron beam and therefore the acceptance angle of the

analyzer varies between 3.4◦ to 3.6◦ based on the emission
angle. The corresponding estimated average uncertainty in
electron emission angle is about 3.7◦. Energy resolution of
the analyzer is about 6% in which the contribution due to the
acceptance angle is about 1% (see Ref. [28]). At each energy,
the number of electrons ejected were detected for a specified
amount of incident projectile charge collected on a Faraday
cup. A LABVIEW-based data acquisition system was used for
scanning the voltages on the hemispheres and to collect the
data for different electron energies.

The secondary electrons having energies of 1–550 eV were
detected for different angles from 15◦ to 145◦. The error due
to statistical fluctuation was low (4%–6%) throughout the
experiment. Gas pressure fluctuation was about 6% to 7%. The
maximum absolute error in the data for the present experiment
was about 15%.

III. THEORETICAL MODELS

The DDCS of ionization of N2 molecules is obtained by
the method proposed by Senger et al. [29], developed in
the framework of the complete neglect of differential over-
lap (CNDO) approximation [30]. Briefly, molecular orbitals
(MOs) are constructed from a linear combination of atomic
orbitals in a self-consistent field approach by using a minimal
basis size: only atomic orbitals of those which are occupied
in the ground state of the atoms of the molecule are utilized.
In this treatment, the weight of such atomic contributions is
expressed in terms of the electronic population.

For the ground state of the N2 molecule, the electronic
configuration is (N1s)4 (σg2s)2 (σu2s)2 (πu2p)4 (σg2p)2. The
contribution of the different atomic states to the MO extracted
from Ref. [31] is shown in Table I, as well as the corresponding
measured MO binding energies taken from Ref. [32]. As a
consequence, in the monocentric CNDO model, the DDCS for
a particular MO reduces to a sum of the cross sections for
N atomic compounds weighted by the weights resulting from
the Mulliken population analysis for the considered MO (see
Table I) [29]. The total DDCS for the molecule is obtained
then as a sum of all MO contributions.

The electronic configuration of the ground state 4S3/2 of
the N atom is (1s)2(2s)2(2p)3. Within the framework of
an independent electron model, the multielectronic problem
is reduced to a single-electron one under the following
assumption. It is supposed that one of the target electrons (the
active electron) is ionized in the final channel of the reaction,
whereas the other ones (the passive electrons) remain as frozen
in their initial orbitals. Hence, no appreciable relaxation of the
target is assumed during the effective collision time, which is

TABLE I. Population and experimental binding energies of the
N2 molecular orbitals (MOs).

MO Population [31] Expt. energy (eV) [32]

N 1s 4.00 N 1s −409.90
σg2s 1.50 N 2s + 0.50 N 2p −37.23
σu2s 1.47 N 2s + 0.53 N 2p −18.60
πu2p 4.00 N 2p −16.80
σg2p 0.5 N 2s + 1.50 N 2p −15.50
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justified as the latter is much less than the relaxation time of
the target at the impact energies of interest [33].

The DDCS for a particular orbital of the N target is obtained
from the following expression:

d2σ

d�edEe

= (2π )4 kks

ki

∫
d�s |tf i |2, (1)

where k and ks are the momenta of the active ejected electron
and the scattered one, respectively, whereas d�e and d�s

represent the corresponding differential solid angles with
respect to the incidence direction defined by the incident-
electron momentum ki . Moreover, Ee = k2/2 is the energy
of the emitted electron.

The prior version of the transition-matrix element reads

tf i = 〈ψ−
f |Vi |ψi〉, (2)

where ψi is the wave function in the initial channel and ψ−
f is

the final wave function with correct asymptotic conditions. Vi

is the perturbation in the entrance channel.
The initial wave function is chosen as a product between a

plane wave for the incident projectile and a bound-state wave
function φj for the active electron,

ψi = eiki ·R

(2π )3/2
φj (r), (3)

where R and r are the position vectors of the incident electron
and the active electron, respectively. Atomic orbitals φj (j =
1s,2s,2p) are described here within the Roothaan-Hartree-
Fock approximation [34].

In the first Born approximation, the final-state wave
function is chosen as

ψ−
f

∼= eiks ·R

(2π )3/2
C(k,r,γ ), (4)

where

C(k,r,ν) = 	(1 − iγ )
eik·r

(2π )3/2
e−πγ/2

× 1F1[iγ ; 1; −i(kr + k · r)] (5)

describes the ionized electron in the field of the residual
target at asymptotically large distances. 1F1 is the confluent
hypergeometric function and γ = −ZT /k is the correspond-
ing Sommerfeld parameter. Here, ZT is an effective charge
corresponding to the residual target seen by the active electron.

According to the choice of the initial state, the perturbation
Vi in the initial channel is taken as

Vi = 1

rp

− 1

R
, (6)

where rp = r − R is the position vector of the active electron
with respect to the projectile. The perturbation Vi corresponds
to the interaction of the projectile with the active electron
and with a net charge equal to unity. This is compatible with
the complete screened charge of the nuclei by the passive
electrons.

In order to evaluate the influence of the passive electrons
in the final channel, either an asymptotic charge ZT = 1,
which corresponds to a total screening of the nucleus, or

ZT = Zbk =
√

−2n2
j εj [35] is used in the DDCS calculations

for both N and N2 targets. For the case of atomic cross-section
calculations, εj is the Roothaan-Hartree-Fock energy [34],
whereas for N2 computations, εj represents the MO energies
shown in Table I. In both cases, nj is the principal quantum
number of the atomic orbital involved in the calculations.
Further details can be found in Ref. [36].

IV. RESULTS AND DISCUSSIONS

In this section, the experimentally observed DDCS spectra
for the N2 target and consequently the interference oscillations
obtained from the DDCS ratios are discussed along with the
forward-backward asymmetry.

A. Energy distribution of electron DDCS
at fixed emission angles

The measured absolute electron DDCSs for N2 as a function
of emitted electron energy for four different emission angles
are shown in Fig. 1. The theoretical cross sections for N2 and
2N, calculated using effective charges ZT = 1 and ZT = Zbk ,
are also plotted. From the figure, it is seen that the cross section
decreases over four orders of magnitude in the measured
electron energy range. In the low-energy part of the spectrum,
the cross section reaches a maximum due to the contribution
from the soft electron emission process where the momentum
transfer is small and the electrons are emitted with very large
impact parameter. The calculations for N2 and 2N are seen
to merge almost completely for either values of ZT . The
calculation with ZT = 1 matches with the experimental data
qualitatively, but overestimates it for all angles. The calculation
corresponding to Zbk is seen to have better agreement with data
beyond 20 eV for all angles. For extreme backward angles,
ZT = Zbk underestimates the data. In the low-energy region,

FIG. 1. Absolute DDCS for different emission angles: Theo-
retical cross sections for N2 (red solid line) and 2N (blue dashed
line) corresponding to ZT = 1 are displayed. The calculations using
ZT = Zbk are also shown by the orange dash-dotted line (N2) and
green dotted line (2N). The calculations for N2 and 2N, being almost
identical, cannot be distinguished.
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the discrepancy between data and theoretical calculation using
Zbk is larger in the case of forward angles compared to the
backward angles. The sharp peak observed at about 355 eV
corresponds to the K-LL Auger electron emission, which is not
taken into account in the theoretical calculations. The DDCS
for N2 (under dipole approximation) can be written as [4]

σN2 (k,θ ) = σ2N (k)

[
1 + sin[kc(θ )d]

kc(θ )d

]
. (7)

Here, k represents the electron momentum in a.u. and d is the
internuclear distance (2.1 a.u. for N2). The quantity c(θ ) is
an adjustable frequency parameter, and the term sin[kc(θ)d]

kc(θ)d is
known as the Cohen-Fano term [3,4,37]. The DDCS for 2N
(σ2N) was obtained from theoretical calculations. The ratio
DDCS(N2)/2DDCS(N) shows the interference oscillation,
which is discussed in the following section.

B. Angular distribution of electron DDCS
at fixed emission energies

Figure 2 displays the angular distribution of DDCS for
different electron emission energies. An absolute error of 15%
is shown for some data points. The four theoretical curves
correspond to the cross sections for N2 and 2N with the effec-
tive charge ZT = 1 and ZT = Zbk . The theoretical calculations
match qualitatively with the data, but ZT = 1 overestimates
the measured values in all cases. The calculations with Zbk

underestimate the data for 9 eV, but match qualitatively for
higher energies. A closer inspection into the plots for 120
and 200 eV show that the curves for ZT = Zbk are below the
measured values for extreme forward and backward angles.
In the case of low emission energies, the distributions are
almost flat, but with the increase in electron emission energy,
the distributions gradually show a peaking structure around
80◦. This difference in the shape of the distribution for low
and high energy is understood in terms of the binary nature
of collisions. Further, from the figure it is readily seen that
for lower electron energies, the DDCS values are almost the
same for extreme forward and backward angles. However,
with the increase in energy, the DDCS for forward angles is

FIG. 2. Absolute DDCS for fixed electron emission energies.
Legends are similar to that mentioned in Fig. 1.

slightly greater than for backward angles. This behavior is
also reproduced qualitatively by the theoretical calculations,
although they do not match quantitatively with data. It can be
inferred that there is only minor signature of forward-backward
angular asymmetry in the case of electron-impact collisions.

C. DDCS ratios

1. Experimental-to-theoretical DDCS ratios

As seen from Fig. 1, the DDCSs for N2 and independent
N atoms fall by several orders of magnitude with the electron
energy, whereas the variation due to the interference effect
is rather small. To enhance the visibility of interference
oscillation, it is essential to omit the variation of cross section
with electron energy. Therefore, the DDCS for N2 should be
divided by the corresponding DDCS of the two N atoms. In the
absence of experimental data for atomic N, the experimental
DDCSs for N2 were divided by theoretical DDCS for 2N,
which has been calculated using the effective charges ZT = 1
and ZT = Zbk . Figures 3 and 4 show the DDCS ratios obtained
using ZT = 1 and ZT = Zbk , respectively. In Fig. 3, a half
sinusoidal oscillatory structure is observed about a horizontal
line around a value of 0.5 forward angles and around 0.6 for
145◦. The oscillations are expected to be around a horizontal
line near 1.0, but as seen from Fig. 1, the calculations using
ZT = 1 overestimate the measured data for all angles, resulting
in the oscillations being observed below 1.0. In the case of
145◦, the oscillation frequency is seen to be much higher
compared to the other angles. The ratios are fitted by the
Cohen-Fano-type function (shown by solid lines in Fig. 3)
given by

σnorm(k,θ ) = A + F
sin[kc(θ )d]

kc(θ )d
, (8)

where σnorm(k,θ ) represents the DDCS ratio, i.e., (σN2/σ2N).
The fitted curve matches quite well with the ratios except for
145◦, where large discrepancy can be observed beyond 2.5 a.u.
Such mismatch may be ascribed to the difference between the
measured data and theory for 2N.

FIG. 3. Experimental-to-theoretical DDCS ratios (σN2/σ2N) at
different scattering angles for ZT = 1. The solid line corresponds
to the analytical fitting function given in Eq. (8).
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FIG. 4. Ratio of N2 DDCS to twice atomic nitrogen DDCS
obtained using ZT = Zbk for atomic N cross section. The solid line
corresponds to a linear function of negative slope used for fitting the
ratios.

Figure 4 shows similar DDCS ratios which have been
obtained using the effective charge ZT = Zbk for 2N. The
ratios show an oscillatory structure overriding on a straight
line of negative slope. To reveal the oscillations clearly, a linear
function (shown by the red line) was fitted to the ratios. The
cross-section ratios were then divided by the fitted line and the
resulting DDCS ratios are shown by the blue circles in Fig. 5
for four different angles. The linear fitting was performed to
observe the oscillation about a horizontal line. Half sinusoidal
oscillatory structures are observed around a horizontal line

FIG. 5. DDCS ratios (σN2/σ2N) obtained after dividing by the
linear fitted line in Fig. 4. The solid curve shows the fitting function
given in Eq. (8).

near 1.0 for all the angles. This oscillatory behavior, thus, is
qualitatively similar to that observed using ZT = 1, as shown
in Fig. 3. The ratios were further fitted by the Cohen-Fano
function given in Eq. (8). It is seen that the fitted function
(shown by the blue solid line) has a good agreement with the
experimental-to-theoretical ratios.

The choice of effective charge ZT for calculating the atomic
N cross sections plays a crucial role in determining the shape
of the oscillations in the DDCS ratios, as seen in Figs. 3 and 4.
Though, from Fig. 1, a better agreement is observed between
the measured DDCS of N2 with that of 2N using ZT = Zbk

at higher energies, the ratios do not reveal proper oscillation.
The oscillation, about a horizontal line, is finally revealed only
after dividing by a fitted straight line. On the other hand, for
the DDCS for 2N using ZT = 1, although it overestimates the
N2 cross section (Fig. 1), it provides clearer oscillation about
a horizontal line.

It should be mentioned here that the relative N2/N triple-
differential cross section (TDCS) of Ref. [14] shows clear
structure, although the agreement with the Cohen-Fano factor
is a bit poor at such lower-impact energy (250 eV), compared
to the high-energy electron beam used in this experiment.
Also we should note that in Ref. [14], the experiments and
calculations are done only for the 3σg orbital, whereas our
experimental results are presented for all molecular orbitals.
We know from the case of ion impact that the interference
effect can be shadowed [16,17,26] when the sum of all orbital
contributions is included. The remarkable result obtained
in our work is that the signature of interference patterns
appears for the DDCS ratio considering the contributions of
all molecular orbitals. This is possibly due to the fact that
simultaneous multiple ionization of different orbitals is much
less in the case of fast electron-impact ionization, compared
to that for heavy-ion collisions in Refs. [16,17].

2. Frequency parameter

The variation of the angle-dependent frequency parameter
c(θ ) [obtained from the fitting function in Eq. (8)] as a
function of electron emission angles is displayed in Fig. 6.
It is seen that for all of the forward angles, frequency remains

FIG. 6. Frequency parameter c(θ ) plotted as a function of electron
emission angle. The solid line is to guide the eyes.
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almost constant up to 90◦. In the case of backward angles,
the frequency parameter increases steadily with the increase
in the observation angle. The frequency parameter changes
from a value of 1.2 to 1.45 over the entire angular range,
giving an enhancement of a factor of about 1.20(8). The
shape of the angular dependence of c(θ ) is quite different than
that for H2 [8]. N2 is a multielectronic target, and therefore
ionization is possible from different molecular orbitals and
hence some difference can be expected in the observed
oscillation parameters compared to that for the simplest
molecule, i.e., H2.

3. Forward-backward angular asymmetry

In the previous section, we have obtained the interference
oscillation from the ratio of the experimental DDCS for N2

to that of theoretical DDCS for atomic nitrogen. From Figs. 3
and 4, it is inferred that the pattern of interference oscillation
depends on the choice of effective charge ZT used for atomic
N calculations. Another possible way to deduce the oscillation
is from the asymmetry parameter according to the prescription
given in [38]. In this method, the oscillation is directly
determined from the ratios of the measured DDCS and hence
does not depend on the absolute normalization procedure. In
addition, since it involves the DDCS for the molecular target
only, it is also free from atomic cross section and the choice
of any effective charge. According to [39], non-Coulombic
potential for a multielectronic atom or molecule contributes to
the forward-backward asymmetry. In the case of a diatomic
molecule, the Young-type interference can also influence
the asymmetry parameter, as shown in Refs [7,38,40]. The
asymmetry parameter α(k) is defined as

α(k) = σ (k,θ ) − σ (k,π − θ )

σ (k,θ ) + σ (k,π − θ )
, (9)

where k is momentum and θ is chosen to be a small forward
angle, 35◦. As shown by Fainstein et al. [39], expanding σ (k,θ )
in terms of the Legendre polynomials and considering the
first few terms of the series expansion, α(k) represents the
asymmetry parameter for θ = 0. Since the variation of angular
distribution around 0 and π is very small, we have used θ =
35◦ in the present case to calculate α(k) approximately. The
asymmetry parameter, obtained from the molecular DDCS for
two complementary angles, is shown in Fig. 7 as a function
of electron velocity. The quantity α(k) shows a full sinusoidal
oscillation with a minor increasing trend in the ejected electron
velocity range of 0.6 to 3.5 a.u. From Fig. 6, we have seen that
the frequency of oscillations is greater for backward angles
compared to forward angles. This difference in frequency for
two complementary angles give rise to the oscillatory structure
in α(k). By replacing the DDCS in Eq. (9) with that in Eq. (7),
which contains the Cohen-Fano term, one gets an expression
for the asymmetry parameter α(k) as follows [40]:

α(k) = kβc(θ )d(A−B) +{Aβ sin[kc(θ )d] − B sin[kβc(θ )d]}
kβc(θ )d(A+ B) +{Aβ sin[kc(θ )d]+B sin[kβc(θ )d]} ,

(10)

where electron energy εk = k2/2, A and B are the amplitudes
of oscillation for the two complementary angles, d is the
internuclear distance, c(θ ) is the frequency of low forward

FIG. 7. Forward-backward asymmetry parameter obtained from
measured DDCS of N2 for low forward angle (35◦) and large
backward angle (145◦). The solid line corresponds to the model fitting
given by Eq. (10). Inset: asymmetry parameter divided by first-order
fitting function.

angle having θ (= 35◦ in this case), and β is the ratio
of oscillation frequency for backward to forward angles,
i.e., c(π − θ )/c(θ ). The model fitting matches well with the
experimental data above 1.4 a.u., as represented by the solid
line in Fig. 7. A closer look at Fig. 7 shows that though the
fitting matches well with the data, a periodic deviation is also
observed. In order to study the deviations, we have divided the
data points by the first-order fitting function (see the inset). The
resulting data reveal an oscillatory structure which is further
fitted by a model (solid line), similar to the Cohen-Fano-type
formalism,

RN = D + E
sin(nkd)

nkd
, (11)

where n is the frequency of oscillation, which is found to
be 1.8, i.e., almost twice the frequency of the primary os-
cillation. This clearly indicates the presence of a higher-order
contribution arising from a second-order scattering mechanism
[24,25,41].

V. CONCLUSION

We have measured the absolute DDCS of the secondary
electron emission in ionization of the N2 molecule under the
impact of fast electrons (7 keV) for emission angles between
15◦ and 145◦. Experimental data have been compared with
the theoretical calculations based on the B1 model, under the
CNDO approximation with two different values of effective
charges. The experimental-to-theoretical DDCS ratios (i.e.,
N2/2N) were calculated using two different values of ZT . The
ratios show an oscillatory structure due to the Young-type
interference, whose shape was found to be dependent on the
choice of ZT . Though in the case of ZT = 1 the DDCS ratios
revealed clear oscillations, for ZT = Zbk the ratios had to be
normalized by a linear function to deduce the oscillations
clearly. The ratios have been fitted with the Cohen-Fano
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model for either case. The derived values of the frequency
parameter are seen to be constant for all forward angles and
increase for backward angles. The forward-backward angular
asymmetry displayed the oscillation very clearly and the fitting
function based on the Cohen-Fano model matches well with
the experimental ratio. However, periodic deviation from the
first-order function indicates the presence of a second-order
interference effect. It should be emphasized that since the
asymmetry parameter is free from experimental normalization

procedure and does not require any theoretical atomic N cross
section, it therefore provides a more convincing proof of the
oscillation.
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