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in analytical figures of merit:
heteroscedasticity strikes back

Franco Allegrini and Alejandro C. Olivieri*

With a growing number of analytical methodologies incorporating multivariate calibration models, the

development of suitable estimators of their analytical figures of merit is playing an important role in

modern analytical chemistry. The main goal of this mini-review is to briefly present the recent trends

regarding reliable and interpretable estimators of traditional figures of merit such as sensitivity, prediction

uncertainty and detection limit. Heteroscedasticity in instrumental measurements is driving some of

these recent developments and influencing the definition of new estimators.
Introduction

Since the rst applications of multivariate analysis to chemical
data, analytical chemistry has been one of the most beneted
disciplines.1 The major impact was on the development of
quantitative rst-order (e.g., spectral) models in analytical cali-
bration. As a clear proof, numerous analytical methodologies
have been designed and optimized by the combination of
spectroscopic data and multivariate algorithms. Such was the
expansion that principal component regression (PCR) and
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partial least-squares regression (PLS) are nowadays the battle
horses of many quality control procedures, especially those
which are based on near infrared spectroscopy (NIRS)
measurements.2 On the other hand, when the mathematical
relation between the instrumental response and the target
variable to be predicted is signicantly nonlinear, the use of
articial neural networks (ANN) has become the main choice.3

The introduction of multivariate analytical models was
accompanied by the immediate need for dening reliable esti-
mators for analytical gures of merit (AFOMs), in analogy with
univariate calibration. This opened a new eld of study
combining elements from metrology and chemometrics,
guided by analytical chemistry criteria. AFOMs can be dened
as statistical indicators giving a quantitative measure about the
quality or performance of a particular analytical methodology.
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Although the root mean square error of prediction (RMSEP) and
the relative error of prediction (REP) are widely employed to
compare different methods, other gures of merit, such as the
sensitivity and the sample-dependent prediction uncertainty
are still ignored in many publications where multivariate cali-
bration is applied.4 The effort to dene suitable estimators for
these gures is understandable in the light of the need to vali-
date chemometric procedures.5,6 Themost useful AFOMs for the
analytical community are the sensitivity, the limit of detection
and the prediction error.7 The latter can be calculated as
a global parameter (i.e., the root mean square error of predic-
tion, RMSEP) or as a sample-specic standard error. In recent
publications, Kalivas et al. showed that it is possible to combine
AFOMs in order to assist parameter selection in models such as
PLS and ridge regression.8,9

Although sometimes neglected, an important assumption is
that rst-order regression methods are basically least-squares
methodologies.10 This implies that the projections employed to
represent the data in a latent variable space will work optimally
only if the errors are independent and identically distributed
(iid). The notion of iid is associated with that of homoscedastic
noise in classical univariate calibration. However, multivariate
iid noise is not a general rule, and can only be seen as an
approximation.10

A partial solution to the previous dilemma is the use of
mathematical pre-processing methods. However, this is neither
general nor optimal, and only allows for a better approximation
to the iid situation which is valid in some specic cases. In
response to this, Wentzell et al. went a step further both from
a conceptual and theoretical point of view, and developed an
innovative technique known as maximum likelihood PCR (ML-
PCR). By incorporating the overall error properties in the model,
ML-PCR improves the performance of traditional PCR in
systems where deviations of the iid condition are notorious.
However, as recognized by the author in a recent publication,
disseminating these methodologies has been difficult due to
the complexity associated with the different code variants, the
potentially demanding computer memory requirements, and
the slow algorithmic convergence.11

Despite the existence of ML methodologies, many current
routine applications are still well satised by traditional multi-
variate methods, especially if the errors do not appreciably
deviate from the iid assumption.10 Moreover, the use of subop-
timal calibration models does not mean that AFOMs to judge
them are also suboptimal. This simple observation was the
starting point of a new research line which aims to integrate the
properties of multivariate errors into the estimation of AFOMs.12

With this background in mind, we report recent advances in
the development of estimators for three important AFOMs:
sensitivity, sample specic prediction uncertainty and detection
limit, and provide some perspectives in this growing research
eld. Heteroscedasticity strikes back.
The error structure

In univariate calibration, errors are normally classied as
homoscedastic or heteroscedastic, corresponding to uniform or
740 | Anal. Methods, 2017, 9, 739–743
non-uniform variance respectively. In multivariate calibration,
these terms are normally replaced by the more general concepts
of iid and non-iid noise. The latter, however, includes not only
heteroscedastic but also correlated noise. To maintain the
analogy between the univariate and multivariate nomenclature,
heteroscedastic and non-iid are used as synonymous.

A more general concept in the multivariate context is the
error structure, which is characterized by the error covariance
matrix (Sx). In a simple and illustrative way, this matrix can be
seen as a surface taking different shapes, depending on the type
of instrumental noise affecting the measurement. The most
important difficulty in considering non-iid noise types in
multivariate analytical methods is the fact that the covariance
matrix is not known in advance. For this reason, the develop-
ment of methodologies for unbiased estimation of the error
covariance matrix has a fundamental importance. This is the
reason why this research topic is gaining popularity among
chemometricians.10,13
The “iid paradigm”

The error-in-variable (EIV) model is the starting point to
develop, from a theoretical basis, the expressions to calculate
prediction uncertainty in PCR/PLS. EIV allows one to postulate
the following three-term expression to calculate prediction
uncertainty:

sy
2 ¼ SEN�2sx

2 + hSEN�2sx
2 + hsycal

2 (1)

where sy
2 is the prediction variance, sx

2 is the variance of the
error in the signal, sycal

2 is the variance of the errors in cali-
bration concentrations, and SEN is the sensitivity, calculated as
1/(bTb)1/2, with b being the vector of regression coefficients of
the model under evaluation (size n � 1, where n is the number
of sensors). In eqn (1), the rst term takes into account the
uncertainty stemming from the signal of the unknown sample,
and represents the most important contribution. The other two
terms depend on the position of the sample to be predicted in
the calibration space, i.e., the leverage. This latter dimension-
less parameter is calculated from the calibration and test scores
as: h¼ tT(TTT)�1t, where t is the vector of scores of the sample to
be predicted, and T is the matrix of calibration scores.

The limit of detection is a function of the standard deviation
of a blank, i.e., a sample with zero concentration of the analyte
of interest. Because of this, nding an expression to calculate
the detection limit implies an extrapolation of eqn (1) to zero
concentration, which is equivalent to obtaining the value of the
leverage at zero concentration. The latter can be calculated
through an orthogonal projection of the scores to the hyper-
plane dened by the score values for which the analyte
concentration is equal to zero. By using a mathematical deri-
vation applying basic geometric principles, it was demonstrated
that the multivariate limit of detection is in fact given as a range
of values, from aminimum (LODmin) to a maximum (LODmax):14

LODmin ¼ 3.3(SEN�2sx
2 + h0minSEN

�2sx
2 + h0minsycal

2) (2)

LODmax ¼ 3.3(SEN�2sx
2 + h0maxSEN

�2sx
2 + h0maxsycal

2) (3)
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where h0min and h0max are the minimum and maximum values
of the zero-concentration leverage. Details on the estimation of
the latter parameters are provided in ref. 14. In any case, it is
interesting to note that the expression to calculate h0min is the
same as the one used to calculate the univariate leverage in
a traditional linear regression.14
Validating an estimator

The expressions allowing the calculation of AFOMs are known
as estimators. For each particular AFOM, many estimators
might be proposed based on theoretical and empirical bases. In
any case, it is essential to verify if a proposed estimator is reli-
able. A simple and effective alternative to perform this veri-
cation in the case of uncertainty and sensitivity calculation is
the use of noise addition simulations (NASIMs). The main steps
of this procedure can be summarized as follows: simulated
spectra are rst generated using Gaussian proles and random
concentrations for a previously dened number of compounds
in two sample sets, one for calibration and the other one for the
test. The degree of overlapping of the analyte peak with those
for the interferents determines the sensitivity and selectivity
towards the analyte of interest in each system. A particular type
of noise (iid, proportional or correlated) is then added,
considering four different situations: (1) noise is only added to
calibration signals, (2) noise is only added to test signals, (3)
noise is only added to calibration concentrations and (4) noise
is added to both signals and concentrations. Once the latter
step is completed, the data are submitted to the specic
multivariate model for calibration and prediction. The predic-
tion results are saved at each iteration cycle, and the loop of
noise addition and prediction is repeated a large number of
times (normally between 1000 and 10 000) (see Fig. 1 for
a summary). This methodology has the following advantages:
Fig. 1 General scheme for the validation of AFOM estimators.

This journal is © The Royal Society of Chemistry 2017
(1) it can be easily adapted to study a wide number of multi-
variate and even multiway models under different noise struc-
tures and different cases of noise propagation and (2) it
operates iteratively, where each iteration is independent from
the rest, allowing an easy parallelization to reduce calculation
times.

The previously described NASIM strategy can be used to
validate theoretical expressions for gures of merit such as the
sample dependent prediction uncertainty or the sensitivity. In
the case of the limit of detection, however, since its denition
involves probabilities of false positives and false negatives, the
validation becomes more complex. Finding a simple and reli-
able way to validate detection limit estimators by means of
computational calculations will require additional research
efforts.
The “non-iid paradigm”

ML-PCR can be interpreted as a generalized version of PCR
where the measurement error structure provides a directional
guide for the projection of the spectrum of the sample to be
predicted onto the calibration subspace. In mathematical
terms, ML-PCR uses an oblique projection instead of an
orthogonal projection.

If an orthogonal projection is used to project non-iid noise
into the latent variable subspace, as it occurs in PCR and PLS,
noise will propagate through the model in a different way than
iid, leading to suboptimal estimations by eqn (1). This implies
that the prediction uncertainty will be larger as the system
under analysis presents a larger deviation from the iid situation.
In this latter case, the use of eqn (1) is inadequate because it is
not consistent with the type of error that is being propagated to
the nal prediction. In response to the latter difficulty, recent
efforts were oriented to the integration of heteroscedastic noise
Anal. Methods, 2017, 9, 739–743 | 741



Table 1 Figures of merit for the first-order multivariate determination
of phenanthrene in a mixture of polycyclic aromatic hydrocarbons,
using fluorescence emission spectra

Figure of merit

iid assumption

PCR ML-PCR ANN-RBF

RMSE (mg g�1) 2.9 � 10�4 1.8 � 10�4 3.3 � 10�4

SEN (uorescence
g mg�1)

1013 523 1001

LODmin (mg g�1) 2.3 � 10�4 4.4 � 10�4 2.4 � 10�4

LODmax (mg g�1) 2.4 � 10�4 4.5 � 10�4 2.9 � 10�4

Figure of merit

Non-iid assumption

PCR ML-PCR ANN-RBF

GAS (g mg�1) 3932 7706 3768
LODmin (mg g�1) 8.6 � 10�4 4.4 � 10�4 0.0010
LODmax (mg g�1) 9.2 � 10�4 4.5 � 10�4 0.0013
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with prediction uncertainty on the basis of error propagation
theory.12,15 The results of these efforts can be condensed in the
following general expression:

sy
2 ¼ bTSxb + hbTSx,effb + hsycal

2 (4)

where Sx,eff is an effective matrix calculated as a weighted sum
of the matrices of each individual calibration sample. The
presence of the error covariance matrix in eqn (4) can be
understood because the latter has been derived by applying
error propagation to the prediction expression y ¼ bTx. This
requires to consider the covariance terms among different
sensors, as well as the variance at each sensor. All the latter
elements are included in the error covariance matrix Sx (for
details see ref. 12). An important consequence of the latter
analysis is that the particular error structure of the system
under analysis, characterized by Sx, has a fundamental inci-
dence in the estimation of the nal uncertainty. Finally, it is
important to remark that, in practice, there are two main
alternatives to estimate the error covariance matrix: (1) pooling
the error covariance estimates from replicates belonging to
different samples or (2) nding a model capable of providing
a reliable estimate of the error covariance.10,12

Generalized analytical sensitivity (GAS)

The operational denition of sensitivity in multivariate and
multi-way calibration involves the ratio of input to output noise:

SEN ¼ sx/sy (5)

This approach is based on two assumptions:7 (1) the input
noise is iid and (2) a small perturbing noise is employed to
probe how the latter is propagated to prediction. Contrasting
these assumptions with those involved in eqn (4), the question
that emerges is if it is possible to extend the denition of
sensitivity to incorporate noise properties. In response to this,
a recent proposal was to dene a generalized analytical sensi-
tivity (GAS) as the inverse of the rst term of eqn (4).16 GAS
follows the trend of RMSEP for different kinds of rst-order
models, allowing reliable method comparison under all types of
error structures. Whether this new AFOM is incorporated into
the arsenal of performance indicators will be a matter of future
experimental work.

Nonlinear models

As shown in a recent publication, it is possible to calculate
sensitivity coefficients in radial basis function neural networks
(RBF-NN), much as in rst-order linear models.17 The sensitivity
coefficients are similar to the linear multivariate regression
coefficients, but have no predictive properties. Since the RBF-NN
prediction equation is linear in the network training weights, it is
possible to apply uncertainty propagation along the same line of
reasoning as that used to arrive to eqn (1) and (4). As a conse-
quence, an analogous three-term expression is obtained, with
the following specic properties: (1) the sensitivity is estimated
using sensitivity coefficients which are sample-specic, and (2)
the leverage is obtained from the training design matrix (instead
742 | Anal. Methods, 2017, 9, 739–743
of the calibration score matrix) and the design vector of the
unknown sample (instead of the sample score vector).17 In this
way, neural network calibrations may include complete reports
including sensitivity (as a range of values), prediction uncer-
tainties and limit of detection.

For other non-linear multivariate methodologies, such as
back propagation neural networks (BP-NN) and support vector
machines (SVM), no expressions are currently available to esti-
mate gures of merit. However, the procedure developed for
RBF networks could in principle be adapted to these additional
models.17 Work is in progress in our laboratory in this direction.
Multi-way gures of merit

A general expression to estimate sensitivity for different models
and different data orders has been derived, validated by simu-
lations, and applied to analyze experimental systems.7,18 In the
case of multi-way algorithms, the expression shows a number of
interesting features. The sensitivity not only depends on the
predictive model, but also on the test sample under analysis.
This is due to the fact that the general equation, applied to
multi-way models, includes an orthogonal projection onto the
space dened by the proles of the interferents, and these are
specic for a particular test sample. Incidentally, this is directly
related to the second-order advantage property presented by
some multi-way strategies such as parallel factor analysis
(PARAFAC), multivariate curve resolution coupled to alternating
least-squares (MCR-ALS) and PLS coupled to residual multi-
linearization (PLS-RML). Furthermore, for the unfolded version
of the latter model (U-PLS/RML), AFOMs were recently derived
in the presence of non-iid noise.19
A complete report

Thanks to the latest developments in the estimation of AFOMs
described in the previous sections, it is now possible to go
deeper into the comparison between different kinds of rst-
This journal is © The Royal Society of Chemistry 2017
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order predictive models. They can be evaluated not only in
terms of the RMSE, but also of the information extracted from
specic gures of merit such as the sensitivity and the limit of
detection. As an example, Table 1 presents a complete AFOM
report for the multivariate quantication of phenanthrene in
the presence of other polycyclic aromatic hydrocarbons (PAHs),
using full uorescence emission spectra. As previously re-
ported, in this analytical system the error structure presents
a signicant deviation from the iid condition.12 As a conse-
quence, when the error structure is taken into account,
predictions improve and AFOMs become more consistent. If iid
noise is assumed, prediction errors do not have a logical
correlation with sensitivities and detection limits: the lowest
RMSE corresponds to the lowest value of SEN and the largest
LOD. On the other hand, under non-iid assumptions, the rela-
tionship among AFOMs becomes consistent: lower prediction
errors correspond to higher sensitivities and lower detection
limits.

Conclusion

This review discusses the latest advances in the estimation of
analytical gures of merit. The style and focus were not directed
to mathematical derivations, but to the conceptual line that led
to the emergence of new expressions. Future research efforts in
the eld will be denitely oriented to the unbiased and efficient
estimation of error covariance matrices, which are needed to
dene correct gures of merit for multivariate and multi-way
analytical systems. Another important perspective regarding the
use and implementation of new gures by the analytical
community is the development of a toolbox to evaluate AFOMs
for different calibration scenarios, taking into account the latest
advances mentioned during this review.

Acknowledgements

Universidad Nacional de Rosario, CONICET (Consejo Nacional
de Investigaciones Cient́ıcas y Técnicas, Project No. PIP 0163),
and ANPCyT (Agencia Nacional de Promoción Cient́ıca y Tec-
nológica, Project No. PICT-2013-0136) are gratefully acknowl-
edged for nancial support. F. A. thanks CONICET for a post-
doctoral fellowship.
This journal is © The Royal Society of Chemistry 2017
References

1 R. Tauler, F. Marini, B. Walczak, L. Buydens, R. G. Brereton,
W. Buchberger and P. J. Worsfold, Trends Anal. Chem., 2014,
56, 9.

2 M. Manley, Chem. Soc. Rev., 2014, 43, 8200.
3 W. Li, L. Norgaard and M. Morup, Anal. Chim. Acta, 2014,
813, 1.

4 A. C. Olivieri, S. Bortolato and F. Allegrini, Figures of merit in
multiway calibration, in Data Handling in Science and
Technology, Fundamentals and Analytical Applications of
Multiway Calibration, ed. A. Muñoz de la Peña, H.C.
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