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Dual structure in the charge excitation spectrum of electron-doped cuprates
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Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS)
experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t-J model with
the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge
excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy
space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the
exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations
and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is
frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.
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I. INTRODUCTION

The origin of the charge order (CO), originally observed
in underdoped hole-doped cuprates (h-cuprates) [1–14], is
an active topic in condensed matter physics. The recent
x-ray experiments for electron-doped cuprates (e-cuprates)
[15,16] push the field even further. A CO occurs in an
intermediate doping region and has a modulation vector along
the (0,0)-(π,0) direction. These features are very similar to
those observed in h-cuprates and suggest a common origin.
However, this may require more careful studies because
several experiments indicate a large asymmetry between e-
and h-cuprates. For instance, the superconducting critical
temperature Tc is much lower in e-cuprates than h-cuprates,
and the pseudogap is weak or negligible in e-cuprates [17]. The
last fact makes, in principle, e-cuprates simpler for a study of
charge excitations because the CO may be formed from a
homogeneous paramagnetic state and not from the pseudogap
phase as in h-cuprates.

The charge excitation spectrum can be observed by resonant
inelastic x-ray scattering (RIXS). The energy resolution of
RIXS is presently about 50–100 meV and low-energy excita-
tions are not sharply resolved compared with the high-energy
ones. Given that the CO phenomena are associated with low-
energy charge excitations, a natural question may arise: are
the high-energy charge excitations observed by RIXS related
to the low-energy charge excitations possibly associated with
the CO?

This question can be studied for e-cuprates, where both
the CO [15,16] and high-energy charge excitations [18,19]
are observed in the same system. The CO was discussed in
terms of resonant x-ray scattering (RXS). RXS measures the
equal-time correlation function, that is, the spectral weight
is integrated up to infinity with respect to energy. Thus,
RXS cannot easily distinguish between a static order and a
short-range fluctuating order. References [15,16] reported a
short-range CO with a modulation vector q‖ ≈ (0.5π,0); here
q‖ denotes in-plane momentum. In contrast to the case in
h-cuprates [20–26], the CO in e-cuprates has been studied
only in a few theories [27,28]. In Ref. [27] it was discussed
that the observed short-range CO is a d-wave bond order and its

modulation vector is determined by 2kF scattering processes
that connect the two Fermi momenta on the boundary of the
Brillouin zone (BZ). The d-wave bond order is also proposed
in Ref. [28] by employing a model different from that in
Ref. [27]. On the other hand, high-energy spectrum revealed a
quasilinear dispersive mode around q‖ = (0,0) with an energy
gap about 300 meV [18]. The origin of this mode is under
debate [18,19,29,30], and its relation with the CO phenomena
is an open issue. A theoretical study of a layered t-J -V
model [29] implies that this mode can be plasmons with a
finite out-of-plane momentum qz and originates from the usual
on-site charge excitations.

From previous studies [27–29], it seems that the low-energy
CO physics and the high-energy charge excitations are of
different nature in e-cuprates. However, more work would
be necessary before reaching such a conclusion. First, the CO
was studied in the two-dimensional (2D) t-J model [27,31],
whereas the high-energy mode was analyzed in the layered
t-J -V model [29], with V being the long-range Coulomb
interaction. Thus, it is not clear whether the obtained insight
about the CO in the 2D t-J model remains valid also in
a more realistic model such as the layered t-J -V model.
Second, the CO was studied in Ref. [27] by focusing on a
d-wave bond-order instability, which is a certain type of charge
fluctuations. Possible contributions from other CO tendencies
[31] were neglected. In particular, even if other CO tendencies
are not leading, charge excitations associated with them could
appear in a finite energy region. This possibility has never been
studied. Third and most importantly, a global understanding of
charge excitations has not been obtained in cuprates. If that is
established in e-cuprates, it will certainly be an important step
toward the understanding of charge excitations in h-cuprates.
Therefore, it is a challenge to have a theory that may describe
both low- and high-energy charge excitations on an equal
footing and elucidate the charge excitation spectrum in a wide
range of energy and momentum.

In this paper we study the momentum and energy resolved
charge excitation spectrum of a layered t-J -V model in
large-N expansion. The large-N analysis provides a nonper-
turbative scheme where all possible charge channels allowed
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by symmetry can be handled on an equal footing, that is, a
certain specific charge channel is not considered favorably
by hand. This feature is particularly important to the present
work because it is not clear what kinds of charge excitations
are actually detected in x-ray experiments.

We find that various types of charge fluctuations contribute
to the charge excitation spectrum, which is characterized by
a dual structure in the energy space. The spectrum in the
low-energy region is triggered by the charge sector of the ex-
change interaction J and originates from various bond-charge
fluctuations, which may lead to the observed CO features
[15,16]. On the other hand, the spectrum in the high-energy
region is dominated by usual on-site charge fluctuations and
is distinct from the spectrum of the low-energy bond-charge
fluctuations. In particular, it is dominated by plasmons with a
finite momentum transfer along the z direction.

The present paper is organized as follows. We first summa-
rize our theoretical scheme in Sec. II, and then present results
for the charge excitations in a realistic layered t-J -V model in
Sec. III, including a comparison with the standard 2D t-J -V
model. Our obtained results are discussed in Sec. IV in light
of experimental data and conclusions are given in Sec. V.
Appendixes discuss the qz dependence of charge excitations
and an alternative definition of bond-charge susceptibility.

II. THEORETICAL SCHEME

Since high-Tc cuprate superconductors are doped Mott
insulators, a minimal model is the 2D t-J model on a
square lattice. However, as we discuss in the present paper,
this minimal model is not sufficient to describe all features
observed in the charge excitation spectrum of e-cuprates. Two
additional effects, which are frequently neglected in many
theoretical studies, are indispensable: weak interlayer coupling
along the z direction and the long-range Coulomb interaction.
Hence we study the t-J model on a square lattice by including
interlayer hopping and the long-range Coulomb interaction:

H = −
∑
i,j,σ

tij c̃
†
iσ c̃jσ +

∑
〈i,j〉

Jij

(
�Si · �Sj − 1

4
ninj

)

+
∑
〈i,j〉

Vijninj , (1)

where the sites i and j run over a three-dimensional lattice.
The hopping tij takes a value t (t ′) between the first (second)
nearest-neighbors sites on the square lattice. The hopping
integral between layers is scaled by tz and the electronic
dispersion is specified later [see Eq. (8)]. 〈i,j 〉 denotes a
nearest-neighbor pair of sites, and we consider the exchange
interaction only inside the plane, namely Jij = J , because the
exchange term between the planes (J⊥) is much smaller than
J [32]. Vij is the long-range Coulomb interaction on the lattice
and is given in momentum space by

V (q) = Vc

A(qx,qy) − cos qz

, (2)

where Vc = e2d(2ε⊥a2)−1 and

A(qx,qy) = ε̃

(a/d)2
(2 − cos qx − cos qy) + 1. (3)

These expressions are easily obtained by solving the Poisson’s
equation on the square lattice [33]. Here ε̃ = ε‖/ε⊥, and ε‖ and
ε⊥ are the dielectric constants parallel and perpendicular to the
planes, respectively; e is the electric charge of electrons; a is
the lattice spacing in the planes and the in-plane momentum
q‖ = (qx,qy) is measured in units of a−1; similarly d is the
distance between the planes and the out-of-plane momentum
qz is measured in units of d−1. c̃

†
iσ (c̃iσ ) is the creation

(annihilation) operator of electrons with spin σ (σ =↓ , ↑)
in the Fock space without double occupancy. ni = ∑

σ c̃
†
iσ c̃iσ

is the electron density operator and �Si is the spin operator.
Since the Hamiltonian (1) is defined in the Fock space

without double occupancy, its analysis is not straightforward.
Here we employ a large-N technique in a path integral
representation of the Hubbard X operators [34]. This for-
malism allows us to study all possible charge instabilities
already at leading order [26]. Furthermore, their dynamics
turns out to capture essential features of charge dynamics
observed in electron-doped cuprates [27,29,31,35]. Details of
the formalism are summarized in Ref. [26] in the case of the 2D
t-J model. It is easily extended to the present layered model as
actually done in Ref. [29]. Hence we present only the essential
part of our formalism here.

In the path integral formalism, our model (1) can be written
in terms of a six-component bosonic field

δXa
i = (

δRi,δλi,r
x
i ,r

y

i ,Ax
i ,A

y

i

)
, (4)

fermionic fields, and interactions between bosonic and
fermionic fields [26]. δRi describes on-site charge fluctuations
because it comes from X00

i = N δ
2 (1 + δRi), where X00

i is
the Hubbard operator associated with the number of holes
at a site i; δ is the doped carrier density; the factor N

comes from the sum over the N fermionic channels after the
extension of the spin index σ from 2 to N . δλi describes
fluctuations of the Lagrangian multiplier introduced to impose
the nondouble occupancy at any site. rx

i and r
y

i (Ax
i and A

y

i )
are fluctuations of the real (imaginary) part of a bond field
along the x and y direction, respectively. This bond field
is a Hubbard-Stratonovich field to decouple the exchange
interaction in the model (1) and is parametrized as �

x(y)
i =

�(1 + r
x(y)
i + iA

x(y)
i ), where � is the mean-field value of the

bond field, which is determined self-consistently [26], and is
proportional to J . Thus the bond-charge fluctuations naturally
appear in the present model. After Fourier transformation, the
quadratic term of δXa defines a 6 × 6 bare bosonic propagator
D

(0)
ab (q,iωn), which is given by
[
D

(0)
ab (q,iωn)

]−1

= N

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δ2

2 [V (q) − J (q)] δ
2 0 0 0 0

δ
2 0 0 0 0 0
0 0 4�2

J
0 0 0

0 0 0 4�2

J
0 0

0 0 0 0 4�2

J
0

0 0 0 0 0 4�2

J

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)

where J (q) = J
2 (cos qx + cos qy) and the matrix indices a and

b run from 1 to 6; q is a three-dimensional wave vector and
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ωn is a bosonic Matsubara frequency. This bare propagator
D

(0)
ab (q,iωn) corresponds to the bare charge susceptibilities.
At leading order, the bare susceptibilities are renormalized

to be

D−1
ab (q,iωn) = [

D
(0)
ab (q,iωn)

]−1 − 	ab(q,iωn), (6)

because of coupling to fermions. The functional forms of the
interaction vertices can be easily read off from the path integral
formalism (see Fig. 1 in Ref. [34]) and is given by the six-
component vertex ha ,

ha(k,q,ν) =
{

2εk−q + ν + 2μ

2
+ 2�

[
cos

(
kx − qx

2

)

× cos
(qx

2

)
+ cos

(
ky − qy

2

)
cos

(qy

2

)]
; 1;

−2� cos
(
kx − qx

2

)
; −2� cos

(
ky − qy

2

)
;

× 2� sin
(
kx − qx

2

)
; 2� sin

(
ky − qy

2

)}
. (7)

The electronic dispersion εk is given by

εk = ε
‖
k + ε⊥

k , (8)

where the in-plane dispersion ε
‖
k and the out-of-plane disper-

sion ε⊥
k are given, respectively, by

ε
‖
k = −2

(
t
δ

2
+ �

)
(cos kx + cos ky)

− 4t ′
δ

2
cos kx cos ky − μ, (9)

ε⊥
k = 2tz

δ

2
(cos kx − cos ky)2 cos kz, (10)

and μ is the chemical potential. Note that the bare hopping
integrals t , t ′, and tz are renormalized by a factor δ/2. This
renormalization is a leading order correction due to the local
constraint because the t-J model is defined in the Fock space
without double occupancy at any site. Note that kz and qz

dependencies enter only through εk−q in the first column in
Eq. (7), whereas the other columns contain only the in-plane
momentum q‖. Using the vertices ha(k,q,ν), the 6 × 6 bosonic
self-energies are computed at leading order as

	ab(q,iωn) = − N

NsNz

∑
k

ha(k,q,εk − εk−q)

× nF (εk−q) − nF (εk)

iωn − εk + εk−q
hb(k,q,εk − εk−q)

−δa 1δb 1
N

NsNz

∑
k

εk − εk−q

2
nF (εk), (11)

where Ns and Nz are the total number of lattice sites on the
square lattice and the number of layers along the z direction,
respectively. Therefore by studying Dab(q,iωn) [Eq. (6)], we
can elucidate all possible charge dynamics in the layered t-J
model at leading order in the large-N expansion.

If J = 0, δXa reduces to a two-component bosonic field
δXa = (δR,δλ), that is, the bosonic propagator Dab becomes
a 2 × 2 matrix and only usual on-site charge fluctuations are

active. When J is finite, bond-charge fluctuations become
active and a and b take values from 1 to 6. Thus, in principle,
the mixing between on-site and bond charge fluctuations is
expected for finite J . We then define three sectors of the 6 × 6
bosonic propagator Dab: (a) A 2 × 2 sector for a,b = 1,2
which contains usual on-site charge fluctuations, (b) a 4 × 4
sector or J sector for a,b = 3–6, and (c) a 2 × 4 sector where
a = 1,2 and b runs from 3 to 6, and a 4 × 2 sector with a = 3–6
and b = 1,2.

Finally, we mention the connection between the present
model and charge excitations in the actual CuO2 plane. It is
known that the t-J model is an effective model and each lattice
site corresponds to a Cu atom in the CuO2 plane. However,
the t-J model is derived from the three-band Hubbard model
in the strong coupling limit [36] and thus the effect of O
atoms is implicitly considered. Thus, whereas the usual charge
susceptibility describes charge fluctuations on each Cu site,
the susceptibilities defined by the J sector account for charge
fluctuations between Cu sites, i.e., on the O sites.

III. RESULTS

In the following, we focus on parameters appropriate for
e-cuprates [29], J/t = 0.3, t ′/t = 0.30, and tz/t = 0.1. For
cuprates, a bare t is usually assumed to be around t = 500 meV
[37], but we assume t = 1 eV because t is scaled as t → t/N

in the large-N expansion and N = 2 in the actual material.
All quantities with the dimension of energy are measured in
units of t . We take the number of layers as Nz = 30, which is
large enough. Concerning the long-range Coulomb interaction
[Eq. (2)], we choose d/a = 1.5 [38] (a = 4 Å), ε‖ = 4ε0, and
ε⊥ = 2ε0, where ε0 is the vacuum dielectric constant [39]. We
set the temperature (T ) to zero and compute the imaginary part
of various charge susceptibilities after analytical continuation
iωn → ω + i� in Eq. (6). Here �(> 0) is infinitesimally
small and we choose � = 10−3 for a numerical convenience.
Computation is performed mainly for doping δ = 0.15 to make
a direct comparison with recent experiments in the e-cuprates
[15,16,18,19]. The temperature is T = 0. Since qz is in general
finite in RIXS, we will present results mainly for qz = π as
representative ones.

We first study each element of Dab(q,ω) [Eq. (6)], which
has not been clarified yet in the literature to the best of
our knowledge. We then study usual on-site charge and
bond-charge excitations, which are described by various
combinations of the elements of Dab(q,ω). The superposition
of these two kinds of charge excitations reveals a dual structure
of the charge spectrum. We also present results of ω-integrated
spectral weight because RXS can measure it directly. Finally,
we make a comparison with results in the standard 2D t-J -V
model.

A. Elements of Dab(q,ω)

In the present theoretical framework, all possible charge
susceptibilities are described by various combinations of the
elements in the 6 × 6 matrix Dab(q,ω). Therefore, we first
study excitation spectra of each element of the matrix. In Fig. 1
we show q‖-ω maps of ImDab(q,ω) along the symmetry axes
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δ = 0.15
tz = 0.1
T = 0
Γ = 10-3

qz = π
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 D

ij  (q,ω
) [arb. units.]
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22
33
44
55
66

<-10

-5
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>10

Im
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ij  (q, ω
) [arb. units.]
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56

0
0.5
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0
0.5
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(π,π) (0,0)(π,0)

0
0.5
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1.5
2.0

ω

(π,π) (0,0)(π,0)

0
0.5
1.0
1.5

ω
(π,π) (0,0)(π,0)

0
0.5
1.0
1.5

ω

(π,π) (0,0)(π,0)

0
0.5
1.0
1.5

ω

(π,π) (0,0)(π,0) (π,0)

q||

q||

q||

q||

q||

q||

FIG. 1. q‖-ω maps of each element of ImDab(q,ω) along the symmetry axes (π,0)-(π,π )-(0,0)-(π,0); the out-of-plane momentum is
qz = π . The elements are placed in a 6 × 6 matrix form and only the upper triangle of the matrix is shown because Dab(q,ω) is symmetric. To
clarify each sector of 2 × 2, 4 × 4, and 2 × 4, a small space is inserted between each sector.

for qz = π . Since Dab(q,ω) is a symmetric matrix, we show
only the upper triangle of the matrix.

All diagonal elements of ImDab(q,ω) have positive spectral
weight. We see two typical features: (i) a continuum spectrum
at relatively low energy with a scale of J (= 0.3) and (ii) a
sharp mode extending from ω ≈ 0.2 at q‖ = (0,0) to ω ≈ 2.0
at q‖ = (π,π ). The former spectrum comes from particle-hole
excitations and their spectral intensity in D11 and D22 is much
weaker than in D33, D44, and D66. In particular, the spectral
weight of the continuum in D22 is almost invisible in the scale
of Fig. 1. The sharp mode is realized above the particle-hole
continuum and originates from the zeros of the determinant
of D−1

ab (q,ω), i.e., it is a collective mode. Thus, this mode in
principle can appear in all elements of Dab(q,ω). However,
the mode vanishes completely along the (π,0)-(π,π ) direction
in D33 and along the (0,0)-(π,0) direction in D66. This is
because the determinant of D−1

ab (q,ω) does not affect D33 and
D66 along those directions. This special feature is connected
with the vanishing of the spectral weight along the (π,0)-(π,π )
direction in D13, D23, D34, D35, D36, and along the (0,0)-(π,0)
direction in Da6 with a = 1–5 (see Fig. 1), which is traced back
to the fact that the corresponding 	ab(q,ω) in Eq. (6) vanishes
due to the symmetry of the vertex ha [Eq. (7)].

The off-diagonal elements of ImDab(q,ω) might seem odd
because some of them exhibit negative spectral weight. Those,
of course, do not have a direct physical meaning. As we will
show explicitly, the physical susceptibilities are defined by
some combinations of the elements of Dab(q,ω) and they
have positive spectral weight. Similar to the diagonal part, the
off-diagonal elements have two typical features: a continuum
spectrum limited to a low-energy region and a collective mode
above the continuum. This mode is the same as that in the
diagonal elements, namely the zeros of the determinant of
D−1

ab (q,ω). Another intriguing aspect of Fig. 1 is that the
continuum spectrum of D2a with a = 1–6 are typically very
weak compared with others. D2a contains δλ, which describes
fluctuations of the Lagrangian multiplier imposing nondouble
occupancy at any site. While the case of qz = π is plotted in
Fig. 1, the qz dependence is very weak and essentially the same
results are obtained for different values of qz except for qz ≈ 0
around q‖ = (0,0); see Appendix A and also Ref. [29] where
the element (1,1) of Dab(q,ω) is studied in detail.

The collective mode is nothing more than plasmons [29],
which are driven by the 2 × 2 sector. In order to demonstrate
this statement, we show in Fig. 2 the zeros of the determinant
of D−1

ab (q,ω) for J = 0.3 and J = 0 along the symmetry axes.
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qz = π

(π,π) (0,0) (π,0)q||

ω

δ = 0.15
tz = 0.1
T = 0
Γ = 10-3

(π,0)
0

0.4

0.8

1.2

2.0

1.6

J = 0
J = 0.3

FIG. 2. Zeros of the determinant of D−1
ab (q,ω) along the symmetry

axes (π,0)-(π,π )-(0,0)-(π,0) for J = 0.3 and J = 0 at qz = π .
These zeros yield collective charge excitations above the particle-hole
continuum.

The zeros appear almost at the same position for both values
of J . Since the 4 × 4 sector in Eq. (6) vanishes for J = 0, we
can conclude that the collective peaks originate from the 2 × 2
sector, namely on-site charge fluctuations.

B. On-site charge susceptibility

As discussed previously [26,34], the element (1,1) of Dab

is related to the usual charge-charge correlation function
χc(ri − rj ,τ ) = 〈Tτni(τ )nj (0)〉, which in the large-N scheme
is computed in the q-ω space as

χc(q,ω) = N

(
δ

2

)2

D11(q,ω). (12)

Thus, χc belongs to the 2 × 2 sector. The factor N on the the
right-hand side of the expression comes from the definition
of the charge correlation function [34] in the large-N scheme,
and cancels the factor 1/N coming from Dab [see Eqs. (5),
(6), and (11)], showing that χc is O(1). The factor (δ/2)2 is
due to the fact that the bosonic field δXa must be multiplied by
δ/2 to become the charge fluctuations of the original Hubbard
operators.

While phase separation is frequently discussed for e-
cuprates [31,40,41], it does not occur in our model because
the long-range Coulomb interaction prevents it. Recalling the
frustrated phase separation mechanism [42], one might expect
charge stripes instability triggered by the long-range Coulomb
interaction near phase separation. This tendency, however,
does not occur as studied in detail in Ref. [35].

As ImD11(q,ω) is already plotted in Fig. 1 for qz = π and
was studied in detail in Ref. [29], we present results for qz =
8π/15 in Fig. 3, which is not seen in the literature and thus
may be useful for comparison between different values of qz.

An acousticlike plasmon mode is clearly seen around q‖ =
(0,0), which has a gap of ω ≈ 0.2 at q‖ = (0,0). The gap
is produced by the finite interlayer hopping tz (see Fig. 3 in
Ref. [29]). This plasmon mode with a finite qz may explain the
gapped collective mode observed by RIXS [18]. A comparison
between Fig. 3 and the (1,1) element in Fig. 1 demonstrates
a very weak qz dependence. However, there is a singularity at
qz = 0 and q‖ = (0,0) and we obtain typical plasmons with a
flat dispersion around q‖ = (0,0) with excitation gap ω ≈ 0.7

0

0.1

0.2

0.3

>0.45qz = 8π/15

(π,π) (0,0) (π,0)q||

0

0.5

1.0

1.5

2.0

ω

Im
χ

c  (q,ω
) [arb. units.]

δ = 0.15
tz = 0.1
T = 0
Γ = 10-3

(π,0)

FIG. 3. q‖-ω map of Imχc(q,ω) for qz = 8π/15. q‖ is scanned
along the symmetry axes (π,0)-(π,π )-(0,0)-(π,0).

for the present parameters at qz = 0 [29] (see Fig. 8). This
optical plasmon mode can be associated with the plasmons
observed by optics measurements [43] and electron energy-
loss spectroscopy (EELS) [44,45].

C. Bond-charge susceptibilities

The study of bond-order instabilities has an old history
in the 2D t-J model [34,46–48]. However, bond-charge
susceptibilities as a function of q‖ including their dynamics
have not been studied in detail. Neither are there attempts
of such a study in a realistic model of cuprates such as a
multilayered t-J -V model.

For δ = 0.15 the homogeneous paramagnetic phase is
stable down to T = 0 in the present model. However, there
are various bond-order instabilities in the proximity to this
doping that occur when an eigenvalue of the static D−1

ab (q,0)
vanishes. The corresponding eigenvector determines the type
of instability. (a) d-wave bond order [49], which corresponds
to the freezing of the real parts of the bond variable, and the
corresponding eigenvector is V d bond = 1√

2
(0,0,1, − 1,0,0),

namely the bonds in the x and y directions are in antiphase
[see Eq. (4)]. When the propagation vector is q‖ = (0,0),
it corresponds to the d-wave Pomeranchuk instability (dPI)
[50–52]. (b) s-wave bond order [49], which corresponds also
to the freezing of the real parts of the bond variable, but the
corresponding eigenvector is V s bond = 1√

2
(0,0,1,1,0,0). The

bonds in the x and y directions are in phase. (c) As bond orders,
eigenvectors V = (0,0,1,0,0,0) and (0,0,0,1,0,0) are also
possible [26,31] and can be described by the superposition of
the d-wave and s-wave bond order. (d) d-wave charge-density
wave (dCDW) corresponds to the freezing of the imaginary
parts of the bond variable, and the corresponding eigenvector
is V dCDW = 1√

2
(0,0,0,0,1, − 1). When the modulation vector

is q‖ = (π,π ), it has a d-wave character and corresponds to the
well-known flux phase [46–48] that describes staggered cir-
culating currents. While charge excitations are usually studied
by focusing on a certain type of charge orders, we study d- and
s-wave bond orders as well as dCDW on an equal footing.

To define a bond-charge susceptibility, there may be two
possibilities: (i) the projection of Dab onto the corresponding
eigenvectors V d bond, V s bond, and V dCDW, and (ii) the
projection of D−1

ab onto those eigenvectors. Although the
former definition might seem natural, that definition in
general contains the collective mode of the on-site charge
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FIG. 4. q‖-ω maps of the spectral weight for (a) χd bond, (b) χs bond,
and (c) χdCDW along the symmetry axes (π,0)-(π,π )-(0,0)-(π,0). The
out-of-plane momentum is qz = π .

fluctuations from the 2 × 2 sector (see Appendix B), which
is thus a nongenuine feature of the bond-charge fluctuations.
On the other hand, the contamination from the on-site charge
excitations can be removed by adopting the latter definition.
Therefore we define each bond-charge susceptibility
as χ−1

d bond(q,ω) = (1/N)(δ/2)−2(D−1
33 + D−1

44 − 2D−1
34 )/2,

χ−1
s bond(q,ω) = (1/N )(δ/2)−2(D−1

33 + D−1
44 + 2D−1

34 )/2, and
χ−1

dCDW(q,ω) = (1/N )(δ/2)−2(D−1
55 + D−1

66 − 2D−1
56 )/2; note

that χd bond is referred to as χdPI in Ref. [26] and χd in Ref. [27].
The difference between χd bond and χs bond lies in the sign in
front of D−1

34 . As a result, both quantities become identical for
q‖ = (π,qy) and (qx,π ). This is easily understood. We have
h3 = −2� sin kx and h4 = −2� cos(ky − qy

2 ) for q‖ = (π,qy)
in Eq. (7) and thus 	34 in Eq. (11) vanishes for q‖ = (π,qy)
and (qx,π ), leading to D−1

34 = 0 there [see Eqs. (5) and (6)].
Bond-charge excitation spectra of χd bond(q,ω),

χs bond(q,ω), and χdCDW(q,ω) are shown in Fig. 4 along
the symmetry axes for qz = π . Before going into the details
of each excitation spectrum, we first discuss the overall
features in Fig. 4. First of all, all susceptibilities exhibit
positive spectral weight, although some elements of Dab(q,ω)
contain negative spectral weight in Fig. 1. Since our choice
of doping δ = 0.15 is close to CO instabilities, large spectral
weight is present in a relatively low-energy region ω � 0.2.
The spectral weight in a high-energy region is very broad and
diffusive. Those features are essentially independent of qz,

and very similar results are obtained even in the 2D case (see
Sec. III F).

χd bond shows large spectral weight at low energy around
q‖ = 0.8(π,π ). This spectral weight is associated with the
leading soft mode at q‖ ≈ 0.8(π,π ), which accumulates
spectral weight upon approaching the CO instability at δc =
0.129. Along the direction (0,0)-(π,0) the spectrum has rather
high intensity and its energy goes down toward the momentum
q‖ = (0.5π,0). This subleading mode may correspond to
the CO features observed in RXS experiments [15], as was
discussed in Ref. [27]; see also Secs. III E and IV.

χs bond shows a low-energy dispersion around q‖ = (π,π ),
which is related to the proximity to the corresponding
instability at δc = 0.111. Its spectral weight disperses upwards
forming a V shape and loses intensity with increasing ω. In
contrast to the case of χd bond, there is no CO tendency along
(0,0)-(π,0) direction. Instead, along that direction, there is
a very weak dispersive feature, which reaches ω ≈ 0.2 at
q‖ = (0.5π,0). This reflects a subtle structure of individual
particle-hole excitations.

χdCDW exhibits large spectral weight at q‖ = (π,π ) around
ω = 0.1. This energy is reduced to zero with decreasing doping
towards δc = 0.093, where the dCDW instability occurs. Inter-
estingly, there is a clear gapless dispersion along (0,0)-(π,0)
direction and it extends up to ω ∼ 0.3 at q‖ = (π,0). This
is not a collective mode associated with the dCDW, but a
peak structure of individual excitations that originates from a
local minimum of the real part of the denominator of χdCDW.
The dispersive feature is not clearly seen along (0,0)-(π,π )
direction, showing an asymmetric character of χdCDW. We
also see the dispersive feature in the (π,0)-(π,π ) direction,
which merges into the large spectral weight at q‖ = (π,π ) and
ω ≈ 0.1.

All of these bond-charge susceptibilities originate from
the 4 × 4 sector, namely J sector in Eq. (6). Hence one
might assume that a magnetic probe should be used for their
detection. However, a charge probe such as RIXS can, in
principle, be used for testing our results, even in the case of the
dCDW where most of the discussions focus on the possibility
for detecting the small magnetic signal corresponding to the
circulating currents.

D. Dual structure of charge-excitation spectrum

We have presented separately usual on-site charge ex-
citations (Sec. III B) and various bond-charge excitations
(Sec. III C). While it is not clear whether RIXS can detect them
in a selective way or as a sum with a certain weight for each
susceptibility, the full charge excitation spectrum in e-cuprates
may be described by the superposition of all possible charge
excitations.

Figure 5(a) shows the superposition of the spectra of χc,
χd bond, χs bond, and χdCDW for qz = π . It turns out that the
total charge excitation spectrum is characterized by a dual
structure: a gapped V-shaped dispersion around q = (0,0)
extending to a high-energy region and a continuum spectrum
limited to a low-energy region typically with a scale of
J (= 0.3). As we have shown in Secs. III A and III B, the V-
shaped dispersion originates from the collective on-site charge
excitations, namely a plasmon mode with a finite qz. This mode
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FIG. 5. q‖-ω maps of the superposition of excitation spec-
tra of χc, χd bond, χs bond, and χdCDW along the symmetry axes
(π,0)-(π,π )-(0,0)-(π,0) for qz = π at three different doping rates:
(a) δ = 0.15, (b) δ = 0.20, and (c) δ = 0.25.

is controlled exclusively by the 2 × 2 sector in Eq. (6), with no
contribution from the bond-charge excitations. On the other
hand, the low-energy spectrum is the superposition of χd bond,
χs bond, and χdCDW, and the particle-hole continuum from χc.
The former three contributions have much larger spectral
weight than the last one. In Fig. 5(a) we can see a large spectral
weight only around q‖ = (π,π ) in a very low-energy region.
Unfortunately RIXS cannot explore a region near q‖ = (π,π ).
The subleading CO tendency occurring at q‖ = (0.5π,0) [see
Fig. 4(a)] becomes unclear when the spectra are superimposed
in Fig. 5(a), but a cusplike feature of the continuum at
q‖ = (0.5π,0) and ω = 0 is barely discernible.

The dual structure should not be mixed with the usual
distinction between collective excitations and the continuum
spectrum. The intriguing aspect here is that their origins
are completely different: the former comes from usual
on-site charge fluctuations and the latter from bond-charge
fluctuations. Furthermore, the continuum spectra are not
composed of simply a certain type of charge order, but of
various types of bond-charge fluctuations such as d-wave
bond, s-wave bond, and dCDW.

Because of the dual structure of charge excitations, their
doping dependence becomes distinct. Figures 5(b) and 5(c)
show results for higher doping. The plasmon mode remains
clear and nearly unchanged with increasing doping. On
the other hand, the continuum spectrum typically becomes
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FIG. 6. S(q) at δ = 0.15 and T = 0 for χd bond, χs bond, χdCDW, and
χc along the symmetry axes (π,0)-(π,π )-(0,0)-(π,0) for (a) qz = π ,
(b) qz = 8π/15, and (c) qz = 0.

broader, but some characteristic features occur. First, the low-
energy spectrum around q‖ = (π,π ) hardens with increasing
doping. This feature is easily expected because the system
goes further away from the critical doping of the bond-
order instability. However, unexpectedly the spectral intensity
remains rather strong even at high doping. This is due to the
factor (δ/2)2 in front of bond-charge susceptibility, a specific
aspect of strong correlation effects in the t-J model; see
also the factor δ/2 in Eqs. (9) and (10). Second, along the
direction (0,0)-(π,0), a peak of the continuum becomes clearer
with increasing doping. This peak originates from individual
fluctuations associated with dCDW as seen in Fig. 4(c).

E. ω-integrated spectral weight S(q)

While we have presented ω-resolved spectral weight, it
is also interesting to study the ω-integrated spectral weight
for each q, namely the equal-time correlation function S(q),
because RXS can measure it directly. For a given susceptibility
χ , it is defined as

S(q) = 1

π

∫ ∞

−∞
dωImχ (q,ω)[nB(ω) + 1], (13)

where nB is the Bose factor.
In Fig. 6(a) we show S(q) for χd bond, χs bond, χdCDW, and χc

along the symmetry axes at qz = π and δ = 0.15 at T = 0. The
obtained results are easily understood by referring to Fig. 4.
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The spectral weight of Imχd bond is very large around q‖ =
(π,π ). Thus S(q) also exhibits a peak structure around q‖ =
(π,π ) with large weight to the side of (π,π )-(0,0). Importantly,
there is a subleading peak at q‖ = (0.5π,0) along the axial
direction (0,0)-(π,0). This subleading peak is present only for
d-wave bond fluctuations and originates from the low-energy
spectral weight at q‖ = (0.5π,0) in Fig. 4(a).

While a curve for s-wave bond fluctuations is not seen
along the direction (π,0)-(π,π ) in Fig. 6, S(q) for s-wave bond
fluctuations is identical to that for d-wave bond fluctuations
along that direction because of symmetry (see Sec. III C). As
expected from Fig. 4(b), S(q) for s-wave bond exhibits a domi-
nant peak at q‖ = (π,π ). S(q) for dCDW also exhibits a peak at
q‖ = (π,π ) much broader than that for s-wave bond. Interest-
ingly, there is another broad peak at q‖ = (π,0), which comes
from the spectral weight associated with the dispersive feature
along (0,0)-(π,0)-(π,π/2) in Fig. 4(c). For on-site charge
fluctuations, S(q) exhibits a broad dip structure around q‖ =
(0,0). This is because the corresponding Imχc(q,ω) [see the
(1,1) element in Figs. 1 and 3] has lower intensity around q‖ =
(0,0) due to a small phase space of particle-hole excitations.

For completeness, we also present results for different
values of qz in Figs. 6(b) and 6(c). These results are essentially
the same as Fig. 6(a) at qz = π , indicating very weak qz

dependence of S(q). Quantitative changes occur around q‖ =
(0,0), where the spectral weight vanishes for all χd bond, χs bond,
χdCDW, and χc at qz = 0 [Fig. 6(c)], because Imχ vanishes at
q = (0,0,0).

F. Two-dimensional t- J-V model

In the present study we have employed a layered t-J -V
model with the long-range Coulomb interaction. In the
literature, however, most of theoretical studies employ a 2D
model. Sometimes the effect of the Coulomb interaction is
also studied, but it is usually limited to the nearest-neighbor
interaction such as V (q) = V (cos qx + cos qy). Hence it is
useful to study the standard 2D t-J -V model with the nearest-
neighbor Coulomb interaction and clarify the differences
with previous results. We set tz = 0 in Eq. (10) and replace
Eq. (2) by V (q) = V (cos qx + cos qy) with V = 1, otherwise
we employ the same parameters.

In Figs. 7(a)–7(c) we show results for χ2D
d bond, χ2D

s bond, and
χ2D

dCDW, respectively. A comparison with Fig. 4 shows that the
distribution of the spectral weight is very similar to each other.
This means that bond-charge fluctuations are intrinsically of
2D character and are controlled by the J term of the CuO2

plane. Although the functional form of V (q) used in Figs. 4
and 7 is very different, such an impact is minor on bond-charge
fluctuations. This is easily understood. In the bare bosonic
propagator [Eq. (5)], V (q) enters the 2 × 2 sector, whereas
the bond field � the 4 × 4 sector. In principle, both sectors
interfere with each other through Eq. (6). However, our actual
calculations in Secs. III A–III D have showed that both sectors
are essentially decoupled. In addition, we find that the critical
doping and critical temperatures of bond orders in the 2D
model [31] are almost the same as those obtained in the layered
model. This is another evidence that bond-charge fluctuations
are controlled by the J term in the 2D plane.
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FIG. 7. Charge excitation spectra for (a) χ 2D
d bond, (b) χ 2D

s bond,
and (c) χ 2D

dCDW in the 2D t-J -V model along the symmetry axes
(π,0)-(π,π )-(0,0)-(π,0). (d) Superposition of the spectra of χ2D

c ,
χ 2D

d bond, χ 2D
s bond, and χ 2D

dCDW.

Usual on-site charge excitations (χ2D
c ) were already com-

puted in Fig. 1(c) in Ref. [35]. Instead of reproducing such
a result, we show the superposition of Imχ2D

c , Imχ2D
d bond,

Imχ2D
s bond, and Imχ2D

dCDW in Fig. 7(d). Similar to the case of
Fig. 5, the continuum spectra come mainly from bond-charge
fluctuations. The major contribution from the on-site charge
excitations is a gapless linear dispersion around q = (0,0)
above the continuum. This is not a plasmon mode, but a
zero-sound mode due to the short-range Coulomb interaction
V (q). Hence the spectrum of Imχ2D

c is very different from
Sec. III B, where qz is finite and we have obtained plasmon
excitations with an energy gap which is scaled by interlayer
hopping tz (see Fig. 3 in Ref. [29]). Hence the functional form
of V (q) and dimensionality are crucial to the collective mode
above the particle-hole continuum.

Since the form of V (q) is important to on-site charge
excitations, it is insightful to mention also results in the
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presence of the long-range Coulomb interaction. Typically
we may have two cases. (i) The 2D t-J model with the
three-dimensional long-range Coulomb interaction [Eq. (2)].
While for qz = 0 the usual optical plasmon mode is realized
around q‖ = (0,0) as seen in the (1,1) element in Fig. 8, the
plasmon energy drops to zero once qz becomes finite and a
gapless acoustic plasmon mode is realized. This corresponds
to the present model with tz = 0 (see Fig. 3 in Ref. [29]) and
to the case of Ref. [53]. (ii) The 2D t-J model with the 2D
long-range Coulomb interaction, i.e., V (q) ∼ 1/q. In this case,
we obtain a gapless plasmon dispersion ω(q) ∼ √

q as is well
known [54].

IV. DISCUSSIONS

We have shown that the charge excitation spectrum in the
t-J model exhibits a dual structure. One is usual on-site
charge fluctuations, which are realized as plasmons in a
relatively high-energy region (ω � 0.3) above the particle-hole

continuum. The other is bond-charge fluctuations driven by
the exchange interaction J and can lead to CO phenomena.
Its spectral weight appears in a low-energy region, typically
less than J (= 0.3). Since the lattice site in the present model
corresponds to a Cu atom in the CuO2 plane, we reasonably
interpret that the on-site charge fluctuations correspond to
fluctuations on the Cu sites and bond-charge fluctuations, i.e.,
fluctuations between the nearest-neighbor Cu sites correspond
to charge fluctuations at the O sites. This interpretation is ac-
tually supported by explicit calculations [23] in the three-band
Hubbard model where both Cu and O sites are included. Hence
our theory suggests that the high-energy charge fluctuations
consist mainly of the on-site charge fluctuations at the Cu sites,
and low-energy charge excitations originate mainly from the
O sites.

The high-energy charge excitations are captured correctly
only when both the interlayer coupling and the long-range
Coulomb interaction are taken into account. The 2D t-J model
studied frequently cannot capture the correct high-energy
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features even if the long-range Coulomb repulsion is included.
On the other hand, the low-energy features can be well de-
scribed by the 2D t-J model and the long-range Coulomb inter-
action is unimportant. The distinction between low- and high-
energy regimes, which we call a dual structure, is crucial to un-
derstand the complicated charge excitations in cuprates. Theo-
retically this dual structure means, in the language of the 6 × 6
bosonic propagator Dab [Eq. (6)], that the 2 × 2 sector and the
4 × 4 sector or J sector are essentially decoupled; the former
controls on-site charge fluctuations and the latter bond-charge
fluctuations.

The experimental indications of the underlying dual struc-
ture of charge excitation spectrum are actually obtained by
different methods. RIXS revealed the quasilinear dispersive
mode near q‖ = (0,0) [18,19]). Since the value of qz is
finite in RIXS, this mode is interpreted as an acousticlike
plasmon mode from the usual on-site charge excitations [29].
On the other hand, charge excitations were also reported by
RXS [15,16]. RXS measures ω-integrated spectral weight for
each q [Eq. (13)] and reported a short-range charge order
with q‖ ≈ (0.48π,0) in e-cuprates [15,16]. This signal was
discussed as originating from χd bond [27], namely from the
low-energy charge fluctuations driven by the J term. While
the 2D t-J model was employed in Ref. [27], the present
work (Fig. 6) indeed finds a peak near q‖ = (0.5π,0) only
in the d-wave bond-charge susceptibility, confirming that
the conclusions obtained in Ref. [27] are valid also in the
layered t-J -V model. Therefore the short-range charge-order
observed in e-cuprates [15,16] can be a short-range d-wave
bond order.

An additional implication from the present work is that
there can be a stronger tendency of bond-charge orders near
q‖ = (π,π ) as seen in Fig. 4. Interestingly not only χd bond

but also χs bond and χdCDW contribute to the low-energy
charge fluctuations around q‖ = (π,π ). Unfortunately this
possibility cannot be tested by resonant x-ray measurement
because such a momentum region is out of its range. Further
experimental techniques are necessary for detecting them.
Far away from (π,π ), on the other hand, χd bond and χdCDW

exhibit a dispersive feature along (0,0)-(π,0) direction [see
Figs. 4(a), 4(c), 7(a), and 7(c)], which may be tested by
RIXS.

As clarified in Ref. [31], the tendency to CO instabili-
ties in e-cuprates is very different from that in h-cuprates.
Hence we expect strong particle-hole asymmetry of bond-
charge fluctuations driven by the exchange interaction J .
The present results of bond-charge excitation spectra may
not be applied straightforwardly to h-cuprates, but provide
a good basis to understand complicated charge excitation
spectra. On the other hand, the usual on-site charge excitations,
namely plasmon excitations, are general features and we
expect a similar mode also in h-cuprates. In fact, such a
mode with a finite qz seems to be observed in RIXS in
Ref. [30]. However, the authors of Ref. [30] interpreted them
as individual on-site charge excitations, not as plasmons. In
the present work, the individual on-site charge excitations,
namely the continuum excitations, are weak as seen in the
low-energy region in Fig. 1. Moreover, its spectral weight
is even weaker than that of bond-charge excitations. Hence

plasmons seem a more natural interpretation of the data of
Ref. [30].

While qz is finite in RIXS, the plasmon mode with qz = 0
can be detected in EELS [44,45]. EELS observes the loss
function, namely Im( 1

ε(q,ω) ) ∝ V (q)Imχc(q,ω). The spectral

weight of Imχc(q,ω) is proportional to q2 at the plasmon
energy and thus vanishes at q = (0,0,0) [see Fig. 6(c) and
the (1,1) element in Fig. 8]. However, the loss function
becomes finite at q = (0,0,0) because of the singularity of
the long-range Coulomb interaction in the long-wavelength
limit, namely V (q) ∝ q−2.

V. CONCLUSIONS

The layered t-J -V model treated in a large-N expansion
shows a dual structure of charge excitation spectra. (i) In a low-
energy region, the spectral weight originates mainly from vari-
ous types of bond-charge fluctuations with internal symmetry,
for example, cos kx − cos ky . These bond-charge fluctuations
are triggered by the exchange term J , and can lead to the
charge order phenomena. The low-energy spectral weight is
essentially independent of the out-of-plane momentum qz. (ii)
In the high-energy region, the spectral weight is dominated
by usual on-site charge fluctuations and is characterized by a
plasmon mode with a minimal excitation gap at q‖ = (0,0).
The dispersion around q‖ = (0,0) is quasilinear for a finite qz,
whereas it is flat for qz = 0 similar to usual optical plasmons.
The dual structure of charge excitation spectra that we have
elucidated in the present paper will serve to disentangle
major charge excitations from complicated spectra of RIXS
data.
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APPENDIX A: ELEMENTS OF ImDab(q,ω)
AT DIFFERENT qz

As we have mentioned in Sec. III A, each element of
ImDab(q,ω) exhibits essentially the same result for different
values of qz except for the collective mode around q‖ = (0,0).
To demonstrate such a statement, we present results for
qz = 0 in Fig. 8. A comparison with the result for qz = π

(Fig. 1) shows that the continuum spectra are in fact essentially
the same and the crucial difference is recognized in the
plasmon mode around q‖ = (0,0). The plasmons feature a
flat dispersion around q‖ = (0,0) for qz = 0 and a quasilinear
dispersion for qz = π . The flat dispersion, however, appears
only at qz = 0 and its gap suddenly drops from ω ≈ 0.7 to
ω ≈ 0.2 once qz becomes finite, yielding a sharp V-shaped
dispersion as shown in the inset of Fig. 8. With increasing qz,
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FIG. 9. q‖-ω maps of Imχ̃d bond(q,ω), Imχ̃s bond(q,ω), and
Imχ̃dCDW(q,ω) along the symmetry axes (π,0)-(π,π )-(0,0)-(π,0); the
out-of-plane momentum is qz = π .

the energy gap staysat ω ≈ 0.2 and the slope of the V-shaped
dispersion decreases. For qz � 0.4π , the V-shape dispersion
becomes almost the same as that at qz = π , which was clearly
shown in Fig. 2 in Ref. [29].

APPENDIX B: ALTERNATIVE DEFINITION OF
BOND-CHARGE SUSCEPTIBILITY

As we have discussed in Sec. III C, each bond-charge
susceptibility may also be defined by the projection of Dab,
not D−1

ab , onto the corresponding eigenvectors V d bond, V s bond,
and V dCDW. That is, χ̃d bond(q,ω) = N (δ/2)2(D33 + D44 −
2D34)/2, χ̃s bond(q,ω) = N (δ/2)2(D33 + D44 + 2D34)/2, and
χ̃dCDW(q,ω) = N (δ/2)2(D55 + D66 − 2D56)/2. Their spectra,
namely the imaginary part of each susceptibility, are shown
in Fig. 9. The continuum spectrum is essentially the same
as that shown in Fig. 4 in Sec. III C. A crucial difference
is the presence of collective excitations from the on-site
charge fluctuations, which remain strong along (0,0)-(π,0)
direction especially for χ̃dCDW. Because of symmetry there
is no collective excitations along (0,0)-(π,π ) direction for
χ̃dCDW and χ̃d bond. Along (π,0)-(π,π ) direction the energy
of the collective excitation becomes larger than 1(= t).
The presence of these collective excitations may be appar-
ent from Fig. 1 where all elements of Dab, in principle,
contain the collective on-site charge excitations above the
continuum spectrum as we have discussed in Sec. III A.
Thus χ̃d bond, χ̃s bond, and χ̃dCDW necessarily have such
contamination.
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