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3 Compact homogeneous Riemannian manifolds

with low co-index of symmetry

Jürgen Berndt Carlos Olmos Silvio Reggiani

Abstract

We develop a general structure theory for compact homogeneous Riemannian
manifolds in relation to the co-index of symmetry. We will then use these results
to classify irreducible, simply connected, compact homogeneous Riemannian mani-
folds whose co-index of symmetry is less or equal than three.We will also construct
many examples which arise from the theory of polars and centrioles in Riemannian
symmetric spaces of compact type.

Keywords. Compact homogeneous manifolds, symmetric spaces, index ofsymme-
try, Killing fields, polars, centrioles

1 Introduction

A homogeneous manifold is a manifoldM together with a Lie groupG acting transitively

onM . Homogeneous manifolds are of particular interest in geometry, topology, algebra

and physics. In the context of Riemannian geometry one is interested in homogeneous

Riemannian manifolds, where the groupG acts transitively by isometries. Killing fields

are vector fields preserving the metric on the manifold. Suchvector fields are of interest

in particle physics where they correspond to symmetries in theoretical models. On a ho-

mogeneous Riemannian manifold there are many Killing vector fields. More precisely, a

connected complete Riemannian manifoldM is homogeneous if and only if at every point

p ∈ M and for everyv ∈ TpM there exists a Killing fieldX onM with Xp = v. This

characterization of homogeneous Riemannian manifolds is very useful.
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A Killing field is uniquely determined by its value and its covariant derivative at a

point. Important classes of homogeneous Riemannian manifolds are obtained by impos-

ing additional conditions on the covariant derivative of its Killing fields. For example, a

homogeneous Riemannian manifoldM is a Riemannian symmetric space if and only if

for every pointp ∈ M and everyv ∈ TpM , there exists a Killing fieldX on M with

Xp = v and(∇X)p = 0. Riemannian symmetric spaces were classified byÉlie Cartan

and there is a beautiful theory relating such spaces to the algebraic theory of semisimple

Lie algebras (see e.g. [3]).

Motivated by this characterization of symmetric spaces, the second and third author

together with Tamaru introduced in [8] the index of symmetryof a Riemannian mani-

fold. LetM be a Riemannian manifold and denote byK(M) the Lie algebra of Killing

fields onM . For q ∈ M define the symmetric subspacesq of TqM by sq = {Xq ∈
TqM : X ∈ K(M) and (∇X)q = 0}. The index of symmetryis(M) of M is de-

fined asis(M) = inf{dim(sq) : q ∈ M}, and the co-index of symmetrycis(M) is

defined bycis(M) = dim(M) − is(M). If M is a homogeneous Riemannian manifold,

sayM = G/H, then the symmetric subspaces form aG-invariant distributions onM .

This distribution is called the distribution of symmetry onM . In [8] it was shown that the

distribution of symmetry is integrable and its maximal integral manifolds are Riemannian

symmetric spaces which are embedded inM as totally geodesic submanifolds. For nor-

mal homogeneous Riemannian manifolds and a class of naturally reductive homogeneous

Riemannian manifolds the distribution of symmetry was explicitly determined in [8].

As mentioned above, a homogeneous Riemannian manifold is a Riemannian symmet-

ric space if and only ifcis(M) = 0. Thus the co-index of symmetry can be regarded as

a measure for how far a homogeneous Riemannian manifold fails to be a Riemannian

symmetric space. The purpose of this paper is to develop somegeneral structure theory

for compact homogeneous Riemannian manifolds in relation to the co-index of symmetry.

We will then use these results to classify irreducible, simply connected, compact homoge-

neous Riemannian manifolds whose co-index of symmetry is less or equal than3. We will

also determine the co-index of symmetry for compact homogeneous Riemannian mani-

folds which arise as total spaces over polars in Riemannian symmetric spaces of compact

type and whose fibers are centrioles.

The paper is organized as follows. In Section 2 we present some basic results about

Riemannian symmetric spaces and which will be used later.

In Section 3 we investigateG-invariant autoparallel distributionsD on compact homo-

geneous Riemannian manifoldsM = G/H. Such a distribution is said to be strongly sym-

metric with respect toG if every maximal integral manifoldL of D is a Riemannian sym-

metric space and the transvection group ofL is contained in{g|L : g ∈ G and g(L) = L}.

The main result is Theorem 3.7 which says, roughly speaking,that if the co-rankk of a



Compact homogeneous Riemannian manifolds with low co-index of symmetry 3

strongly symmetricG-invariant distribution onG/H satisfiesk ≥ 2, thenM is a homo-

geneous space of a normal semisimple subgroupG′ of G with 2 dim(G′) ≤ k(k + 1).

In Section 4 we introduce the index and co-index of symmetry and review some results

from [8].

In Section 5 we develop some general structure theory for compact homogeneous

Riemannian manifolds in relation to the co-index of symmetry. The main result in this

section is Theorem 5.3: LetM be a simply connected compact homogeneous Rieman-

nian manifold and assume thatM does not split off a symmetric de Rham factor. Then

k = cis(M) ≥ 2 and there exists a transitive semisimple normal Lie subgroupG′ of the

isometry group ofM such that2 dim(G′) ≤ k(k + 1). The equality holds if and only if

the universal covering group ofG′ is Spin(k + 1). Moreover, if the equality holds and

cis(M) ≥ 3, then the isotropy group ofG′ has positive dimension.

In Section 6 we investigate compact homogeneous Riemannianmanifolds withcis(M)

= 3. We will construct explicitly a2-parameter family of non-homotheticalSO(4)-

invariant Riemannian metrics onM = SO(4)/SO(2) with cis(M) = 3. The main result

is Theorem 6.7 and states that every irreducible, simply connected, compact homoge-

neous Riemannian manifold withcis(M) = 3 is homothetic toM = SO(4)/SO(2) with

such a Riemannian metric.

In Section 7 we investigate compact homogeneous Riemannianmanifolds withcis(M)

= 2. We will construct explicitly two1-parameter families of non-homothetical left-

invariant Riemannian metrics onM = Spin(3) with cis(M) = 2. The main result is

Theorem 7.1 and states that every irreducible, simply connected, compact homogeneous

Riemannian manifolds withcis(M) = 2 is homothetic toM = Spin(3) with such a

left-invariant Riemannian metric.

In Section 8 we review the construction by Nagano and Tanaka in [4] of certain fibra-

tionsK+/K++ → K/K++ → K/K+. LetM = G/K be a simply connected Rieman-

nian symmetric space of compact type such thatK is the isotropy group ofG at o ∈ M .

Let p be an antipodal point ofo in M . Then the orbitB = K · p = K/K+ of K through

p is a so-called polar ofM . Assume thatdim(B) > 0 and thatB is irreducible. Letq be

the midpoint of a distance minimizing geodesic joiningo andp and assume that the orbit

S = K · q = K/K++ is not a Riemannian symmetric space with respect to the induced

metric fromM . The fibersK+/K++ of the fibrationK/K++ → K/K+ are centrioles in

M . We will show in Theorem 8.1 that the co-index of symmetry of the orbitS = K/K++,

with the induced Riemannian metric, is equal to the dimension of the polarB = K/K+.

This provides many examples of compact homogeneous Riemannian manifolds for which

the co-index of symmetry can be calculated explicitly in a rather simple way.
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2 Preliminaries and basic results

LetM = G/K be ann-dimensional, connected, simply connected, Riemannian symmet-

ric space, wheren ≥ 2 and(G,K) is an effective symmetric pair. We denote byI(M) the

full isometry group ofM and byIo(M) the connected component ofI(M) containing

the identity transformation ofM . Note thatG = Io(M) if the Riemannian universal cov-

ering space ofM has no Euclidean de Rham factor, or equivalently, ifM is a semisimple

Riemannian symmetric space. The geodesic symmetry atp ∈ M will be denoted byσp.

A Riemannian symmetric space is said to be inner ifσp ∈ Io(M) for one (and hence for

all) p ∈M .

Lemma 2.1. Let γ ∈ ZI(M)(G) be in the centralizer ofG in I(M) and assume that for

everyq ∈ M with γ(q) 6= q the isometryγ translates a minimizing geodesic inM joining

q andγ(q). Then we haveσpγσ−1
p = γ−1 for all p ∈ M . If, in particular,M is inner, then

γ2 = idM .

Proof. Let p ∈ M and put̄γ = σpγσ
−1
p . It is clear that̄γ andγ̄−1 satisfy the assumptions

of this lemma. Letq ∈M with γ(q) 6= q. By assumption, there exists a geodesicβ : R →
M throughq andγ̄(q) which minimizes the distance betweenq = β(0) andγ̄(q) = β(a)

with a > 0 and is translated bȳγ. Thenγ̄(β(t)) = β(t+ a) andγ̄−1(β(t)) = β(t− a) for

all t ∈ R. Sinceγ ∈ ZI(M)(G) andσqσp ∈ G, we haveγ(q) = (σqσp)γ(σqσp)
−1(q) and

therefore

γ(q) = σqγ̄(q) = σqβ(a) = β(−a) = γ̄−1(β(0)) = γ̄−1(q) = σpγ
−1σ−1

p (q),

which impliesσpγσ−1
p = γ−1.

Remark 2.2. A well-known result of Joseph Wolf states that in a homogeneous Rieman-

nian manifoldN any geodesic loop must be a closed geodesic. In fact, letβ : R → N

be a unit-speed geodesic and letX be a Killing field onN with X(β(0)) = β ′(0). Then

it follows from the Killing equation that the inner product betweenX(β(t)) andβ ′(t) is

a constant function. The value of the inner product att = 0 is equal to1. Assume that

β(0) = β(a) with somea 6= 0. Then the inner product betweenX(β(a)) = X(β(0)) =

β ′(0) andβ ′(a) is equal to1, and it follows from the Cauchy-Schwartz inequality that

β ′(0) = β ′(a), which shows thatβ is a closed geodesic.

Corollary 2.3. LetM = G/K be a Riemannian globally symmetric space, where(G,K)

is an effective symmetric pair. Letπ : M → N = G/K̄ be aG-equivariant local isom-

etry, where the action ofG onN is almost effective. ThenN is a Riemannian globally

symmetric space.
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Proof. Let Γ ⊂ I(M) be the group of deck transformations ofN . We can assume thatπ

is not a global isometry, or equivalently, thatΓ is non-trivial. Since the action ofG onM

projects to an action onN ,M is connected andΓ is discrete, it follows thatG normalizes

Γ. Let idM 6= γ ∈ Γ, q ∈ M , and letβ : R → M be any minimizing geodesic between

β(0) = q andβ(a) = γ(q). The geodesicsγ(β(t)) andβ(t) in M project to the same

geodesic̄β(t) = π(β(t)) = π(γ(β(t))) in N . Sinceβ̄(0) = β̄(a), it follows from Remark

2.2 that the geodesic̄β inN is periodic with perioda (not necessarily the smallest period).

This implies thatγ(β(t)) = β(t+a) and soγ translates the geodesicβ. From Lemma 2.1

we getσpγσ−1
p = γ−1 for all p ∈ M andγ ∈ Γ. This implies that the geodesic symmetry

σp onM descends to a geodesic symmetry ofN . We now conclude thatN is globally

symmetric.

Remark 2.4. Conjugation byσp defines a group automorphism ofΓ, and the proof of

Corollary 2.3 shows that this automorphism is given byγ 7→ γ−1. This implies thatΓ

is an abelian group, which reflects the well-known fact that the homotopy group of a

globally symmetric space is an abelian group. From Lemma 2.1we also see thatΓ must

be isomorphic to a direct productZ2 × . . .× Z2 if M is an inner Riemannian symmetric

space.

Remark 2.5. In this remark we fill a gap in the proof of Lemma 5 on page 491 of [2]

for the global symmetry and simplify the arguments. In fact,condition (*) in [2, page

493] needs not to be true a priori, since the equality only holds for the restriction of those

groups to the flat. Let us keep the notation of [2] and prove Lemma 5.

For any maximal flatF in the globally symmetric spaceX let τF be the abelian sub-

group ofI0(X) which consists of the glide translations along geodesics inF . More pre-

cisely,τF = {Exp(X) : X ∈ p}, wherep is the Cartan subspace at some pointp ∈ F .

The abelian subgroupτF is a normal subgroup ofIF (M), the subgroup ofI(X) which

leavesF invariant. Since any element ofΓF ⊂ Γ acts as a translation onF (Sublemma

1 is correct!) it follows thatτF commutes withΓF . In fact, for all g ∈ ΓF andX ∈ p

we havegExp(X)g−1 = Exp(g∗(X)) ∈ τF . Sinceg restricted toF is a translation, this

impliesg∗(X) = X.

From the assumptions of Lemma 5 one obtains that{g̃τF g̃−1 : g̃ ∈ G̃} contains any

geometric transvection subgroup{Exp(tX) : t ∈ R} whereX belongs to any Cartan

subspace. TheñG andτF generateT , the full transvection group ofX. SinceG̃ andτF
commute with any element ofΓF we conclude thatT commutes withΓF . Since, as stated

in Sublemma 1,Γ is the union ofΓF , F an arbitrary flat, we obtain thatT commutes

with Γ. Since the geodesics inM have no self-intersection (since they lie in a globally

symmetric 1-1 immersed flat), we have that anyγ ∈ Γ satisfies the assumptions of Lemma

2.1. Thenσp(Γ) = Γ and so the geodesic symmetryσp descends fromX to the quotient
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M , which implies thatM is globally symmetric. This completes the proof of Lemma 5

on page 491 of [2].

Let M = G/K be a connected, simply connected, Riemannian symmetric space,

where(G,K) is an effective symmetric pair. Denote byg the Lie algebra ofG. Assume

that every Killing fieldX on M , X ∈ g, is bounded. This is equivalent to saying that

the de Rham decomposition ofM does not contain a Riemannian symmetric space of

noncompact type. LetM = Rk ×M1 × ... ×Mr be the de Rham decomposition ofM

(k = 0 is possible) and let us write

G/K = R
k × (G1/K1)× ...× (Gr/Kr).

whereMi = Gi/Ki is a connected, simply connected, Riemannian symmetric space of

compact type. IfMi is not of group type, thenGi is a compact simple Lie group. If

Mi is of group type thenGi = Ḡi × Ḡi whereḠi is a compact simple Lie group and

Ki = diag(Ḡi × Ḡi). Moreover,Mi ≃ Ḡi.

Choosep = (p0, . . . , pr) ∈ M so thatK = Gp is the isotropy subgroup ofG at p.

Then the isotropy representation ofK onTpM is, up to the trivial representation onRk,

the direct sum of the irreducible representations ofKi onTpiMi.

Definition 2.6. The Lie algebragi of Gi (i = 1, . . . , r), considered as a subalgebra ofg,

is called asymmetric irreducible factorof g.

Note that a symmetric irreducible factor ofg is either a simple Lie algebra or the direct

sum of a simple Lie algebra with itself.

Let N = G/K̄ be a Riemannian symmetric space which is not necessarily simply

connected. We assume thatN is equivariantly covered byM = G/K; see Corollary 2.3.

Then the autoparallel distributions onM corrresponding to the factors in the de Rham

decomposition ofM induce autoparallel distributions onN . In fact, any elementγ in

the groupΓ of deck transformations of the projectionπ : M → N commutes with the

transvection groupG of M . This implies thatγ preserves the autoparallel distribution on

M associated to any of its de Rham factors. IfK̄o is the connected component ofK̄, then,

as for the simply connected case, the isotropy representation of K̄o decomposes, up to a

trivial representation, as a direct sum of irreducible representations.

The following lemma is easy to prove.

Lemma 2.7. LetN = G/K̄ be a Riemannian globally symmetric space, whereG is the

group of transvections (N is not assumed to be simply connected). Letg̃′ be an ideal ofg

that contains the abelian part ofg. Assume that̃G′ does not act transitively onN , where

G̃′ is the normal Lie subgroup ofG with Lie algebrag̃′. Let ĝ be a complementary ideal

to g̃′. Thenĝ contains an irreducible symmetric factorgi of g.
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Remark 2.8. If in the situation of Lemma 2.7 the symmetric spaceN is simply connected,

and if Ĝ contains only one of the two factors ofGi = Ḡi × Ḡi, whereMi is a de Rham

factor of group type, then̂G/Ĝp is not a symmetric presentation of the symmetric orbit

Ĝ · p, p ∈ N .

3 Symmetric autoparallel distributions

LetM = G/H be ann-dimensional compact homogeneous Riemannian manifold, where

n ≥ 2 andG is a connected Lie subgroup ofI(M). LetD be an autoparallelG-invariant

distribution onM of rankr > 0. We denote byk = n− r = dim(M)− rk(D) the corank

of D. The maximal integral manifold ofD containing a pointp ∈ M will be denoted by

L(p). Note thatL(p) is a totally geodesic submanifold ofM sinceD is autoparallel. For

all g ∈ G andp ∈M such thatg(L(p)) = L(p) we denote byg|L(p) the isometry onL(p)

which is obtained by restrictingg to L(p). If X is a Killing field onM which is induced

byG, then we denote byX|L(p) the restriction ofX toL(p).

Definition 3.1. TheG-invariant autoparallel distributionD is strongly symmetricwith

respect toG if every integral manifoldL(p) of D is a globally symmetric space and the

identity component of{g|L(p) : g(L(p)) = L(p), g ∈ G} contains the transvection group

of L(p) (or equivalently, since the Killing fields associated toG are bounded, coincides

with the transvection group ofL(p)).

From Corollary 2.3 one has the following equivalent definition:

Definition 3.2. TheG-invariant autoparallel distributionD is strongly symmetricwith

respect toG if for every p ∈ M and everyv ∈ Dp there exists a Killing fieldX onM

which is induced byG such thatXp = v andX|L(p) is parallel atp.

Let M = G/H be a compact homogeneous Riemannian manifold and letD be a

non-trivialG-invariant distribution onM which is strongly symmetric with respect toG.

Let g = TeG be the Lie algebra ofG, where any elementX of g is identified with the

Killing field p 7→ X.p = d
dt |t=0

Exp(tX)(p) of M . It is important to note that with this

identification the brackets change sign, since the Killing fieldX is related via the isometry

g with the right-invariant vector field ofG with initial conditionX ∈ TeG. The subspace

gD := {X ∈ g : X lies onD}

of g is an ideal ofg sinceD isG-invariant.

Lemma 3.3. Let g′ ⊂ g be a complementary ideal ofgD and letG′ be the normal sub-

group ofG with Lie algebrag′. Then2 dim(G′) ≤ k(k + 1), wherek = n − r =
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dim(M)− rk(D) is the corank ofD. Moreover, fork ≥ 2, the equality holds if and only if

the universal covering group ofG′ is Spin(k + 1). For k = 1, D is a parallel distribution

and the Riemannian universal covering space ofM splits off a line (and thenM is locally

symmetric).

Proof. Since the integral manifolds ofD are not necessarily closed submanifolds ofM

(when they have a Euclidean local factor), we will consider,locally, the quotient space of

M by the foliation given by the maximal integral manifolds ofD. Let p ∈ M and letU

be the domain of a Frobenius chart of the the distributionD in a neighborhood ofp. Let

us denote byF the foliation ofU given by the maximal integral manifolds ofD|U and by

Ū = U/F the quotient space. Letπ : U → Ū be the canonical projection. AnyZ ∈ g,

regarded as a Killing field onU , projects viaπ to a vector fieldZ̄ on Ū , since anyg ∈ G

which is close to the identity preserves (locally) the foliation F . We have that̄Z = 0 if

and only ifZ|U is tangent to the distributionD|U .

Let p ∈ U be fixed and letq = g(p) ∈ U . SinceD isG-invariant, we haveZq ∈ Dq if

and only ifAd(g)(Z)p ∈ Dp. Let Ω be a neighbourhood of the identitye in G such that

{g(p) : g ∈ Ω} ⊂ U . Then, if Z̄ = 0, we haveAd(g)(Z)p ∈ Dp for all g ∈ Ω. SinceΩ

generatesG this givesAd(g)(Z)p ∈ Dp for all g ∈ G. This implies that the Killing field

Z is tangent toD. Therefore,Z ∈ gD if and only if Z̄ = 0.

Let us now consider the normal homogeneous Riemannian metric onM = G/H. This

metric, restricted toU , projects viaπ to a Riemannian metric on̄U . In fact, if p ∈ U , Ū

can be locally regarded asG/H̃, whereH̃ ⊃ H is the Lie subgroup ofG which leaves

invariantL(p). So any elementZ 6= 0 in the complementary idealg′ of gD can be regarded

as a non-trivial Killing field onŪ . If p̄ = π(p), then the mapj : g′ → Tp̄Ū × so(Tp̄Ū),

j(Z) = (Z̄p̄, (∇Z̄)p̄), which assigns toZ the initial conditions of the Killing fieldZ̄ at p̄,

is injective. Then, sincek = dim(Ū), we conclude that2 dim(G′) ≤ k(k + 1).

We now consider the injective Lie algebra homomorphismπ∗ : g′ → K(Ū), Z 7→ Z̄,

whereK(Ū) denotes the Lie algebra of Killing fields on̄U with the projection of the

normal homogeneous metric onM and where the bracket ong′ is the bracket of Killing

fields. Note that2 dim(g′) ≤ 2 dim(K(Ū)) ≤ k(k + 1). It follows that Ū has constant

curvature when2 dim(g′) = k(k + 1). In this case, sinceg′ admits a bi-invariant metric,

we getg′ ≃ K(Ū) ≃ so(k + 1). Then the universal covering group ofG′ is Spin(k + 1)

if k ≥ 2.

For k = 1 we havedim(G′) = 1. If GD is the normal Lie subgroup ofG with Lie

algebragD, then theGD-orbits inM coincide with the integral manifoldsL(q) of D. In

fact,GD cannot be transitive onM since the orbitGD · q is contained inL(q) for all

q ∈ M . Therefore, sinceG is transitive onM anddim(gD) = dim(g) − 1, anyGD-

orbit must have codimension one and thereforeGD · q = L(q). ThusGD acts onM with

cohomogeneity one and without singular orbits. In fact, sinceGD is a normal subgroup
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of G, we haveGD · g(q) = g(GD · q) for all g ∈ G. Then the1-dimensional distribution

perpendicular to theGD-orbits (or equivalently, orthogonal toD), is autoparallel. SinceD
is also an autoparallel distribution, then both distributions must be parallel. This implies

that the Riemannian universal covering space ofM splits off a line.

Remark 3.4. The normal subgroupGD of G with Lie algebragD acts effectively on

every integral manifoldL(q) of D. In fact, as in Lemma 3.3, letG′ be the normal Lie

subgroup ofG associated with a complementary ideal ofgD. This gives an almost direct

productG = GD × G′. SinceG is transitive onM , the subgroupG′ acts transitively on

the family{L(q) : q ∈ M}. Let g ∈ GD andp ∈ M such thatg|L(p) : L(p) → L(p) is

the identity, and letL(q) be another maximal integral manifold ofD. Then there exists

g′ ∈ G′ such thatg′(L(p)) = L(q). Let q′ = g′(p′) ∈ L(q) with p′ ∈ L(p). Then

g(q′) = g(g′(p′)) = g′(g(p′)) = g′(p′) = q′, and thusg = e.

We continue with the notations and assumptions of Lemma 3.3.Let q ∈M and define

Ḡq = {g|L(q) : g(L(q)) = L(q), g ∈ G}o,

which coincides with the transvection group ofL(q) sinceD is strongly symmetric with

respect toG. LetGq be the isotropy group ofG at q and define

K̄q = {g|L(q) : g ∈ Gq}.

ThenḠq/K̄q is a symmetric presentation of the symmetric spaceL(q). Note thatGq and

henceK̄q are connected ifM is simply connected.

The subgroup

Ḡ′q = {g|L(q) : g(L(q)) = L(q), g ∈ G′}o

is a normal subgroup of̄Gq and commutes withGD andḠq = {g1g2 : g1 ∈ Ḡ′q, g2 ∈ GD},

whereGD is identified with its restriction toL(q). In generalḠ′q andGD intersect in a

normal subgroup of̄G′q with positive dimension. Let̄g′q be the Lie algebra of̄G′q and

defineu = ḡ′q ∩ gD. Let ĝ be a complementary ideal tou in gD. Note that̂g is an ideal of

the Lie algebrāgq of Ḡq which can be identified with an ideal ofg which does not depend

on the choice ofq ∈ M . If Ĝ ⊂ GD denotes the normal Lie subgroup ofG associated

with ĝ, we have

Ḡq = Ḡ′q × Ĝ (almost direct product).

Recall thatḠq/K̄q is a symmetric presentation ofL(q) and that̄g′q is an ideal of̄gq.

SinceG′ is transitive on the family{L(q) : q ∈ M} (see Remark 3.4), we see thatG′ is

transitive onM if and only if Ḡ′q is transitive onL(q) for some (or equivalently, for all)

q ∈M . Let ĝ0 be the abelian part of̂g (which is regarded, depending on the context, as an

ideal ofg or as an ideal of̄gq). Moreover, leťg′ = g′ ⊕ ĝ0, and letǦ′ be the Lie subgroup
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of G with Lie algebrǎg′. SinceM is simply connected, we observe from Remark 3.9 that

G′ acts transitively onM if and only if Ǧ′ acts transitively onM . But this is equivalent

to the fact thatH̄ ′q acts transitively onL(q), whereH̄ ′q is the (normal) Lie subgroup of

Ḡq which is associated with the idealḡ′q ⊕ ĝ0 of ḡq. Note that this ideal contains always

the abelian part of̄gq. If G′ is not transitive onM , thenH̄ ′q is not transitive onL(q). It

follows from Lemma 2.7 that the semisimple part ofĝ, which is a complementary ideal

of ḡ′q ⊕ ĝ0, has an irreducible symmetric factorgirr. Thusĝ has an irreducible symmetric

factorgirr. Note thatgirr is an ideal ofgD which does not depend onq ∈ M . Thus we

have proved the following lemma:

Lemma 3.5. If G′ is not transitive onM , thenĝ has a non-trivial irreducible symmetric

factor ĝirr.

Remark 3.6. Here we will present an example whereu is non-trivial. LetM = G/H

be a normal homogeneous space and decomposeg = gss ⊕ gab as a direct sum of ideals,

wheregss is semisimple andgab is abelian. Assume thatdim(gab) ≥ 2. Let p = [e] and

let V ⊂ TpM be the subspace of fixed vectors ofH (via the isotropy representation).

Let W ⊂ V be a subspace of codimension one. We chooseX1, . . . , Xk−1 ∈ gab such

thatX1.p, . . . , Xk−1.p is a basis ofW. Let D be theG-invariant distribution onM with

Dp = W. Note thatD is strongly symmetric with respect toG (see [8]). LetXk ∈ gab be

such thatXk.p ∈ V − W. ThengD is the linear span ofX1, . . . , Xk−1. Moreover, if we

defineg′ = gss ⊕ R(Xk−1 +Xk), then we obtainu = ḡ′p ∩ gD = RXk−1|L(p).

Theorem 3.7. LetM = G/H be ann-dimensional compact simply connected homoge-

neous Riemannian manifold,n ≥ 2. LetD be aG-invariant distribution onM of rank

r > 0 which is strongly symmetric with respect toG, and denote byk = n− r the corank

of D. Assume thatM does not split off a symmetric factor whose associated parallel dis-

tribution onM is contained inD. Thenk ≥ 2 and there exists a normal semisimple Lie

subgroupG′ ofG with 2 dim(G′) ≤ k(k + 1) and acting transitively onM such that its

Lie algebrag′ is a complementary ideal ofgD := {X ∈ g : X lies onD}. Moreover, the

equality holds if and only if the universal covering group ofG′ is Spin(k + 1).

Proof. The fact thatk ≥ 2 follows from Lemma 3.3, sinceM is compact and simply

connected. LetG′ be given as in Lemma 3.3 and assume thatG′ does not act transitively

onM . Then, by Lemma 3.5,̂g has an irreducible symmetric factorĝirr which is an ideal

of gD. Observe thatgirr does not intersect̄g′q. Let g̃ be a complementary ideal ofgirr in

gD. Let us consider the idealg̃′ = g′ ⊕ g̃ and its associated normal Lie subgroupG̃′ of G.

Then we have the direct sum decompositiong = g̃′ ⊕ girr of g into two ideals.

Let Girr be the normal Lie subgroup ofG with Lie algebragirr. ThenG̃′ commutes

with Girr andG = G̃′ × Girr (almost direct product). Every orbitGirr · q is a totally
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geodesic symmetric submanifold ofL(q) and ofM . LetKq
irr be the isotropy group ofGirr

at q. ThenGirr/K
q
irr is a symmetric presentation ofGirr · q and(Kq

irr)
o acts irreducibly,

via the isotropy representation, onTq(Girr · q). Since(Kq
irr)

o commutes withG̃′, it acts

trivially on the orbitG̃′ · q. Then, sinceG · q = (G̃′ ×Girr) · q =M , we get

TqM = Tq(G̃
′ · q)⊕ Tq(Girr · q) (orthogonal direct sum)

andG̃′ · q must coincide with the connected component of the fixed pointset of(Kq
irr)

o

containingq. ThenG̃′ · q is a totally geodesic submanifold ofM and so the distribution

D̃′ onM , given by the tangent spaces of theG̃′-orbits, is autoparallel. Moreover, this dis-

tribution is orthogonal and complementary to the autoparallel distributionDirr, which is

tangent to theGirr-orbits. ThenD̃′ andDirr are parallel distributions andDirr is contained

in D. This contradicts the assumptions of this theorem and thereforeG′ acts transitively

onM . The other statements follow from Lemma 3.3.

Remark 3.8. We recall here a well-known fact. LetM be a complete and simply con-

nected Riemannian manifold. LetH be a connected Lie subgroup ofI(M) which admits

a bi-invariant Riemannian metric. Assume that allH-orbits have codimension one inM ,

that is,H acts with cohomogeneity one onM and there are no singular orbits. ThenM

splits asM = N ×R (generally not a Riemannian product). For the sake of completeness

we will sketch the proof.

Let us change the Riemannian metric( , ) onM along the distributionT given by the

tangent spaces of theH-orbits. The new metric atq ∈ M , restricted toTq, is the normal

homogeneous metric on the orbitH · q at q (this is a local construction and it does not

depend on whether the orbit is exceptional or not). The groupH acts also by isometries

on M with this new Riemannian metric. Ifγ(t) is a geodesic which is perpendicular

at γ(0) = p to the orbitH · p, then it is always perpendicular to theH-orbits (since

a Killing field projects constantly on any geodesic). So the distributionν perpendicular

to theH-orbits is an autoparallel distribution of rank one. Moreover, the one-parameter

perpendicular variation of orbitsH · γ(t) (we consider these orbits only locally around

γ(t)) is by isometries. Then theH-orbits are totally geodesic and henceT = ν⊥ is also

an autoparallel distribution. It follows thatν is a parallel distribution and then, by the de

Rham decomposition theorem,M splits off a line.

Remark 3.9. Let M be a compact and simply connected Riemannian homogeneous

space. LetG be a Lie subgroup ofI(M) which acts transitively onM . Then the semisim-

ple partGss of G acts also transitively onM . In fact, letg = gss × Rk, wheregss is

semisimple. We always have such a decomposition sinceI(M) is compact and therefore

G admits a bi-invariant metric. Let0 ≤ d ≤ k be the smallest integer such that the Lie

subgroup ofG with Lie algebragss × Rd is transitive onM . If d ≥ 1, let Ḡ be the Lie
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subgroup ofG with Lie algebragss×Rd−1. Then all orbits ofḠ have codimension one in

M . This is a contradiction sinceM is compact and simply connected (see Remark 3.8).

Therefore we must haved = 0.

We will need the following result from [6] for the proof of next lemma which we will

use later.

Proposition 3.10(see Lemma 5.1 in [6]). LetM = G/H be a homogeneous Riemannian

manifold (whereG is not necessarily connected),p = [e] andΦ be a normal subgroup

(eventually, finite) of the isotropy groupH at p. LetDΦ be theG-invariant distribution

onM such thatDΦ
g(p) ⊂ Tg(p)M is the subspace of fixed vectors ofgΦg−1. ThenDΦ is an

autoparallel distribution.

Lemma 3.11.LetM = G/H be a compact homogeneous Riemannian manifold andD1

be an autoparallelG-invariant distribution onM which is strongly symmetric with respect

to G. LetD2 be an autoparallelG-invariant distribution onM such thatD1 ⊂ D2 and

rk(D2) = rk(D1) + 1. ThenD2 is strongly symmetric with respect toG.

Proof. Let q ∈ M andLi(q) be the maximal integral manifold ofDi containingq, i =

1, 2. Let v ∈ Tq(L
1(q)) be arbitrary. Then, sinceD1 is strongly symmetric, there exists

X ∈ g, regarded as a Killing field, such thatX.q = v and〈∇wX, z〉 = 0 for all w, z ∈
Tq(L

1(q)). SinceDi isG-invariant,X|Li(q) must always be tangent toLi(q), i = 1, 2.

Let ξ ∈ g be such that0 6= ξ.q ∈ D2
q andξ.q is orthogonal toD1

q . Since the projection

of ξ|L1(q) to the tangent space ofL1(q) is a bounded Killing field, it lies in the Lie algebra

of the transvection group ofL1(q). SinceD1 is strongly symmetric, there existsY ∈ g

such thatY|L1(q) is always tangent toL1(q) and coincides with the projection ofξ|L1(q) to

the tangent spaces ofL1(q). So, by replacingξ by ξ − Y , we may assume thatξ|L1(q) is

always perpendicular toL1(q). Note thatξ|L2(q) must always be tangent toL2(q).

If η ∈ g is tangent toL2(q) and perpendicular toL1(q), thenη must be a scalar

multiple of ξ. In fact, letλ ∈ R such thatλ(ξ.q) = η.q. Thenψ = η − λξ vanishes

at q and soψ.q ∈ Tq(L
1(q)). SinceL1(q) is G-invariant,ψ must always be tangent to

L1(q). However,ψ is always perpendicular toL1(q), and thereforeψ is identically zero

on L1(q). Since the totally geodesic submanifoldL1(q) of L2(q) has codimension one,

we getη|L2(q) = 0. We may have chosen, by making use of a bi-invariant metric ong,

ξ ∈ (g0)
⊥, whereg0 = {X ∈ g : X|L2(q) = 0}. LetG1 be the connected component of

the subgroup ofG that leavesL1(q) invariant. Ifg ∈ G1, theng∗ξ = Ad(g)ξ ∈ (g0)
⊥ is

tangent toL2(q) and perpendicular toL1(q). ThenAd(g)ξ is a scalar multiple ofξ. Since

Ad(g) : (g0)
⊥ → (g0)

⊥ is an isometry andG1 is connected, we getAd(g)ξ = ξ and soξ

commutes withg1.
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Now observe that for allz ∈ Tq(L
1(q)) we have〈∇ξ.qX, z〉 = −〈∇zX, ξ.q〉 = 0,

sinceX is tangent to the totally geodesic submanifoldL1(q) ofM . As 〈∇ξ·qX, ξ · q〉 = 0,

we conclude thatX|L2(q) is a transvection atq.

Let us now prove thatξ|L2(q) is also a transvection atq. Let X be as above. Since

[X, ξ] = 0 we obtain∇X.qξ = ∇ξ.qX = 0. Observe also that〈∇ξ.qξ, v〉 = −〈∇vξ, ξ.q〉 =
0, wherev ∈ Tq(L

1(q)) is arbitrary. Since〈∇ξ.qξ, ξ.q〉 = 0, we conclude thatξ|L1(q) is a

transvection atq. It follows thatD2 is strongly symmetric.

The proof was rather involved, since we had to use thatg admits a bi-invariant metric.

Otherwise, if we consider for example the hyperbolic planeH2 as a solvable Lie groupS,

the distribution tangent to the lines that meet at infinity isS-strongly symmetric, but the

distributionTH2 is notS-strongly symmetric.

4 The index of symmetry

In this section we present the definition and some basic factsabout the index of symmetry,

for details we refer to [8]. Let(M, 〈·, ·〉) be ann-dimensional Riemannian manifold with

Riemannian metric〈·, ·〉. We denote byK(M) the Lie algebra of global Killing fields on

M . TheCartan subspacepq at q ∈M is

pq := {X ∈ K(M) : (∇X)q = 0},

where∇ is the Levi-Civita connection ofM . The elements ofpq are calledtransvections

at q. Thesymmetric isotropy subalgebraat q is

kq := linear span of{[X, Y ] : X, Y ∈ pq}.

ForX, Y ∈ pq we have[X, Y ]q = (∇XY )q − (∇YX)q = 0. Thuskq is contained in the

full isotropy algebraKq(M) = {X ∈ K(M) : Xq = 0}. Moreover, sincepq is invariant

under the action of the isotropy algebra atq,

gq := kq ⊕ pq

is an involutive Lie algebra. LetGq andKq be the Lie subgroup ofI(M) with Lie algebra

gq andkq, respectively.

Thesymmetric subspacesq of TqM at q ∈M is defined by

sq := {Xq : X ∈ pq}.

The index of symmetryis(M) of M is the infimum of{dim(sq) : q ∈ M}. Note that

dim(sq) = dim(pq) = dim(L(q)), whereL(q) := Gq · q is the so-calledleaf of symmetry

containingq. Thecoindex of symmetrycis(M) of M is defined bycis(M) = n− is(M).
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Facts 4.1(see [8], Section 3). Let q ∈M .

(a) Gh(q) = hGqh−1 anddqh(sq) = sh(q) for all h ∈ I(M).

(b) L(q) is a totally geodesic submanifold ofM and a globally symmetric space.

(c) Gq is a normal subgroup of{g ∈ I(M) : g(L(q)) = L(q)} andKq is a normal

subgroup of the full isotropy groupI(M)q.

(d) If X ∈ pq, thenγ(t) = Exp(tX)(q) is a geodesic inM . Moreover, the parallel

transport alongγ from q = γ(0) to γ(t) is given bydq Exp(tX).

(e) For everyIo(M)-invariant tensor fieldT onM we have∇Xq
T = 0 for all X ∈ pq.

In particular,∇Xq
R = 0, whereR is the Riemannian curvature tensor ofM .

(f) If X ∈ pq andZ is any vector field onM , then∇Xq
Z = [X,Z]q.

(g) If M is compact, thenGq acts almost effectively onL(q).

In this paper we will only deal with compact homogeneous Riemannian manifolds

M = G/H. In this caseq 7→ sq is aG-invariant, and hence smooth, distribution which is

called thedistribution of symmetryof M . The distributions onM is autoparallel and the

leaves of symmetryL(q) are the maximal integral manifolds ofs. Note that the distribu-

tion of symmetry is a strongly symmetric distribution with respect toIo(M). LetK(M)s

be the ideal ofK(M) which consists of those Killing fields that are tangent tos.

Remark 4.2. Gq is a Lie subgroup ofI(M) but it is not necessarily contained in the

presentation groupG of M . In the notation of Section 3, ifD = s andG = Io(M), then

Ḡq = Gq

|L(q).

5 Structure results for spaces with non-trivial index of
symmetry

In this section we develop some general structure theory in relation to the index and

co-index of symmetry. These results are useful for understanding the geometry of (irre-

ducible) compact homogeneous spaces with a non-trivial index of symmetry. Our main

theorem is crucial for classifying compact homogeneous spacesMn with low co-index of

symmetryk = cis(M), since it gives a bound on the dimension of a transitive group, and

hence onn, in terms ofk.

Remark 5.1. (The Jacobi operator in directions of the distribution of symmetry). IfX ∈
pq then, from (d) and (e) of Facts 4.1,∇γ′(t)R = 0, whereγ(t) = Exp(tX)(q) is the
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geodesic with initial conditionγ′(0) = Xq. Let e1 = Xq, e2, . . . , en be an orthonormal

basis ofTqM which diagonalizes the Jacobi operatorR·,Xq
Xq at q with corresponding

eigenvaluesa1 = 0, a2, . . . , an. Thene1(t), . . . , en(t) diagonalizesR·,γ′(t)γ
′(t) with the

same corresponding eigenvalues, whereei(t) denotes the parallel transport ofei along

γ(t). Forκ ∈ R we define

sinκ(t) =











1√
κ
sin(

√
κt) , if κ > 0,

t , if κ = 0,
1√
−κ

sinh(
√
−κt) , if κ < 0,

and

cosκ(t) =











cos(
√
κt) , if κ > 0,

1 , if κ = 0,

cosh(
√
−κt) , if κ < 0.

Let v = v1e1 + . . .+ vnen andw = w1e1 + . . .+ wnen. Then the Jacobi fieldJ(t) along

γ(t) with initial conditionsJ(0) = v andJ ′(0) = w is given by

J(t) =
n

∑

i=1

vi cosai(t)ei(t) +
n

∑

i=1

wi sinai(t)ei(t).

Let nowY ∈ K(M) be a Killing field withYq = ei. ThenJY (t) = Yγ(t) is a Jacobi field

alongγ(t) with JY (0) = ei. SinceM is compact,Y (t) is bounded and thus alsoJY (t) is

bounded fort ∈ R. From the above description of the Jacobi fields alongγ it follows that

ai ≥ 0 for all i = 1, . . . , n. Therefore the Jacobi operatorR·,Xq
Xq is positive semidefinite.

Proposition 5.2. LetM be a homogeneous compact Riemannian manifold with a non-

trivial index of symmetry. LetIq(M) be the Lie subgroup ofI(M) that leaves invariant

the leaf of symmetryL(q). We identifyK(M) with the Lie algebra ofI(M) and define

mq = {ξ ∈ K(M) : ξ|L(q) is always perpendicular toL(q)}.

Then the following statements hold:

(i) mq is anAd(Iq(M))-invariant subspace ofK(M).

(ii) The linear mapEvq : mq → (TqL(q))
⊥, ξ 7→ ξq is surjective and

ker(Evq) = {ξ ∈ K(M) : ξ|L(q) = 0}.

(iii) Let 0 6= X ∈ pq be a transvection atq and letγ(t) = Exp(tX)(q). Decompose

Tγ(t)M = E0(t) ⊕ . . . ⊕ Er(t) (E0 may be trivial) into the eigenspaces associated

to the different (constant) eigenvalues0 = λ0 < . . . < λr of the Jacobi operator

R·,γ′(t)γ
′(t). Letξ ∈ K(M) and let(ξγ(t))i be the orthogonal projection ofξγ(t) onto

Ei(t). Then there existsη ∈ K(M) such thatηγ(t) = (ξγ(t))
i.
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Proof. (i) For everyg ∈ I(M) the adjoint transformationAd(g) maps Killing fields to

Killing fields. If, moreover,g ∈ Iq(M), theng(L(q)) = L(q), and thusAd(g) maps any

Killing field which is perpendicular toL(q) into a Killing field which is perpendicular to

L(q). This proves the statement in (i).

(ii) Let w ∈ (TqL(q))
⊥ and chooseZ ∈ K(M) with Zq = w. The orthogonal projec-

tion Z̄T of Z|L(q) to TL(q) is an intrinsic transvection ofL(q) sinceZ̄T is bounded. Thus

there existsY ∈ gq such thatY|L(q) = Z̄T . ThenZ − Y is always perpendicular toL(q)

andEvq(Z − Y ) = (Z − Y )q = w. This shows thatEvq is surjective. Letξ ∈ mq with

ξq = 0. Thenξq ∈ TqL(q). Hence, since the foliation of symmetryL = {L(q) : q ∈ M}
is invariant under isometries,ξ|L(q) must always be tangent toL(q). Thereforeξ|L(q) = 0,

which implies the second statement in (ii).

(iii) SinceX ∈ pγ(t), we have∇Xγ(t)
ξ = ∇Xγ(t)

ξ−∇ξγ(t)X = [X, ξ]γ(t), and therefore

[X, [X, ξ]]γ(t) =
D2

dt2
(ξγ(t)) = −Rξγ(t),γ

′(t)γ
′(t)

by the Jacobi equation. LetJi(t) be the orthogonal projection ontoEi(t) of the Jacobi field

Jξ(t)) = ξγ(t), i = 0, . . . , r. Observe thatJi(t) is a Jacobi field. LetL : K(M) → K(M)

be the linear map defined byL(η) = [X, [X, η]]. Then

L(ξ)γ(t) = λ0J0(t) + . . .+ λrJr(t),

where−λi ≥ 0 is the eigenvalue of the Jacobi operatorR·,γ′(0)γ
′(0) associated toEi(0)

(λ0 = 0). Let us write

Lj(ξ)γ(t) = λj0J0(t) + . . .+ λjrJr(t)

for j = 0, . . . , r − 1, whereL0(ξ) = ξ. The vectorsv0, . . . , vr of Rr+1 are linearly

independent, wherevj = (λ0j , λ
1
j , . . . , λ

r
j), j = 0, ..., r (since the determinant of Vander-

monde is not zero). It is not hard to see that for everyi ∈ {0, . . . , r} there exist scalars

c(i)0, . . . , c(i)r such that

c(i)0ξγ(t) + c(i)1L
1(ξ)γ(t) + . . .+ c(i)rL

r(ξ)γ(t) = Li(ξ)γ(t) = Ji(t).

Thenη = Li(ξ) has the desired properties.

We have the following stronger version of Theorem 3.7 for thedistribution of symme-

try, which is a consequence of Theorem 3.7, except for the last assertion which follows

from Lemma 5.4.

Theorem 5.3. LetM be a compact, simply connected, Riemannian homogeneous mani-

fold with coindex of symmetryk. Assume thatM does not split off a symmetric de Rham

factor. Thenk ≥ 2 and there exists a transitive semisimple normal Lie subgroup G′
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of I(M), whose Lie algebra is a complementary ideal toK(M)s, such that2 dim(G′) ≤
k(k+1). The equality holds if and only if the universal covering group ofG′ isSpin(k+1).

Moreover, if the equality holds andk ≥ 3, then the isotropy group ofG′ has positive di-

mension.

Lemma 5.4. Assume that in Theorem 5.3 the equality holds and soG′ = Spin(k + 1)

acts transitively by isometries onM (almost effective action). Then, ifk ≥ 3, the isotropy

groupSpin(k + 1)q at q ∈ M has positive dimension (or equivalently, sinceM is simply

connected,Spin(k + 1)q is not trivial).

Proof. Assume that the isotropy groupSpin(k + 1)q is trivial. Let s be the distribution of

symmetry, which has dimension1
2
k(k − 1), sincedim(Spin(k + 1)) = 1

2
k(k + 1). Let

q ∈M and define

Spin(k + 1)q = {g ∈ Spin(k + 1) : g(L(q)) = L(q)}.

Since the isotropy groupSpin(k + 1)q is trivial, the groupSpin(k + 1)q acts effectively

onL(q) and so it can be identified with the group

Spin(k + 1)q = {g|L(q) ∈ Spin(k + 1) : g(L(q)) = L(q)}o.

From Theorem 5.3 the isometry algebra is given by the following sum of ideals:

K(M) = so(k + 1)⊕ K(M)s. (5.1)

In the notation of this section, sinceSpin(k + 1) is a normal subgroup ofI(M),

Spin(k + 1)q is a normal subgroup of̄Gq, whereḠq is the transvection group atq, re-

stricted toL(q). Then, sinceSpin(k + 1)q acts simply transitively onL(q), L(q) must

be a Lie group with a bi-invariant Riemannian metric (see Lemma 2.7). In general,L(q)

could be non-simply connected. Observe that no elementg ∈ I(M)s, the subgroup of

I(M) associated with the idealK(M)s, can belong to the full isotropy groupI(M)q. In

fact, sinceg commutes withSpin(k + 1)q, which is transitive onL(q), g must be the

identity onL(q) and thereforeg = e (see Remark 3.4). Note also thatSpin(k + 1)q is

semisimple, since the quotientSpin(k + 1)/Spin(k + 1)q is (equivariantly) isomorphic

to SO(k + 1)/ SO(k) (see the proof of Lemma 3.3). ThenL(q) has no flat factor locally.

Using (5.1) this implies thatdim(K(M)s) = dim(L(q)) = dim(Spin(k + 1)q) and that

gq = so(k)⊕ K(M)s ≃ so(k)⊕ so(k).

Then Io(M) = Spin(k + 1) × Spin′(k), where the second factor is the subgroup

Spin(k) ⊂ Spin(k + 1), but acting from the right onM ≃ Spin(k + 1), that is, if

g ∈ Spin′(k) theng(q) = qg−1. Note thatI(M)s must be transitive onL(q) and so on

any maximal integral manifold ofs. This implies that the Riemannian metric onM =

Spin(k + 1) induces a Riemannian submersion onto the quotient

Spin(k + 1)/ Spin(k + 1)q ≃ SO(k + 1)/ SO(k),
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which is a sphere. We are now in the following situation:

(a) M = Spin(k + 1).

(b) Io(M) = Spin(k + 1)× Spin′(k).

(c) The distribution of symmetry is

g 7→ so′(k)g = Ad(g)(so(k)g), g ∈M ≃ Spin(k + 1).

(d) The maximal integral manifolds of the distribution of symmetry are

L(g) = Spin′(k)g = g Spin(k).

(e) The isotropy group ate is

(Io(M))e = diag(Spin(k)) = {(h, h) ∈ Spin(k)× Spin′(k) : h ∈ Spin(k)}.

(f) Ke = (Io(M))e, ke = diag(so(k)), pe = {(v,−v) ∈ so(k)×so′(k)},Ge = Spin(k)×
Spin′(k), ge = so(k) ⊕ so′(k). Recall thatKe acts almost effectively onL(e) (see

Facts 4.1)).

LetX ∈ so(k+ 1) ⊂ so(k+ 1)⊕ so′(k) ≃ K(M). Then the orthogonal projection̄X

of X|L(e) to TL(e) is a bounded Killing field onL(e) and so it belongs toge|L(e). SinceX

commutes with any Killing field induced byso′(k), andSpin′(k) preserve the distribution

of symmetry, we see thatso′(k)|L(e) commutes withX̄. Then there must existZ ∈ so(k)

such thatX̄ = Z̄, whereZ̄ denotes the restriction ofZ to L(e). ThenY = X − Z ∈
so(k+1) is a Killing field whose restriction toL(e) is always perpendicular toL(e). Note

that in this way we can construct such a Killing fieldY with an arbitrary initial condition

Ye ∈ s⊥.

Let

m = {Y ∈ so(k + 1) : Y|L(e) is perpendicular toL(e)}.

Thenm is anAd(Spin(k))-invariant complementary subspace ofso(k) in so(k + 1). By

Lemma 5.5, ifk 6= 3, m = so(k)⊥, where the orthogonal complement is with respect

to the Killing form of so(k + 1). We equipM ≃ Spin(k + 1) with the bi-invariant

Riemannian metric(·, ·). Note thatIo(M) = Spin(k + 1) × Spin(k) ⊂ Io(M, (·, ·)) =
Spin(k + 1)× Spin′(k + 1).

If ξ, η ∈ m = so(k)⊥, then these two Killing fields are perpendicular toL(e) =

Spin(k) · e with respect to both Riemannian metrics(·, ·) and〈·, ·〉 (the given one). More-

over, ifX ∈ pe, thenX is a parallel vector field ate with respect to both metrics. Note

that the canonical projection toSk = Spin(k + 1)/ Spin(k) is a Riemannian submersion
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(up to rescaling) with respect to any of the two metrics onM . So, up to rescaling,(·, ·)
coincides with〈·, ·〉 onso(k)⊥ ≃ (se)

⊥. Unless(·, ·) = 〈·, ·〉, this contradicts the so-called

bracket formula of Proposition 3.6 of [8]:

2〈[ξ,X ], η〉e = −〈X, [ξ, η]〉e , 2([ξ,X ], η)e = −(X, [ξ, η])e, (5.2)

taking into account that[so(k)⊥, so(k)⊥] = so(k). Then, ifk 6= 3,M ≃ Spin(k + 1) has

a bi-invariant metric and thusM is a symmetric space, which is a contradiction, since the

coindex of symmetry isk. Therefore the isotropy group is non-trivial ifk 6= 3.

The casek = 3 is more involved sinceSO(4) is not simple. SinceSpin(4) acts al-

most effectively on the quotientSpin(4)/ Spin(4)e of M by the leaves of symmetry (see

the proof of Lemma 3.3), we see thatSpin(4)e cannot be a factor ofSpin(4). Then,

according to Remark 5.6,Spin(4)e ≃ Spin(3) is the subgroup ofSpin(4) which is

equivalent to the diagonal inclusion ofSpin(3) in Spin(4) = Spin(3) × Spin(3). As

remarked above,m = {Y ∈ so(4) : Y|L(e) is perpendicular toL(e)} is anAd(Spin(3))-

invariant complementary subspace ofso(3) in so(4) and gives a reductive decomposition

of Spin(3)× Spin(3)/diag(Spin(3)).

We still have to deal with the cases (1) and (2) of Remark 5.5. In the first casem

is the orthogonal complement with respect to anAd(SO(4))-invariant bilinear formQ.

Such a formQ is equal toB on the first ideal ofso(4) = so(3) ⊕ so(3) and equal to

λB on the second ideal, where0 6= λ 6= −1 and−B is the Killing form of so(3). The

bilinear formQ induces onM = Spin(4) a bi-invariant pseudo-Riemannian metric. Then

M is a pseudo-Riemannian product ofSpin(3) with a bi-invariant Riemannian metric and

Spin(3) with a Riemannian or anti-Riemannian metric (depending on the sign ofλ). If

(·, ·) = Q we get the same contradiction as in (5.2) unless〈·, ·〉 is proportional toQ. Thus

Q is positive definite andM is a symmetric space. which gives a contradiction. Therefore

the isotropy group cannot be trivial.

Let us now consider case (2) of Remark 5.5, wherem ≃ (so(3), 0) ⊂ so(3) ⊕ so(3)

(the other casem ≃ (0, so(3)) is analogous). In this case, the distribution perpendicular

to s is integrable with maximal integral manifoldsH · q, whereH is the first factor of

Spin(4). Since the projection ofM onto the quotient ofM by the leaves of symmetry

is a Riemannian submersion, the orbitH · q is a totally geodesic submanifold ofM for

every q ∈ M . Thus (s)⊥ and s are autoparallel distributions and hence both parallel

distributions. This implies thatM is a Riemannian product, which is a contradiction.

Altogether we conclude now that the isotropy group ofSpin(4) is not trivial.

Remark 5.5. The second and third author observed in Remark 2.1 of [7] thatthere is only

one naturally reductive decomposition on the homogeneous spaceSO(n + 1)/ SO(n) if

n 6= 3. The assumption that the reductive decomposition is naturally reductive is not nec-

essary. In fact, let∇ be the Levi-Civita connection onSn = SO(n+1)/ SO(n) and∇c be



20 Jürgen Berndt, Carlos Olmos, Silvio Reggiani

the canonical connection associated with a reductive decomposition on the homogeneous

spaceSO(n + 1)/ SO(n), and defineD = ∇−∇c. We will show thatD is totally skew.

Since∇c is a metric connection, we have〈DXY, Y 〉 = 0 for all vector fieldsX, Y onSn.

So we only need to show that〈DXX,Z〉 = 0 for perpendicular vector fieldsX,Z onSn.

Since forn = 1 there is no isotropy group, we haveD = 0. If n = 2 then there is only

one reductive decompositionso(3) = so(2) + V, whereV is the orthogonal complement

to so(2) with respect to the Killing form ofso(3). This is because of the fact thatV is the

only irreducibleSO(2) invariant subspace.

Thus we may assume thatn ≥ 3. Leth ∈ SO(n+1)q ≃ SO(n) be such thath(q) = q,

dh(x) = x and dh(z) = −z. Then, sinceD is SO(n + 1) invariant 〈Dxx, z〉 = 0.

ThenD is totally skew and∇c is associated with a naturally reductive decomposition.

Moreover,D is parallel (since it is invariant under the transvections of Sn). Hence〈D.., .〉
is a harmonic3-form which represent a3-cohomology class onSn. ThenD = 0, if n 6= 3.

Observe that forn = 3 the above argument implies thatD is also totally skew. So a

reductive decomposition onSO(4)/ SO(3) must be naturally reductive. It is well-known

that there is a one parameter family on naturally reductive decompositions on the Lie

groupS3 ≃ Spin(3).

The only reductive decomposition on the spaceSO(n + 1)/ SO(n) is the orthogonal

complement toso(n) in so(n + 1), with respect to minus the Killing form ofso(n + 1).

The reductive decompositions onSO(4)/ SO(3) ≃ Spin(3)× Spin(3)/diag(Spin(3)) are

of one two types (cf. [8], Section 5):

(1) The orthogonal complement to diag(so(3)) with respect to a bi-invariant pseudo-

Riemannian (non-degenerate) scalar product onso(4) = so(3)⊕so(3). Such an inner

product has to be a multiple of minus the Killing form on each factor ofso(4). These

multiples, up to rescaling, areλ1 = 1, λ2 ∈ R, 0 6= λ2 6= −1. In this case the

transvection group associated with the canonical connection isSpin(4).

(2) The reductive complement of diag(so(3)) is either(so(3), 0) or (0, so(3)). The trans-

vection group is eitherSpin(3), regarded as the left factor ofSpin(4) or Spin(3),

regarded as the right factor ofSpin(4). In both cases the canonical connection is flat.

Remark 5.6. LetH be a connected Lie subgroup ofSpin(k + 1) of codimensionk ≥ 2.

(i) If k 6= 3, thenSpin(k + 1)/H is equivariantly isomorphic to the sphereSk =

SO(k + 1)/ SO(k).

(ii) If k = 3, thenH is either one factor ofSpin(4) = Spin(3)× Spin(3) or Spin(4)/H

is equivariantly isomorphic to the sphereS3 = SO(4)/SO(3).

In fact, assume that no normal subgroup ofSpin(k + 1) with positive dimension is con-

tained in the closurēH of H. This is always the case ifk 6= 3, sinceSpin(k + 1) is a
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simple Lie group fork 6= 3. Note thatH̄ 6= Spin(k + 1), because otherwise the Lie alge-

bra ofSpin(k+1) would have a flat factor. ThenSpin(k+1) acts almost effectively on the

k′-dimensional compact quotientM = Spin(k + 1)/H̄, where0 ≤ k′ ≤ k. The manifold

M is simply connected sinceSpin(k + 1) is simply connected and̄H is connected. Since

the dimension of the isometry group ofM is at leastk(k + 1)/2, thenM is isometric

to a sphere,k′ = k andH̄ = H. Moreover, the effectivized action ofSpin(k + 1) gives

the identity component of the full isometry group of the sphere, which is isomorphic to

SO(k + 1).

6 Classification for co-index of symmetry equal to 3

Let M = G/H be an(r + 3)-dimensional (r ≥ 1) compact simply connected homo-

geneous Riemannian manifold with coindex of symmetryk = 3. By Theorem 3.7 there

exists a compact semisimple normal subgroupG′ of G with dim(G′) ≤ 6 which acts

transitively onM . We may assume thatG′ is simply connected and that the action ofG′

onM is almost effective. The only possibilities for such a groupareG′ = Spin(4) =

Spin(3)× Spin(3) andG′ = Spin(3). However, sinceM has a positive index of symme-

try, we cannot haveG′ = Spin(3). ThereforeG′ = Spin(4), which has dimension6, and

so the dimensiond of the isotropy group must satisfyd ∈ {0, 1, 2}. The cased = 0 can be

excluded from the last statement of Theorem 5.3. Ifd = 2, then the isotropy group is, up

to conjugation, the standard torusS1 × S1 ⊂ Spin(3)× Spin(3). Such a quotient space,

with anyG′-invariant Riemannian metric, is the Riemannian product oftwo 2-spheres.

This implies thatM is symmetric and so this case can also be disregarded.

We can therefore assume that the dimensiond of the isotropy groupT is 1. ThusM

is 5-dimensional and its index of symmetry is2. For such a subgroup there are infinitely

many possibilities, depending on the different velocitiesof the projections of this sub-

group to the two factors. However, this is never the case whenthe index of symmetry is2

in which case we have the following lemma which uses the results of the general theory

we developed in Section 5.

Lemma 6.1. LetM = Spin(4)/T be a5-dimensional compact simply connected homo-

geneous Riemannian manifold with coindex of symmetryk = 3. Then, up to conjugation,

T = diag(S1) = {(u, u) ∈ Spin(3) × Spin(3) : u ∈ S1}. Moreover, after making the

action effective,M = SO(4)/ SO(2), which is isometric to the unit tangent bundle of the

3-sphere with anSO(4)-invariant Riemannian metric.

Proof. We choosep ∈ M such thatT is the isotropy group ofSpin(4) at p. Note thatT

is connected sinceM is simply connected. We considerT as a subgroup ofSO(TpM) via

the isotropy representation ofM = Spin(4)/T at p. Since the distribution of symmetry
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s is invariant under the action ofSpin(4) we see thatsp is aT -invariant2-dimensional

subspace ofTpM . We decomposeTpM orthogonally intoT -invariant subspaces,

TpM = sp ⊕ V⊕ L,

wheredim(V) = 2 anddim(L) = 1. Note that the action ofT on sp or onV may be

trivial. Let ρ1 : T → so(sp), ρ1(h) = h|sp and letρ2 : T → so(V), ρ2(h) = h|V. It is

not hard to see the following:if ρ1 andρ2 are both (Lie group) isomorphisms, thenT is

standard. Namely,T is conjugated todiag(S1) = {(h, h) ∈ Spin(3)×Spin(3) : h ∈ S1},

whereS1 is any1-dimensional Lie subgroup ofSpin(3).

Let us show that bothρ1 andρ2 are isomorphisms. LetΦi be the kernel ofρi, i = 1, 2.

SinceT is abelian, thenΦ1 andΦ2 are normal subgroups of the isotropy groupT atp.

We first assume thatΦ1 is not trivial. Then, in the notation of Proposition 3.10,DΦ1

is the (unique)Spin(4)-invariant autoparallel distribution withDΦ1
p = sp ⊕ L. Due to

Lemma 3.11 this distribution is strongly symmetric with respect toSpin(4). Moreover,

s restricted to any integral manifoldFΦ1(q) is a parallel distribution. Observe that the

corank ofDΦ1 is 2. Then, by Theorem 3.7, ifM does not split off a symmetric de Rham

factor,dim(M) ≤ 3 (since there is3-dimensional group which is transitive onM). This

is a contradiction and henceΦ1 is trivial.

We next assume thatΦ2 is not trivial. Then, in the notation of Proposition 3.10,DΦ2 is

the (unique)Spin(4)-invariant autoparallel distribution withDΦ2
p = V ⊕ L. Observe that

DΦ2 = s⊥. Sinces is also autoparallel, both distributions must be parallel and soM splits

off a symmetric space. This is a contradiction and henceΦ2 is trivial.

It now follows thatT is standard and soM = Spin(3)×Spin(3)/ diag(S1). After mak-

ing the action effective, this homogeneous space becomesSO(4)/ SO(2), whereSO(2)

is naturally included inSO(4). SoM = SO(4)/ SO(2), which is isometric to the unit

tangent bundle of the3-sphere with a suitableSO(4)-invariant Riemannian metric.

We have proved thatM = SO(4)/ SO(2). Let us determine the leaf of symmetry at

p = [e]. The subspace of vectors ofTpM which are fixed by the isotropy groupSO(2)

has dimension1. So the2-dimensional leaf of symmetryL(p) has non-trivial isotropy

group. ThusL(p) is covered by a2-dimensional sphere and so the transvection group

Gp is 3-dimensional (with Lie algebra isomorphic toso(3) andKp = SO(2)). Since

SO(2) ⊂ Gp,Gp cannot be contained in a local factor ofSO(4) (i.e., a factor correspond-

ing to the decomposition ofSpin(4) = Spin(3)× Spin(3)). Then, by (ii) of Remark 5.6,

SO(4)/Gp is equivariantly isomorphic toSO(4)/ SO(3). This isomorphism mapsSO(2)

into a1-dimensional subgroup ofSO(3). Such a group is conjugate inSO(3) to the stan-

dardSO(2). Thus we may assume thatM = SO(4)/ SO(2) and that the leaf of symmetry

atp is given by

L(p) = SO(3)/ SO(2) ⊂ SO(4)/ SO(2) =M.
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We have to determine theSO(4)-invariant metrics onM = SO(4)/ SO(2) for which

the index of symmetry is2. As we observed above, the isotropy groupSO(2) coincides

with the isotropy groupKp of the transvection groupGp = SO(3). In particular, sinceKp

acts almost effectively onL(p) = SO(3) · p (see Facts 4.1), we obtain that

Hp := {g ∈ G : g|L(p) = Id|L(p)}o

is trivial.

As we have noted before, ifξ ∈ so(4), regarded as a Killing field ofM , then there

is Z ∈ gq such thatξ − Z, restricted toL(p), is always perpendicular toL(p) (since

the projection ofξ|L(p) to L(p) is an intrinsic transvection ofL(p)). Then, sinceM is

homogeneous, for anyu ∈ (TpL(p))
⊥ there existsξ ∈ so(4) such thatξ.p = u andξ,

restricted toL(p), is always perpendicular toL(p). Moreover, such aξ is unique. In fact,

assume thatη ∈ so(4) is always perpendicular toL(p) andη.p = 0. Thenη belongs to the

isotropy algebra which coincides, as previously observed,with kp. Thereforeη is always

tangent toL(p). It follows thatη|L(p) = 0 and so it belongs to the Lie algebrahp of Hp.

This Lie algebra is trivial and thus we haveη = 0.

Let

m = {ξ ∈ so(4) : ξ|L(e) is always perpendicular toL(p)}.
Then, sinceL(p) is invariant under the action ofSO(3), m is anAd(SO(3))-invariant

subspace ofso(4). Since the evaluation atp, fromm into (Tp(L(p)))
⊥, is an isomorphism,

we obtain that

so(4) = so(3)⊕m

is a reductive decomposition ofSO(4)/ SO(3) (the quotient space ofM by the leaves of

symmetry) and that

m.p = (Tp(L(p)))
⊥ = (so(3).p)⊥.

From Remark 5.5 we see that the above reductive decomposition is naturally reductive

(i.e., the canonical geodesics inS3 = SO(4)/ SO(3), associated tom, coincide with the

geodesics of the round sphereS3) and of one of the following forms:

(i) m = mλ, wheremλ is the orthogonal complement ofso(3) with respect to the

(pseudo-Riemannian) inner product( , )λ = (B, λB) of so(4) = so(3) ⊕ so(3),

−B is the Killing form ofso(3) and0 6= λ ∈ R.

(ii) m = m0, wherem0 ≃ so(3) is the Lie algebra of one of the factors ofSpin(4) (and

som0 is a Lie algebra).

We will now show that case (ii) cannot occur. Recall that, forarbitrary Killing fields

ξ, η,X, the Levi-Civita connection is given by

2〈∇ξX, η〉 = 〈[ξ,X ], η〉+ 〈[ξ, η], X〉+ 〈[X, η], ξ〉 (6.1)
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(see equation (3.4) of [8]). IfX ∈ pp is a transvection atp = [e] andξ, η ∈ m0, then

0 = 〈[ξ,X ], η〉p + 〈[X, η], ξ〉p, or equivalently,

〈[X, ξ], η〉p = 〈[X, η], ξ〉p. (6.2)

There existsX ∈ pp such that[X,m0] 6= {0}. Otherwise,[pp,m0] = {0} and so

[[pp, pp],m0] = {0} and hence[gp,m0] = {0}, which is a contradiction (recall that

gp = so(3), the Lie algebra of the standardSO(3) ⊂ SO(4), which is not an ideal of

so(4)). If we equipso(4) with a bi-invariant (positive definite) metric, then[X, · ] : m0 →
m0 is skew-symmetric. Then there exist linearly independent vectorsξ, η ∈ m0 such

that [X, ξ] = η and [X, η] = −ξ. Inserting this into equation (6.2) leads to‖η(p)‖2 =

−‖ξ(p)‖2, which impliesξ = 0 = η because, as previously observed, the evaluation at

p is an isomorphism fromm0 onto(Tp(L(p))p. This is a contradiction and therefore case

(ii) cannot occur.

We will now deal with case (i). For this we will use the construction given in [8,

Section 6].

Case (a):λ > 0, that is, the bi-invariant metric(·, ·)λ = (B, λB) of so(4) is Rie-

mannian. In the notation of [8],G = SO(4), G′ = SO(3) andK ′ = SO(2) (and

soG ⊃ G′ ⊃ K ′). Moreover, the general assumptions in this reference are satisfied,

i.e., (SO(4), SO(3)) and (SO(3), SO(2)) are irreducible symmetric pairs andSO(3) is

a simple (compact) Lie group. Letso(3) = so(2) + p′ be the Cartan decomposition of

S2 = SO(3)/ SO(2). Sinceso(3) is simple, the restriction of(·, ·)λ to so(3) is a multiple

of the Killing form of so(3). Sop′ ⊂ so(2)⊥ (the orthogonal complement inso(4) with

respect to(·, ·)λ), and thus

so(2)⊥ = mλ ⊕ p′.

We will first define a Riemannian metric onM = SO(4)/ SO(2) such that the canon-

ical projection to the sphereSO(4)/ SO(3) is a Riemannian submersion, with index of

symmetry2 (and such that the orthogonal complement to the subspace of symmetry is

given bymλ · p). Then we will deform this metric to obtain all the invariantmetrics with

index of symmetry2 and such that the subspace which is orthogonal to the subspace of

symmetry atp = [e] is given bymλ.p.

Following [8], we equipTp(SO(4)/ SO(2)) ≃ so(2)⊥ = mλ ⊕ p′ with the positive

definite inner product〈·, ·〉λ which is defined by the following three properties:

(i) 〈mλ, p′〉λ = 0;

(ii) the restrictions of both(·, ·)λ and〈·, ·〉λ to mλ coincide;

(iii) 〈·, ·〉λ = 2(·, ·)λ onp′ × p′.
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We then equipM = SO(4)/ SO(2) with the SO(4)-invariant metric, also denoted by

〈·, ·〉λ, which coincides atp with the above defined inner product. Then, by Lemma 6.2 in

[8], the subspace of symmetry atp is p′.p, unless(M, 〈·, ·〉λ) is symmetric (observe that

M is simply connected).

Since the fixed set of the isotropy representation ofSO(2) onTpM has dimension1, it

follows that the action ofSO(2) onmλ is non-trivial. Lete1, e2, e3 be an orthonormal basis

of mλ ≃ mλ.p with respect to〈·, ·〉λ. We may assume, ifRX0 = so(2), that[X0, e1] = 0,

[X0, e2] = e3 and[X0, e3] = −e2. Observe that the isotropy groupSO(2) acts trivially on

Re1 and irreducibly on the linear spanV of e2 ande3. Let 〈·, ·〉 be anSO(4)-invariant met-

ric onM = SO(4)/ SO(2) such thatmλ.p is perpendicular to the subspace of symmetry

p′.p = so(3).p. Then, up to rescaling,〈·, ·〉 has the following four properties:

(i) 〈·, ·〉 coincides with〈·, ·〉λ onp′.p;

(ii) 〈e1,V〉 = 0;

(iii) 〈e1, e1〉 = s for somes > 0;

(iv) 〈·, ·〉 = t〈·, ·〉λ onV for somet > 0.

We will now prove thats + t = 2. LetX ∈ p′. ThenSO(3) · p is a totally geodesic

submanifold of(M, 〈·, ·〉) andX| SO(3)·p is an intrinsic transvection ofSO(3) ·p atp. From

equation (6.1) we know thatX is a transvection atp if and only if

〈[ξ,X ], η〉p + 〈[ξ, η], X〉p + 〈[X, η], ξ〉p = 0 (6.3)

holds for allξ, η ∈ mλ. First of all, note that the orthogonal projection of[e2, e3] onto

so(3) is a multiple ofX0. In fact, [X0, [e2, e3]] = [[X0, e2], e3] + [e2, [X0, e3]] = 0. Now

decompose[e2, e3] = Z + ψ with Z ∈ so(3) andψ ∈ mλ. Then[X0, Z] = 0 and hence

Z = aX0, sinceso(3) has rank one (and soZ.p = 0). Next, we have

2〈∇e1X, e2〉 = 〈[e1, X ], e2〉p + 〈[e1, e2], X〉p + 〈[X, e2], e1〉p
= t〈[e1, X ], e2〉λ|p + 〈[e1, e2], X〉λ|p + s〈[X, e2], e1〉λ|p.

(6.4)

The projectionπ : (M, 〈·, ·〉λ) → SO(4)/ SO(3) = S3 is a Riemannian submersion,

up to a rescaling of the metric. We denote by∇λ the Levi Civita connection ofM with

respect to〈·, ·〉λ. Sincee1 ande2 are projectable vector fields, which are horizontal along

SO(3) · p, we obtain

0 = (X〈e1, e2〉λ)p = 〈∇λ
Xe1, e2〉λ|p + 〈e1,∇λ

Xe2〉λ|p = 〈[X, e1], e2〉λ|p + 〈e1, [X, e2]〉λ|p,

because of[X, ei]p = (∇λ
Xei)p and since(∇λ

ei
X)p = 0. Inserting this into equation (6.4)

yields

2〈∇e1X, e2〉 = (t+ s)〈[e1, X ], e2〉λ|p + 〈[e1, e2], X〉λ|p. (6.5)
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If s = t = 1 we have〈∇e1X, e2〉 = 0 sinceX is parallel atp because of〈·, ·〉 = 〈·, ·〉λ
in this case. From equation (6.5) we then get2〈[e1, X ], e2〉λ|p = −〈[e1, e2], X〉λ|p in

this case. We have that[mλ,mλ]so(3) = so(3), where( )so(3) denotes the projection onto

so(3). In fact, this projection is not trivial, sincemλ is not a Lie algebra andAd(SO(3))-

invariant. Recall, as we have shown, that[e2, e3]
so(3) ⊂ so(2). Then [e1, e2] projects

non-trivially into p′. If X would be parallel atp, for anyX in p′, then we would also

have that(s + t)〈[e1, X ], e2〉λ|p = −〈[e1, e2], X〉λ|p for anyX ∈ p′, which implies that

−〈[e1, e2], X〉λ|p = 0. In particular, forX equal to the projection top′ of [e1, e2], this

gives a contradiction. This implies thatX is a transvection of(M, 〈·, ·〉) at p if and only

if t = 2− s, 0 < s < 2.

We denote this metric by〈·, ·〉(λ,s) with 0 < λ and0 < s < 2. If we replaceλ by 1/λ

the metrics are homothetical, so we may assume that0 < λ ≤ 1 (see Remark 6.2).

Case (b):λ < 0, that is,(·, ·)λ = (B, λB) is a pseudo-Riemannian bi-invariant metric

onso(4). By making the same construction as in Case (a), eventually by changing the sign

of the metric, we obtain a pseudo-Riemannian metric〈·, ·〉λ onM such that it is positive

definite onso(3).p and negative definite on its orthogonal complementmλ.p. Moreover,

if X ∈ p′.p, then(∇λX)p = 0. As in Case (a), such a metric can only be deformed when

rescaling bys onRe1 and by2− s onV (in order thatX is a transvection atp). But s and

2 − s cannot be both negative in order for the metric〈·, ·〉(λ,s) to be Riemannian. So this

case can be excluded.

We conclude that, if the index of symmetry ofSO(4)/ SO(2) is 2, then the Riemannian

metric has to be of the form〈·, ·〉(λ,s) with 0 < λ , 0 < s < 2.

Conversely, such metrics have index of symmetry2, unless the space is globally sym-

metric. In fact, the distribution of symmetry onSO(4)/ SO(2) descends to aSO(4)-

invariant (and therefore parallel) distribution on the irreducible symmetric spaceS3 =

SO(4)/ SO(3). Such a distribution must be trivial, and if the rank is zero the index of

symmetry ofSO(4)/ SO(2) is 2, and if the rank is maximal thenSO(4)/ SO(2) has index

of symmetry5 and so it is a symmetric space.

Remark 6.2. Let us consider the bi-invariant inner product(B, λB), λ > 0 on so(4) =

so(3) ⊕ so(3), where−B is the Killing form of so(3). The involutionτ of Spin(4) =

Spin(3) × Spin(3), that permutes the factors, maps bothdiag(SO(3)) anddiag(SO(2))

into itself. Soτ induces an isomorphism̄τ of M = Spin(4)/ diag(Spin(2)) into itself.

The mapτ̄ is an isometry from(M, 〈 , 〉) into (M, 〈 , 〉′), where〈 , 〉 is the normal ho-

mogeneous metric with respect to(B, λB) and〈 , 〉′ is the normal homogeneous metric

with respect to(λB,B). The same is true if we rescale the metrics by a factor2, as in our

construction, on the tangent space ofdiag(Spin(3))/ diag(Spin(2)) at [e]. Now observe

that the normal homogeneous metric onM with respect to(λB,B), or that modified as

before, is homothetical to the normal homogeneous metric induced by(B, 1
λ
B).
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Remark 6.3. A compact, simply connected, Riemannian symmetric space ofdimension

5 is isometric to one of the following spaces:S2×S3, S5 orSU(3)/ SO(3). The last space

is irreducible and of rank2.

The homogeneous spaceSO(4)/ SO(2) is not homeomorphic toS5. In fact, from the

long exact homotopy sequence of the fibrationSO(2) → SO(4) → SO(4)/ SO(2) it

follows thatπ3(SO(4)/ SO(2)) = Z⊕ Z 6= π3(S
3).

The spaceM5 = SO(4)/ SO(2), with anySO(4)-invariant metric, can never be iso-

metric to an irreducible symmetric space of higher rank. In fact, if p = [e], the isotropy

representation ofSO(2) on TpM is the direct sum of two copies of the standard repre-

sentation ofSO(2) onR2, plus a trivial one-dimensional representation. Ifφ ∈ SO(2) is

the rotation of angleπ (with the standard representation), thenφ represents an element of

the isotropy group ofM which has the eigenvalue−1 with multiplicity 4 and the eigen-

value1 with multiplicity 1. If M is a symmetric space, then the decomposition ofφ with

respect to the symmetryσ at p, via the isotropy representation, has the eigenvalue1 with

multiplicity 4 and the eigenvalue−1 with multiplicity 1. Then the connected component

containingp of the fixed set ofσ ◦ φ would be a totally geodesic hypersurfaceN of M .

LetK ′ be the full connected isotropy group ofN atp. We may regardK ′ ⊂ K, whereK

is the full connected isotropy group of the symmetric spaceM . Observe thatK ′, via the

isotropy representation, acts trivially on the one-dimensional normal spaceνp(N) ≃ R of

N at p. Let R̄ be the direct product ofR′ and the zero tensor onνp(N), whereR′ is the

curvature tensor ofN at p. ThenR̄x,y ∈ k and so, by Simons’ Theorem [5, 9], ifM is of

rank at least2, R̄ must be a scalar multiple ofR, the curvature tensor ofM atp. This is a

contradiction ifM is an irreducible symmetric space. ThusM cannot be isometric to the

irreducible rank2 symmetric spaceSU(3)/ SO(3).

Note thatSO(4)/ SO(2) is diffeomorphic toS2 × S3, since the first space is diffeor-

morphic to the unit tangent bundle of the (parallelizable) sphereS3.

Example 6.4. (Product of spheres) We denote byS2 the sphere of dimension2 and

radiusρ and byS3 the sphere of dimension3 and radius1, and putM = S2 × S3.

Observe that any product of a round2-sphere and a round3-sphere is homothetic toM

with a suitableρ.

The groupSpin(4) = Spin(3) × Spin(3) acts transitively by isometries onM =

S2 × S3 ≃ S2 × Spin(3) in the following way:

(g, h)((q, k)) = (π(g)(q), gkh−1),

where(g, h) ∈ Spin(3) × Spin(3), q ∈ S2, k ∈ Spin(3) ≃ S3, andπ is the canonical

projection fromSpin(3) ontoSO(3). The isotropy group atp = (ρe1, e) ∈ S2 × Spin(3)

is diag(SO(2)) ⊂ Spin(3) × Spin(3). After making this action effective, one obtains

thatSO(4) acts transitively onM and the isotropy group is conjugate toSO(2), where
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SO(2) ⊂ SO(4) is the standard inclusion. Recall that forso(n) the Killing form −B is

given by

B(X, Y ) = −(n− 2) trace(X ◦ Y ).

For n = 3 the Killing form coincides with the negative of the usual inner product of

matrices.

Let p = (ρe1, e) ∈ M = S2 × Spin(3), wheree1 = (1, 0, 0). The parallel Killing

fields at the identitye of Spin(3) = S3 are the elements ofso(3) × so(3) of the form

Z = (X,−X) (regarded as a Killing field onSpin(3)). The parallel Killing fields onS2

atρe1 are elements in the Cartan subspace

p =
{(

0 a b
−a 0 0
−b 0 0

)

: a, b ∈ R

}

associated with the symmetric pair(SO(3), SO(2)). Therefore an elementZ ∈ so(3) ×
so(3) is parallel at(ρe1, e) if and only if Z = (Y,−Y ) with Y ∈ p. Observe that the

subspacep(ρe1,e) = {(Y,−Y ) : Y ∈ p} of parallel Killing fields at(ρe1, e) ∈ S2×Spin(3)

belonging toso(4) = so(3) ⊕ so(3) has dimension2. We use here the general notation

of the paper, but take into account that the Cartan subspace is relative to the presentation

group (i.e., the parallel Killings field at a given point thatlie in the Lie algebraso(3) ×
so(3)). The (relative) Cartan subspace is given byp(ρe1,e), which spans the involutive Lie

algebra

g(ρe1,e) = diag(so(2))⊕ p(ρe1,e),

whereso(2) = {u ∈ so(3) : u · e1 = 0}.

Up to homothety,S2 × S3 must carry a metric〈·, ·〉(λ,s) as described above (recall that

ρ is the radius ofS2 and1 is the radius ofS3). We will now determineλ. Observe that

G(ρe1,e), the group which is generated by the transvections at(ρe1, e), is not the canonical

diag(Spin(3)) ⊂ Spin(3) × Spin(3) (but it must be conjugate to it). So the reductive

complement, associated to the Killing fields inso(3)×so(3) that are always perpendicular

toL((ρe1, e)) = G(ρe1,e) · (ρe1, e), is conjugate tomλ = {(Z,− 1
λ
Z) : Z ∈ so(3)}.

We will find h ∈ Spin(3) such thatG(ρe1,h) = diag(Spin(3)). In order to simplify

the calculations, we will use the quaternions. IdentifySpin(3) with the unit sphere of the

quaternionic spaceH = {a + ib + cj + dk : a, b, c, d ∈ R}, i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j. Let π : Spin(3) → SO(3) be the canonical

projection. By identifyingR3 with the purely imaginary quaternionsℑ(H) = {q ∈ H :

q̄ = −q} we obtain

π(g)(x) = gxg−1 = gxḡ.

The Lie algebraso(3) of Spin(3) is identified withℑ(H) with the bracket[x, y] = xy−yx.

Observe that, with these identifications,i = e1, 1 = e. The exponential map is given by
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Exp(x) = cos(‖x‖) + sin(‖x‖) 1
‖x‖x. If x ∈ ℑ(H), then d

dt |t=0
π(Exp(tx)(z) = xz − zx.

Sox defines the Killing field ofℑ(H) given byz 7→ x.z = xz − zx. Observe that

so(2) = {U ∈ so(3) : U.e1 = 0} = {w ∈ ℑ(H) : wi− iw = 0} = Ri.

With these identifications the (relative) Cartan subspacep is given by the linear span ofj

andk. It is not hard to see that(1,−i)G(ρi,1)(1,−i)−1 = diag(Spin(3)) and thus

G(ρi,i) = G(1,−i)·(ρi,1) = (1,−i)G(ρi,1)(1,−i)−1 = diag(Spin(3)).

Moreover,k(ρi,i) = Ri and

p(ρe1,i) = diag(p) = {(Y, Y ) : Y ∈ p} = {(v, v) : v ∈ linear span of{j, k}}.

If v ∈ p, then

(v, v).(ρi, i) = (v.ρi, v.i) = (ρ(vi− iv), vi− vi) = (2ρvi, 2vi).

Observe thatvi ∈ p and therefore

s(ρi,i) = p(ρi,i).(ρi, i) = {(ρv, v) : v ∈ p}.

This subspace must be perpendicular tomλ.(ρi, i), where

mλ = {(Z,− 1
λ
Z) : Z ∈ so(3) = ℑ(H)}.

TakeZ = k, Y = j ∈ p. Then(k,− 1
λ
k).(ρi, i) = (2ρj, (1 − 1

λ
)j). This must be perpen-

dicular to(ρj, j). Then2ρ2 = 1
λ
− 1 and therefore

λ =
1

1 + 2ρ2
.

The fixed vectors inm
1

1+2ρ2 areR(i,−(1 + 2ρ2)i) ∈ so(3) ⊕ so(3). Let us compare

the metric on the product of spheres with the one given by the bi-invariant inner product

(B, 1
1+2ρ2

B). The norm of(i,−(1 + 2ρ2)i) with the given metric is

‖(i,−(1 + 2ρ2)i).(ρi, i)‖2 = ‖([i, ρi], ii+ i(1 + 2ρ2)i)‖2

= ‖(0,−2(1 + ρ2)‖2 = 4(1 + ρ2)2,

and the norm, using(B, 1
1+2ρ2

B), is

‖(i,−(1 + 2ρ2)i)‖2 = B(i, i) +
1

(1 + 2ρ2)
B(−(1 + 2ρ2)i,−(1 + 2ρ2)i)

= (8 + 8(1 + 2ρ2)) = 16(1 + ρ2),
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sinceB(i, i) = 8. So the quotient iss′ = 1
4
(1 + ρ2).

Let us choose the element(j,−(1+2ρ2)j) ∈ m
1

(1+2ρ2) that is perpendicular to the fixed

vectorsR(i,−(1 + 2ρ2)i) of the isotropy group. The norm with the given metric is

‖(j,−(1 + 2ρ2)j).(ρi, i)‖2 = ‖([j, ρi], ji+ i(1 + 2ρ2)j)‖2

= ‖ − 2ρk, 2ρ2k)‖2

= 4ρ2 + 4ρ4 = 4ρ2(1 + ρ2),

and the norm using(B, 1
(1+2ρ2)

B) gives, as before,

‖(j,−(1 + 2ρ2)j)‖2 = 16(1 + ρ2).

The quotient ist′ = 1
4
ρ2.

We haves′+t′ 6= 2 because we need to rescale the metric in line with our classification.

So, defines = 2s′

s′+t′
, and the metric〈·, ·〉( 1

1+2ρ2
,s) is the metric in the family. An explicit

calculation gives

s = 2
1 + ρ2

1 + 2ρ2
and t = 2

ρ2

1 + 2ρ2
.

For instance, ifρ = 1, thenλ = 1
3
, s = 4

3
andt = 2

3
.

Remark 6.5. Recall that, in the above examples of products of spheres,λ = 1
1+2ρ2

and

s = 2 1+ρ2

1+2ρ2
. Thens = λ + 1. Therefore the family of examples of products of spheres as

previously discussed corresponds to the family of metrics〈·, ·〉(λ,λ+1), where0 < λ < 1

(and the quotient of the radius of the2-sphere by the radius of the3-sphere is given by

ρ =
√

1−λ
2λ

). In particular, the reductive complement is never the standard one, i.e.,λ 6= 1.

Observe also that0 < t < s < 2 (recall thats+ t = 2). Then the metric does not project

down, as a Riemannian submersion, to the quotientSO(4)/ SO(3) of M by the leaves of

symmetry (relative toSO(4)).

Remark 6.6. Any transitive action ofSpin(3)× Spin(3) onS2 × S3 ≃ S2 × Spin(3) is

equivalent to the previously described action or to the action given by

(g, h)((u, d)) = (π(g)(u), h(d)).

However, the isotropy group of the latter action isSO(2)×{e} and fixes the3-dimensional

spaceTd(Spin(3)). So this homogeneous space is not (equivariantly) isomorphic to the

canonicalSO(4)/ SO(2).

We can now state the main result of this section.

Theorem 6.7. LetM be ann-dimensional, simply connected, compact, irreducible Rie-

mannian homogeneous manifold andn > 3. Then the co-index of symmetry ofM is equal
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to 3 if and only ifM is homothetic toM = SO(4)/ SO(2) with a metric of the family

〈·, ·〉(λ,s), where0 < λ ≤ 1, 0 < s < 2 and s 6= λ + 1. (If s = λ + 1, then, up to

homothety,M is a product of spheresS2
ρ × S3 with ρ =

√

1−λ
2λ

.)

Proof. It only remains to prove that different pairs(λ, s) correspond to non-homothetical

metrics. First of all, we note thatSO(4) is the (connected) full isometry group ofM =

Spin(4)/diag(SO(2)) = SO(4)/ SO(2) with any of the metrics of the family〈·, ·〉(λ,s).
(Note thatM is not symmetric.) Otherwise, by Remark 6.3, it would be a product of

spheres. But such a product of spheres corresponds tos = λ + 1 (see Remark 6.6).

So, by the paragraph before Remark 6.2, the index of symmetryof M is 2. So, in the

3-dimensional quotientN of M by the leaves of symmetry, the groupSO(4) acts by

isometries (with the normal homogeneous metric). Then, up to a cover,N is a sphere and

henceSO(4) must be the full (connected) isometry group ofN . Therefore, if the isometry

groupIo(M) of M is bigger thanSO(4), thenIo(M) has a proper (connected) normal

subgroupH acting trivially onN . If L([e]) = SO(3)/ SO(2) ≃ S2 is the leaf of symmetry

at [e], thenH · L([e]) = L([e]) andH commutes withSO(3), which is a contradiction.

Hence we must haveIo(M) = SO(4).

Let us assume that the pairs(λ, s) and(λ′, s′) correspond to homothetical metrics (and

the pairs do not correspond to the exceptions that are product of spheres). Assume that

λ 6= λ′, sayλ < λ′. If h is the homothety between the metrics, then it induces a Lie algebra

isomorphismρ = h∗ of so(4) (the Lie algebra of the full isometry groups) that maps

diag(so(3)) into itself (since it corresponds to the group of transvections at[e]) andρmaps

diag(SO(2)) into itself (the Lie algebras of the isotropy at[e]). Moreover,ρ(mλ) = mλ′

.

In fact, these subspaces are given by the geometry as the Killing fields which are always

perpendicular to the leaves of symmetrySO(3)/ SO(2) = diag(SO(3))/diag(SO(2)),

with the respective metrics. Observe thatρmust preserve(B,B), where−B is the Killing

form of so(3). Let (u, 0) ∈ so(3)⊕ so(3) = so(4). Then

(u, 0) =
1

1 + λ
(u, u) +

λ

1 + λ
(u,−1

λ
u),

which gives the decomposition of(u, 0) in terms of the direct sum

so(3)⊕ so(3) = diag(so(3))⊕mλ.

Then the projection to diag(so(3)) is given by

πλ((u, 0)) =
1

1 + λ
(u, u).

We also have that

(0, v) =
λ

1 + λ
(v, v)− λ

1 + λ
(v,−1

λ
v)
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and so

πλ((0, v)) =
λ

1 + λ
(v, v).

Sinceρ(diag(so(3))) = diag(so(3)) andρ(mλ) = mλ′

, we obtain that

ρ ◦ πλ = πλ′

.

Sinceρ : so(3)⊕ so(3) → so(3)⊕ so(3) is a Lie algebra isomorphism,ρ((u, 0)) is either

of the form (u′, 0) or (0, u′). Moreover, sinceρ preserves the Killing form,B(u, u) =

B(u′, u′). Also ,

B(πλ′

(ρ((u, 0))), πλ′

(ρ((u, 0)))) = B(ρ(πλ((u, 0))), ρ(πλ((u, 0))))

= B(πλ((u, 0)), πλ((u, 0))).

Let us chooseu 6= 0. If ρ((u, 0)) = (u′, 0) we have, from the above equality, that

1

1 + λ′
B(u′, u′) =

1

1 + λ
B(u, u),

and so1 + λ′ = 1 + λ. This is a contradiction toλ 6= λ′. If ρ((u, 0)) = (0, u′), then the

previous equality impliesλ′

1+λ′
= 1

1+λ
, which gives also a contradiction, since0 < λ <

λ′ ≤ 1. It follows thatλ = λ′.

Since the curvature of the leaf of symmetrySO(3)/ SO(2) of SO(4)/ SO(2) with re-

spect to the metric〈·, ·〉(λ,t) depends only onλ (andB), and since the homothetyh maps

leaves of symmetry onto leaves of symmetry, we see that the homothety must be an isom-

etry. We choosev in mλ of unit length and fixed by the isotropy group. Then the length

of the closed geodesicγv(t) determined byv is equal toas, wherea is a constant. Since

h mapsmλ onto mλ′

and fixed vectors of the isotropy group onto fixed vectors of the

isotropy group,h(γv(t)) = γv′(t), wheredh(v) = v′. Since the second geodesic has

lengthas′, thens = s′.

7 Classification for co-index of symmetry equal to 2

The main result of this section is the following classification:

Theorem 7.1. Let M be ann-dimensional (n > 2), simply connected, compact, irre-

ducible Riemannian homogeneous manifold with co-index of symmetryk = 2. Then

M = Spin(3) with a left-invariant Riemannian metric that belongs to oneof the two

families 〈·, ·〉s (0 < s < 1) and 〈·, ·〉t (0 < t 6= 2) which are described below. None

of these metrics are pairwise homothetic. The second familyof metrics corresponds to

Berger sphere metrics.
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The rest of this section is devoted to the proof of Theorem 7.1. If M is a homogeneous

irreducible Riemannian manifold with co-index of symmetryk = 2, thenM = Spin(3)

with a left-invariant Riemannian metric by Theorem 5.3.

Let us first describe the left-invariant Riemannian metricsonSpin(3) ≃ S3. As usual,

we will identify a left-invariant Riemannian metric onSpin(3) with a positive definite

inner product onTe(Spin(3)) ≃ so(3). Let B be the positive definite inner product on

so(3) given byB(X, Y ) = −trace(XY ) (so −B is the Killing form of so(3)). Any

positive definite inner product〈·, ·〉 on so(3) is obtained by〈X, Y 〉 = B(AX, Y ), where

A is a positive definite symmetric endomorphism, with respectto B, of so(3). Observe

that any positive definite inner product〈X, Y 〉 = B(AX, Y ) is isometric to the inner

product

B(A(Ad(g)(X)),Ad(g)(Y )) = B((Ad(g))−1A(Ad(g))(X), Y ),

for anyg ∈ Spin(3) (the isometry between the corresponding two left-invariant Rieman-

nian metrics is given by conjugation withg in Spin(3)). Note thatAd(Spin(3)) coincides

with the full special orthogonal groupSO(so(3), B). Then, for prescribing an arbitrary

left-invariant Riemannian metric onSpin(3) (modulo isometries) one only needs to know

the eigenvalues ofA.

We identifyX ∈ so(3) with the Killing field q 7→ X.q = d
dt |t=0

Exp(tX)(q). The Lie

algebra structure onso(3) will be that of Killing fields. So the Lie bracket is given by

[X, Y ] = XY − Y X, which is minus the bracket of left-invariant vector fields,since a

Killing field may be regarded as a right-invariant vector field.

Let s be the1-dimensional distribution of symmetry onSpin(3). Sinces is a left-

invariant distribution, we may assume thats1 = Ri, where we are using, as before, the

quaternions. We identifySpin(3) with the unit sphere ofH andso(3) with Im(H). With

this identification the bracket ofq1, q2 ∈ Im(H) is given byq1q2 − q2q1, which coincides

with −[q1, q2], where[·, ·] is the bracket between Killing fields of(Spin(3)〈·, ·〉) (iden-

tifying q ∈ Im(H) with the Killing field x 7→ q.x). The Killing form −B is given by

B(q, q) = 8|q|2, q ∈ Im(H).

As for the casek = 3, we define

m = {q ∈ Im(H) : q is always perpendicular toL(1) = eti}.

Thenm is anAd(S1)-invariant subspace of Im(H) ≃ so(3), whereS1 = {eti : t ∈ R}.

Then, by Remark 5.5 ,m is unique and so it coincides with the linear span of{j, k}.

This implies that the vectorsj = j.1 andk = k.1 of T1(Spin(3)) are perpendicular to

s1 = Ri. So〈i, j〉 = 0 = 〈i, k〉. Then, if〈q, q′〉 = B(Aq, q′), i is an eigenvector ofA. By

conjugatingSpin(3) with some eti, we may assume thatj andk are also eigenvectors of

A. By rescaling the metric〈·, ·〉 we may assume thatAi = 2i (in order to use a similar
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construction as for the casek = 3, where the normal homogeneous metric was at the first

step perturbed by a factor2 on the distribution of symmetry). LetAj = sj andAk = tk.

We may assume that0 < s ≤ t (eventually, by conjugatingSpin(3) with i). We will now

consideri, j andk as Killing fieldsI : q 7→ i.q, J : q 7→ j.q andK : q 7→ k.q.

We first assume thatIo(Spin(3), 〈·, ·〉) = Spin(3). In this case we have(∇I)1 = 0,

since there are no more Killing fields than those induced byso(3). Recall that for any

homogeneous Riemannian manifold, ifX, Y, Z are Killing fields, then the Levi-Civita

connection is given by

2〈∇XY, Z〉 = 〈[X, Y ], Z〉+ 〈[X,Z], Y 〉+ 〈[Y, Z], X〉.

In fact, this equation comes from the well-known Koszul formula for the Levi-Civita

connection, by observing that the Lie derivative of the metric, along any Killing field is

zero. So we have

0 = 〈[J, I], K〉+ 〈[J,K], I〉+ 〈[I,K], J〉.
Since[J, I]1 = ij − ji = 2k, [J,K]1 = kj − jk = −2i and [I,K]1 = ki − ik = 2j,

we get0 = 2tB(k, k) − 4B(i, i) + 2sB(j, j). SinceB(i, i) = B(j, j) = B(k, k) 6= 0,

this impliess + t = 2. Conversely, ifs + t = 2, we obtain by a direct calculation that

(∇I)1 = 0. We conclude that,〈·, ·〉s, 0 < s ≤ 1, are theSpin(3)-invariant Riemannian

metrics onSpin(3) such that the Killing fieldI is parallel at1. So the index of symmetry

is at least1.

Remark 7.2. (i) The manifoldM = (Spin(3), 〈·, ·〉s) is not a product. Otherwise, it would

split off a line. Assume that0 < s < 1. Then, if the index of symmetry is greater than1,

by Theorem 5.3,M would be symmetric. A direct computation shows that(∇JJ)1 = 0.

Sox 7→ ejx is a closed geodesic ofM with period2π
√
s. This period is different from the

period2π
√
2 of the geodesicx 7→ eix (recall that〈i, i〉 = 2 and thats < 1). ThenM is

not symmetric. Otherwise it must be isometric to a sphere andhence all geodesics would

have the same length. So the index of symmetry ofM is 1.

(ii) Let S2 = Spin(3)/S1 be the quotient ofM = (Spin(3), 〈·, ·〉s) by the leaves of

symmetry, whereS1 = {exi : x ∈ R}. It is not difficult to show that the projection

π : (Spin(3), 〈 , 〉s) → S2 = Spin(3)/S1 is a Riemannian submersion (eventually after

rescaling the metric ofS2) if and only if s = 1 (and sot = 1). Assume that the full

(connected) isometry groupIo(M) of M with any left-invariant Riemannian metric with

k = 2 satisfiesdim(Io(M)) > 3. The compact groupIo(M) acts on the quotient space

S2 (since any isometry preserves the foliation of symmetry). Then, if S2 has the nor-

mal homogeneous metric,Io(M) acts by isometries and thusIo(M) must have a normal

subgroup of positive dimension which acts trivially onS2. If X 6= 0 belongs to the Lie

algebra of this normal subgroup, thenX defines a Killing field onM which must be tan-

gent to the1-dimensional distribution of symmetrys. This implies that for any two points
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p, q in a leaf of symmetry there existsh ∈ Io(M) with h(p) = q and such thath projects

trivially to the quotientS2. Then the projectionπ : M → S2 must be a Riemannian sub-

mersion (for someSpin(3)-invariant metric onS2, which is unique up to scaling). This

impliess = t = 1.

Assume thatSpin(3) together with a left-invariant Riemannian metric has indexof

symmetry equal to1. If there exists a pointg ∈ Spin(3) such thatZ ∈ so(3) is tangent

to the1-dimensional leaf of symmetryL(g) of M at g, then it must always be tangent

to L(g) (since the distribution of symmetry is invariant under isometries). This implies

L(g) = Exp(tZ)(g) (t ∈ R), and soL(g) is closed (since all the1-parameter subgroups

of Spin(3) are closed).

In order to describe all left-invariant Riemannian metricson M = Spin(3) it only

remains to analyze the case where there is no parallel Killing field at1 which belongs to

so(3). This implies thatdim Io(M) = 4. In fact, observe that the dimension of the full

isotropy group has to be1, 2 or 3. In the last caseM must is a round sphere and hence

symmetric. The dimension of the isotropy group atp ∈ M cannot be2 because it would,

via the isotropy representation, be an abelian2-dimensional subgroup ofSO(Tp(M)) ≃
SO(3). Thus the dimension of the full isotropy group must be1.

In this case there exists a non-trivial ideala of the Lie algebrag of G = Io(M). Such

an ideal must have dimension1. In fact, this ideal must be complementary toso(3), which

must be also an ideal, since it has codimension1 (andg admits a bi-invariant metric).

Moreover, since anyX ∈ a projects trivially to the quotient ofM over the leaves of

symmetry,X must always be tangent tos. Observe thatX must be a left-invariant vector

field sinceX commutes withso(3). So, as previously observed, we may assume that

X = î, the left-invariant vector field with initial conditioni at1 ∈ Spin(3) (i.e.Xg = gi).

Recall that a Killing field associated with an element inso(3) may be regarded as a right-

invariant vector field. In particular,I is a right-invariant vector field (Ig = ig). Then

the left-invariant Rimannian metric〈·, ·〉 of M = Spin(3) is Ad(Exp(ti))-invariant. This

implies thati is an eigenvector ofA at 1 and that the eigenvalues ofA in the orthogonal

complement ofi are equal, where〈x, y〉 = B(Ax, y).

So the left-invariant Riemannian metric must be associatedto a triple of numbers

(t, t, a) corresponding to the eigenvalues associated to the eigenvectorsj, k andi, respec-

tively. By rescaling the metric we may assume thata = 2 (in order to be coherent with the

first family of metrics〈·, ·〉s). Conversely, a metric described by such a triple(t, t, 2) has

a parallel Killing field at1. In fact, consider the two Killing fieldŝi andI, which cannot

be proportional, because no vector field ofSpin(3) can be both left- and right-invariant.

Since the integral curves of both Killing fields coincide at1 and give a geodesic, we have

∇îi = 0 = ∇iÎ. Then the skew-symmetric endomorphisms(∇î)1 and (∇I)1 of T1M

must be proportional (sincedim(M) = 3). Thus there is a linear combinationαî + βI
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which is parallel at1 (and it is non-zero, sincêi andI are not proportional). Observe that

whent = 1, I is parallel at1 and soα = 0 (the associated metric is the same as〈·, ·〉1,
previously described). Ift 6= 2, thenM cannot be symmetric, since the integral curves of

I andJ , starting at1, have different length. In the case thatt = 2, thenSpin(3) has the bi-

invariant Riemannian metric and so it is a symmetric space. We denote the left-invariant

Riemannian metrics associated to(t, t, 2) by 〈·, ·〉t, 0 < t 6= 2.

Remark 7.3. (i) Any homothety between two different metrics in the unionof the families

〈·, ·〉s, 0 < s < 1, and〈·, ·〉t, 0 < t 6= 2 must be an isometry, since the length of the

respective circles of symmetry are equal to2π
√
2.

(ii) No metric 〈·, ·〉s, 0 < s < 1, is isometric to a metric〈·, ·〉t, 0 < t. In fact, the first

family of metrics never define a Riemannian submersion ontoS2, the quotient ofM by

the leaves of symmetry, whereas the second family always does.

(iii) Let Ms = (Spin(3), 〈·, ·〉s). Then, from Remark 7.2 (ii),Io(Ms) = Spin(3) (0 <

s < 1). Observe thats < 2 − s < 2 are the eigenvalues of the symmetric tensorAs

that relates〈·, ·〉s with 〈·, ·〉 = −B, whereB is the Killing form of so(3). If h : Ms →
Ms′ is an isometry, thenh induces a group isomorphism fromSpin(3) = Io(Ms) onto

Spin(3) = Io(Ms′). This implies that the eigenvalues ofAs are the same as those ofAs′

and hences = s′.

(iv) If t 6= t′, then〈·, ·〉t is not isometric to〈·, ·〉t′. In fact, t/2 is the radius of the

sphere, obtained as the quotient ofM by the leaves of symmetry, such that the projection

is a Riemannian submersion.

The previous remark finishes the proof of Theorem 7.1.

8 Examples from fibre bundles over polars

In this section we review the construction of certain fibre bundles by Nagano and Tanaka

[4], and show how to get examples of compact simply connectedRiemannian homoge-

neous manifolds with non-trivial index of symmetry.

LetM = G/K be an irreducible simply connected symmetric space of compact type

and chooseo ∈ M such thatK · o = o. Let B 6= {o} be a connected component of

the set of fixed points ofσo, whereσo is the geodesic symmetry ofM at o. Note thatB

is a totally geodesic submanifold, since it is a connected component of the fixed point

set of an isometry. There always exists such a totally geodesic submanifoldB since the

midpoint of a closed geodesic througho is fixed byσo.

Let d be the distance betweeno andB and chooseq ∈ B such thatd is the distance

from o to q is equal to the distance fromo to B. Let γ be a unit speed geodesic through

o andq such thatγ(0) = o andγ(d) = q. Thenγ is a closed geodesic of period2d. In
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fact, q = γ(d) = σo(γ(d)) = γ(−d). It then follows from Remark 2.2 thatγ is a closed

geodesic. This implies thato is fixed byσq, the symmetry atq. Also, the symmetriesσo
andσq commute, since they both fixo and their differentials commute.

SinceM is simply connected, the isotropy groupK is connected. One can show that

B = K ·q. In particular, all the points inB are equidistant too. In fact,dqσo is the identity

when restricted toTqB and minus the identity when restricted to(TqB)⊥. Moreover, this

holds at any point ofB. So anyg ∈ G which leavesB invariant commutes withσo.

Conversely, it is obvious thatK maps fixed points ofσo into fixed points ofσo. We thus

have proved that the subgroup ofG which leavesB invariant coincides withK.

Note that the involutionσq leavesB invariant (sinceB is totally geodesic), and so it

mapsK intoK. Thus,(K,K+) is a symmetric pair, whereK+ is the isotropy group of

K at q. Moreover, one has thatK+ = K ∩K ′, whereK ′ is the isotropy group ofG at q.

Such a symmetric pair is not, in general, effective (as one can see from the tables in [4]).

The totally geodesic submanifoldB is called apolar ofM . The normal space toTqB at

q is a Lie triple system and hence induces, via the exponentialmap, a totally geodesic sub-

manifold ofM which is called ameridian. This follows from the fact thatexpq((TqB)⊥)

coincides with the set of fixed points ofσq ◦ σo (connected component throughq). In fact,

if w ∈ (TqB)⊥ andβ(t) is a geodesic withβ ′(0) = w, then(σq ◦ σo)(β(t)) = β(t), since

dq(σq ◦ σo) is the identity when restricted to(TqB)⊥. This shows thatexpq((TqB)⊥) is

contained in the fixed point set ofσq ◦ σo. The other inclusion holds sinceq is an isolated

fixed point ofσq.

We construct now the so-called centrioles. Letp be the midpoint of the geodesicγ

joining o and q. In line with our notation above we havep = γ(d/2). The centriole

throughp is the orbitK+ · p. Such an orbit is totally geodesic. In fact, the symmetryσp

interchangeso andq, and soK with K ′. Soσp leavesK+ = K ∩K ′ invariant and, since

it fixes p, leaves the centrioleK+ · p invariant. Then,σp leaves the second fundamental

form ofK+ · p invariant, but on the other hand it reverses its sign. So the centrioleK+ · p
must be totally geodesic. Moreover, it is contained in the meridian containingq, sinceK+

commutes with bothσq andσo andσq ◦σo(p) = p. We have that(K+, K++), whereK++

is the isotropy subgroup ofK+ atp, is a symmetric pair (not effective, in general).

We now defineS = K·p, which is a fibre bundle overB whose fibres are the centrioles.

In fact, sinceγ is minimizing in [0, d], γ is the unique (unit speed) geodesic fromo to

p = γ(d/2). So, the isotropyKp of K at p must fix γ, since it fixeso and p. Then

K · q = K · γ(d) = q and thereforeKp ⊂ K+, which impliesKp = K++. So, we get the

fiber bundle

K+/K++ → K/K++ → K/K+.

Moreover,K ·p turns out to be diffeomorphic, via the exponential map ato, to theR-space

K · v ⊂ ToM , wherev = γ′(0) (or equivalently,K · p is diffeomorphic to an orbit of an
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s-representation).

The submanifoldS = K · p has parallel Killing fields in any direction of the centriole

K+ · p. In fact, if p+ is the Cartan subspace, associated with(K+, K++), thenp+ ⊂ p,

wherep is the Cartan subspace associated to(G,K) (and elements ofp+ are parallel atp

onM , and so onS with the induced metric). With the same arguments as in [8, Lemma

6.2], one can prove the following result:

Theorem 8.1.LetM = G/K be an irreducible simply connected Riemannian symmetric

space of compact type. Assume that the polarB = K/K+ is irreducible and thatS =

K/K++, with the induced Riemannian metric, is not a symmetric space. Then the co-

index of symmetry ofK/K++ is equal to the dimension of the polarB = K/K+ and

the leaves of symmetry coincide with the fibers of the fibrationK+/K++ → K/K++ →
K/K+ (which are centrioles inM).

Proof. We have already proved that the centrioles are tangent to thedistribution of sym-

metrys. Note thats projects down to a distribution̄s on the symmetric spaceB = K/K+,

which must beK-invariant (since isometries preserve the distribution ofsymmetry). So,

sinceB is irreducible, we havēs = 0 or s̄ = TB. However,̄s = TB impliess = TS,

which cannot happen sinceS is not a symmetric space by assumption. Thus we have

s̄ = 0, and therefores coincides with the distribution given by the tangent spacesto the

centrioles.

Example 8.2.Consider the complex projective planeM = CP 2 = SU(3)/S(U(1)U(2))

= G/K. There is only one polar in this situation, namely

B = CP 1 = S(U(1)U(2))/S(U(1)U(1)U(1)) = K/K+ ∼= U(2)/U(1)U(1).

The orbit ofK through the midpoint of a geodesic fromo to a point inB is a dis-

tance sphereS3 = K/K++ ∼= U(2)/U(1) in CP 2 and the fibers of the projection

K/K++ → K/K+ are circlesS1 = K+/K++ ∼= U(1)U(1)/U(1) ∼= U(1). These

circles are centrioles inCP 2. The induced metric fromCP 2 on the distance sphereS3

gives a Berger sphere and its coindex of symmetry is equal to2. Up to homothety, it

is one of the metrics〈·, ·〉t in our classification fork = 2. By rescaling the metric

on CP 2 one obtains other metrics in this family. The remaining Berger sphere met-

rics can be obtained by considering distance spheres in the complex hyperbolic plane

CH2 = SU(1, 2)/S(U(1)U(2)) which are not covered by the construction method in

Theorem 8.1.
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