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ARTICLE INFO ABSTRACT

A maximum likelihood model is described for performing second-order multivariate calibration with unfolded
principal component regression with residual bilinearization (MLU-PCR/RBL). It differs from the conventional
RBL models based on U-PCR or U-PLS (unfolded partial least-squares) in the incorporation of the measurement
error information into both the U-PCR calibration and the RBL model phases. The error information is represented
by the instrumental error covariance matrix. Simulations were made by adding correlated and proportional noise
to synthetic systems consisting of one analyte in the presence of a calibrated and unexpected interferent, under
different conditions of overlapping profiles, noise levels and noise types (correlated and proportional). The results
show that MLU-PCR/RBL outperforms conventional RBL methods in prediction ability, as confirmed by a detailed
study on validation samples through the average prediction error as a convenient figure of merit. Results obtained
in experimental data set based on flow injection analysis and UV detection for determination of acetylsalicylic and
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ascorbic acids in pharmaceutical products also support the theoretical conclusions.

1. Introduction

Second-order multivariate calibration is becoming popular for the
quantitative analysis of complex mixtures, exploiting the second-order
advantage which is inherent to matrix instrumental data [1]. This spe-
cific calibration methodology allows one to determine selected analytes
in the presence of uncalibrated interferents using small calibration data
sets, by mathematically modeling and separating the contribution of the
interfering constituents to the test sample signals [2]. This has opened a
rapidly expanding analytical field with a great potentiality towards
samples of complex composition [3,4].

Among the various useful second-order calibration models which
have already been discussed in the literature, unfolded partial least-
squares with residual bilinearization (U-PLS/RBL) is a convenient alter-
native [5,6]. The model consists of two sequential phases: (1) a calibra-
tion phase where the second-order data for the training samples are
unfolded and employed to build a classical PLS model, and (2) a residual
bilinearization phase in which the contribution of the interferents is
modeled using principal component analysis (PCA). The second phase
isolates the interfering effect from the total test sample signal, producing
analyte PLS scores which can be safely used for prediction using the
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calibration regression coefficients. The method has found a number of
experimental applications, where its latent variable structure adequately
modeled matrix data from different instrumental sources [3].

U-PLS/RBL is based on the assumption that the instrumental noise is
independently and identically distributed (iid). Likewise, analytical fig-
ures of merit for U-PLS/RBL and other second-order calibration meth-
odologies are also based on the iid noise assumption [7-9]. For example,
the sensitivity has been defined as the ratio of iid instrumental noise to
the prediction uncertainty propagated by the former [7]. Other noise
structures are nevertheless possible for multivariate signals, including
correlated and proportional noise [10]. It is important to note that for
non-iid noise, the plain sensitivity is not a proper indicator of analytical
performance, and thus a generalized analytical sensitivity has been
proposed, which includes the noise structure in its definition [11].
Recently, figures of merit for second-order calibration with U-PLS/RBL
were discussed for non-iid noise structures [12]. However, they were
estimated for examples where the conventional U-PLS/RBL version was
applied for analyte quantitation, which would in principle be sub-optimal
for processing such data sets.

It is clear that alternative RBL calibration models are required when
the noise structure is not iid. Maximum likelihood (ML) methods are able
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to take into account the error structure and are therefore an appealing
alternative [13]. In this report we describe the MLU-PCR/RBL model,
which incorporates the ML philosophy in the two phases mentioned
above. In the first one, MLU-PCR is applied to the unfolded calibration
matrices [14]; in the second, ML-PCA is employed to model the contri-
bution from the interfering agents within a weighted least-squares fitting
procedure [15]. The newly proposed model complements the already
developed ML versions of parallel factor analysis (ML-PARAFAC) [16]
and of multivariate curve resolution-weighted alternating least-squares
(MCR-WALS) [17]. In this way, the ML philosophy is extended to a
second-order latent variable model, which may be able to handle
analytical systems where trilinear PARAFAC or bilinear MCR-ALS cannot
be applied [1].

A comparison with classical U-PCR/RBL and U-PLS/RBL is made
using simulated second-order data for systems with controlled chemical
compositions, degrees of overlapping among the constituent profiles in
both data modes, noise levels and noise types (correlated and propor-
tional). The results favor the new second-order MLU-PCR/RBL model, as
can be judged from the average prediction error for a substantial number
of independent test samples, all containing uncalibrated interferents.
Experimental data sets obtained from a flow injection analysis (FIA)
system with UV detection for the determination of acetylsalicylic and
ascorbic acids in both synthetic mixtures and pharmaceutical formula-
tions were also studied.

2. Theory

The theory of U-PCR/RBL and U-PLS/RBL is well-known. In U-PCR/
RBL, for example, the (unfolded) test sample signal x is first modeled as
the sum of two contributions: (1) the portion of the test signal modeled
by the calibration, and (2) the signal from the interferents modeled
by RBL:

x = PCR calibration model of x + RBL model of interferents + e =

Nint
=Pt + Z Cint.n ® bint.n +e

n=1

€9)

where P is the matrix of U-PCR calibration loadings (size = data
points x number of latent variables), t is the (column) vector of test
sample scores (number of latent variables x 1), bint, and cint, are the
profiles in each data mode for the nth interferent, Ny, is the number of
interferents, ® indicates the Kronecker product, and e is a vector of
model errors. The number of latent variables for calibration is usually
estimated by leave-one-out cross-validation using only the calibration
data, as described by Haaland and Thomas [18].

In eq. (1), the product (Pt) represents the part of x which can be
modeled by the calibration parameters, while the summation of Kro-
necker products represents the contribution from the interferents in
bilinear form. The latter contribution is decomposed into profiles in both
data modes bjn( , and cine,n, Which are found by PCA of the residual vector
(x — Pt), after being reshaped into an appropriately dimensioned matrix.

The aim of the RBL procedure is to find the score vector t minimizing
the sum of residuals SSR = e'e in eq. (1), rendering at the same time the
interferent profiles in each data mode. This can be done by Gauss-Newton
minimization or using an iterative procedure (the latter will be described
below in detail in connection with MLU-PCR/RBL).

Once t is found, prediction of the analyte concentration proceeds
through the usual expression:

5=tv )

where v is the vector of latent regression coefficients provided by the U-
PCR calibration model.

In MLU-PCR/RBL, on the other hand, the error structure information
is introduced in the form of the error covariance matrix (ECM) 2)2(. In the
calibration phase, this information is employed to build an MLU-PCR
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model with the unfolded signals, rendering a new set of calibration
loadings Py, and a new vector of latent regression coefficients vyy.. The
matrix Py, and the vector vy, play in MLU-PCR the analogous role of P
and v in classical U-PCR respectively.

The RBL phase is similar to that for U-PCR/RBL, adapted to the
maximum likelihood philosophy. In fact, the relevant RBL expression is
analogous to eq. (1):

Nint

X = Pyitye + Z CumLintn ® DmLings + €mL

n=1

3

where emrintn and buing,s are the profiles in both data modes for the
interferent, as estimated by MLPCA of the residual matrix obtained by
reshaping (x — Py, tvr), and tyy, is the final score vector minimizing the
weighted sum of squares:

WSSR = el (£2) 'ew. 4

In the present report, the RBL phase has been implemented as an
iterative procedure following these steps:

(1) With the unfolded sample signal x, the calibration matrix of
loadings Py, and the ECM matrix, the initial score vector tyy, is
found by the maximum likelihood PCR expression [14]:

-1
tw = [P (22) "Pr] P (2) x ©

(2) The residuals of the sample model are obtained by subtracting the
MLU-PCR modeled part of x from the overall sample signal x:

r=X-— PML tvL (6)

(3) The residual vector r is reshaped into a matrix, and MLPCA is
applied to decompose the latter matrix into a sum of bilinear terms
using Nip principal components. This leads to the estimation of
the interferent profiles byint,» and emint,» (n indicates each of the
Nint potential interferents).

(4) The contribution of the interferents is subtracted from the sample
signal x, and a new tyy, score vector is found:

Nint

_ -1 _
ty, = {PIAL (23) IPML] Py, (23) l (X - Z CuLintn & bMLint,n) @

n=1

(5) The RBL residual vector ey, is found from eq. (3).

(6) The weighted sum of squared residuals WSSR is computed from
eq. (4).

(7) The procedure returns to step (2) and is repeated until conver-
gence, indicated by no significant changes in WSSR within a
certain predefined tolerance, typically 0.001% for successive
values of WSSR.

The number of potential interferents Njy, i.e., the dimensionality of
the MLPCA model in step (3) is estimated by increasing Nj. until stabi-
lization of the final value of WSSR, as is usual in classical U-PCR/RBL or
U-PLS/RBL [19].

(8) After finding tyy, prediction is made through an equation analo-
gous to (2):
I = Ly Vi ®
where vy, is the calibration vector of latent regression vectors. If data are
mean-centered, the mean calibration concentration should be added to
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Fig. 1. Position of the simulated spectral profiles in the (a) J and (b) K modes for the (mm=m) analyte, (mmm) calibrated interferent and (====) unexpected interferent in the conditions of (L)
low, (M) moderate and (H) high overlap. (c) Contour plot of a sample with moderate overlapping condition of the analyte with both interferents.

the right-hand side of eq. (8).
3. Datasets
3.1. Simulated data sets

Simulated second-order data were generated according to the pro-
cedures already described in Ref. [12]. The calibration set was composed
of 50 samples containing two components, the target analyte with con-
centrations linearly distributed between 0 and 1 and a single interferent
with random concentrations, also in the range of 0-1. The test set was
composed of 25 samples containing the two components present in the
calibration phase and a single unexpected interferent, not included in the
calibration samples, with concentrations in the range of 0.1-1.

Nine overlapping conditions were evaluated according to a 32 facto-
rial design, wherein the levels were three degrees of overlap (low,
moderate and high) and the factors were the overlap between: (1) the
analyte and the calibrated interferent (factor 1) and (2) the analyte and
the unexpected interferent (factor 2). The position of the spectral profiles
in the different overlapping conditions used for the evaluation of the
models are presented in Fig. 1, where the analyte is positioned between
the calibrated and unexpected interferent.

The dimensions of each simulated instrumental mode were J = 30
and K = 40. The code used to generate and execute the simulations were
written in Matlab® version 7.14 (R2012a) using routines developed in
our research group.

3.1.1. Noise addition

In order to evaluate the performance of the models, two noise
structures were used: (1) correlated noise in two distinct levels of the
inverse noise frequency, 1/f (pink noise) and 1 /f2 (brown noise) and (2)
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proportional noise. Pink and brown noise vectors were generated by a
MATLAB function [8] to match the size of the simulated instrumental
mode with a larger number of sensors (K) and added to each row of this
mode. Both for pink and brown noise, the noise sequence was scaled so
that the standard deviation corresponds to a fixed percentage of the
maximum signal of the sample. The following levels of correlated noise
were tested: 0.1, 0.25, 0.5, 0.75 and 1.0%.

Proportional noise is characterized by a heteroscedastic behavior,
varying as a function of the magnitude of the instrumental signal, ac-
cording to a scaling factor or noise level. The proportional noise vector to
be added to each sample was determined by multiplying the noise level
by the unfolded data and by a vector containing normally distributed
random numbers. According to this procedure, the noise in each data
sensor will be the specific noise level (i.e. 1%) of its signal intensity. It
should be noticed that data simulations containing only proportional
noise can lead to mathematical issues that prevent the inversion of the
error covariance matrices. To avoid this potential problem, an iid noise
vector was added to each sample containing proportional noise, scaled to
represent 1% of the proportional noise level present in the sensor with
the highest signal intensity. The following levels of proportional noise
were evaluated: 0.5, 1.0, 2.5, 5.0, 7.5 and 10.0%.

Considering all overlapping conditions, type of noises and noise
levels, 144 different calibration and test set samples were created.
Additionally, for the estimation of the root mean square error of pre-
diction (RMSEP) for MLU-PCR/RBL, U-PCR/RBL and U-PLS/RBL, all the
procedures were repeated 50 times. Further details of the noise addition
and Monte Carlo simulations can be found in Refs. [8,12].

3.1.2. Estimation of the error covariance matrices
In the simulated data, the error sources and their structures are
known and well characterized, so that the theoretical prediction of the
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RMSEP values obtained in the different types and levels of noise for the three overlapping conditions between the analyte and the unexpected interferent, and for the highest overlap with the

calibrated interferent.”

Model RMSEP x 10?
U-PLS/RBL U-PCR/RBL MLU-PCR/RBL
Overlap level L M H L M H L M H
Pink Noise level/(%) 0.1 0.09 0.09 0.15 0.08 0.09 0.14 0.07 0.07 0.11
0.25 0.21 0.23 0.36 0.20 0.22 0.33 0.18 0.19 0.28
0.5 0.43 0.45 0.70 0.40 0.42 0.64 0.36 0.37 0.55
0.75 0.64 0.68 1.04 0.61 0.65 0.96 0.54 0.55 0.87
1 0.85 0.89 1.39 0.81 0.84 1.30 0.71 0.72 1.19
Brown Noise level/(%) 0.1 0.08 0.09 0.13 0.08 0.08 0.12 0.05 0.05 0.07
0.25 0.20 0.22 0.31 0.19 0.21 0.28 0.12 0.13 0.17
0.5 0.42 0.42 0.59 0.39 0.40 0.54 0.26 0.26 0.35
0.75 0.59 0.60 0.87 0.56 0.57 0.81 0.37 0.38 0.53
1 0.76 0.81 1.13 0.72 0.77 1.06 0.50 0.53 0.73
Proportional Noise level/(%) 0.5 0.09 0.10 0.15 0.08 0.09 0.14 0.08 0.10 0.13
1.0 0.16 0.21 0.29 0.15 0.19 0.27 0.14 0.20 0.25
2.5 0.41 0.50 0.69 0.38 0.47 0.65 0.38 0.48 0.62
5.0 0.83 0.97 1.28 0.78 0.93 1.22 0.75 0.94 1.12
7.5 1.22 1.41 1.98 1.22 1.41 2.00 1.18 1.41 1.84
10 1.61 1.96 2.71 1.55 1.90 2.68 1.48 1.95 2.48

2 1: low overlap; M: moderate overlap; H: high overlap. The values of RMSEP x 102 represent the relative prediction error (in %).

ECMs can be obtained. For the simulations with pink and brown noise, all
calibration and test samples present the same ECM, which were obtained
directly by the correlated noise function presented in Refs. [8,12]. The
calibration phase of MLU-PCR/RBL will require, in general, an ECM for
the training data matrix of size JKI x JKI. However, the fact that no
correlations are assumed among different samples considerably sim-
plifies the calculations to a single ECM of size JK x JK [8]. We assume
that second-order data collection involves the measurement of J vectors,
each with K channels, with no correlation among them (for example,
among emission spectra at different excitation wavelengths in
excitation-emission fluorescence spectroscopy, or among spectra at
different elution times in chromatography or FIA with multivariate
detection). Therefore, this ECM is a block-diagonal matrix, each of the
identical J blocks of size KxK, corresponding to the ECM along the K
channels. In the subsequent RBL phase, i.e., eq. (4), the ECM corresponds
to the residuals, after refolding them into a matrix. Here the MLPCA
modeling of the interferents employs an ECM composed of just one of the
blocks, of size KxK. Finally, in eq. (5), an ECM with the same general
characteristics as the one for calibration was employed.

On the other hand, for proportional noise, each calibration and test
sample will present a distinct ECM, which formally requires the appli-
cation of a general version of MLPCR, as demonstrated by Wentzell et al.
[13,15]. However, from an experimental point of view, it might be
problematic to access individual ECMs for every sample, since this re-
quires many replicates for each sample. In most experimental situations,
the usually viable solution for estimating ECMs is the simplifying
assumption that all samples present approximately the same (average)
ECM. Although this is not formally true, it may represent a better
approximation than the naive condition of a constant diagonal ECM (only
consistent with the presence of iid noise). This approximation was
already reported in first-order calibration, leading to significant im-
provements in prediction ability in the presence of proportional noise
[14]. Therefore, in the present simulations involving proportional noise,
a single ECM was considered for both calibration and test sets. For the
estimation of this ECM, a three-dimensional array X (size I x J x K)
containing the I calibration samples was averaged along the modes I and
J, resulting in an average vector containing the spectral profile with K
data points, assumed to be the simulated instrumental detection mode.
This average spectrum was multiplied by the noise level and placed at the
diagonal of the ECM. Finally, a constant value equal to the variance of the
iid noise introduced in the data was added to the diagonal of the ECMs
(see above).
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3.2. Experimental datasets

The experimental data were previously presented in Refs. [20,21],
and comprise the determination of both ascorbic acid (AA) and ace-
tylsalicylic acid (ASA) in two different systems of synthetic mixtures and
four different pharmaceutical products. A flow injection analysis system
with pH gradient and UV detection was employed for collecting the
second-order pH-spectral data. The dimensions of each data matrix are as
follows: 321 data points in the spectral mode (range of wavelengths:
180-820 nm with a resolution of 2 nm) and 291 data points in the time
(pH) mode.

The calibration set was composed of eleven samples, formed by nine
synthetic mixtures of ASA and AA following a central composite design
[20], and by two additional samples containing either of the two ana-
lytes. Three independent replicates of these eleven samples were pre-
pared and analyzed, leading to a total of 33 calibration matrices. The
concentrations of the analytes ranged from 0 to 136.4 mg L ™" for ASA and
0-82.0 mg L ™! for AA.

Two validation sets composed of synthetic mixtures were prepared to
evaluate the models in samples containing a single analyte (validation set
1, VAL 1) and in the presence of an uncalibrated interferent (validation
set 2, VAL 2). Validation set 1 was composed by twelve mixtures con-
taining only ASA and AA in concentrations ranging from 31.7 to
128.3 mg L' and 19.0-77.0 mg L™}, respectively. On the other hand,
validation set 2 was composed by five synthetic mixtures containing ASA
in concentrations varying between 40.0 and 120.0 mg L™, AA between
24 and 72 mg L7! and caffeine at a constant concentration of
5.00 mg L1, This concentration level of caffeine was chosen based on its
usual concentration present in the commercial pharmaceutical drug
named Doril®. Three replicates of these samples were also analyzed,
giving a total number of 36 and 15 matrices for validation sets 1 and 2,
respectively.

The analyzed pharmaceutical products (PP) were: PP1, Aspirina® +C
(Bayer S.A.), PP2, Melhoral® C (DM Inddstria Farmacéutica LTDA), PP3,
Doril® (DM Inddstria Farmacéutica LTDA) and PP4, Sandoz® (Novartis
Biociéncias S.A.). The first two products contained both analytes as active
principles and possibly additional excipient interferences. In contrast,
Doril® contains only ASA and caffeine as active principle, while Sandoz®
just AA as active and potential excipient interferences.

For the preparation of the pharmaceutical samples, a specific mass of
each of the four PPs was weighed, dissolved and diluted in volumetric
flasks to obtain concentrations approximately equal to the center of the
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Fig. 2. Relative improvement of the RMSEP values comparing U-PCR/RBL and MLU-PCR/
RBL for (a) pink noise, (b) brown noise and (c) proportional noise in the nine overlap
conditions: (a) low, (x) moderate and (M) high overlap with the calibrated interferent;
(m===) low, (m===) moderate and (mmmm) high overlap with the unexpected interferent. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

analytical range defined by the calibration samples. Additionally, ASA
and/or AA were added at three distinct levels to each one of the previ-
ously prepared pharmaceutical samples that contained ASA and/or AA.
Overall, six different samples were prepared for each pharmaceutical
product (three without and three with the addition of one or both ana-
lytes depending on the pharmaceutical product) and all these samples
were analyzed in triplicate in the FIA system, producing 18 matrices for
each one of the four pharmaceutical products investigated in this work
and a total number of 72 (18 x 4) pharmaceutical samples were analyzed
by FIA. The reference values for ASA e AA in the PP were obtained by
HPLC and iodimetric titration [22], respectively.
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4. Results
4.1. Simulated data

The results for all models were obtained using two latent variables in
the calibration phase and one RBL component, due to the known
composition of the calibration and test samples. Table 1 presents the
RMSEP values for the three overlapping conditions between the analyte
and the unexpected interferent, when the overlap with the calibrated
interferent is set at the highest level. The detailed results for all nine
overlapping conditions are presented in Tables S1, S2 and S3 of the
Supplementary Material. Overall, the RMSEP follows, for all situations,
an increasing linear relation with the noise level. At the same time, the
RMSEP values also increase as the overlapping increases, with a larger
effect of the unexpected interference compared to the calibrated
interferent.

Comparing the performance of the three models, U-PCR/RBL and U-
PLS/RBL present very similar results, while for almost all situations,
MLU-PCR/RBL shows lower RMSEPs. In terms of average prediction
error, the relative improvement (RI) in the results related to the
maximum likelihood approach can be expressed as:

RI = 100 x (RMSEPy.pcrrBL - RMSEPMLU.pcR/RBL)Y RMSEPy_pcr/RBL (9)

Fig. 2 shows more clearly the behavior observed for the RI values in
all conditions. For correlated noise, the best results were obtained with
brown noise, where RI ranged from 21 to 40%, whereas for pink noise it
ranged from 2 to 17%. This behavior agrees with the fact that brown
noise presents long-range correlations in the data, which can only be
successfully modeled by the ML approach. Additionally, depending on
the overlapping condition, the value of RI appears to be approximately
constant or following a small decrease as a function of the noise level. On
the other hand, as the overlapping increases, the improvement is larger,
which is more clearly noticed for brown noise.

The results with proportional noise follow a similar trend, in that ML
presents the best analytical results. However, as the pooled calibration
ECM was employed in the modeling, the complete structure of the noise
was not considered. As a result, the simplification provides RI values
ranging only from —5 to approximately 20%, with no improvement
observed in the conditions of moderate and high overlap with the cali-
brated and unexpected interferent. In addition, in contrast to correlated
noise, the conditions presenting low overlap were the ones leading to the
best results. To explain this behavior, further simulations were conducted
changing the position of the spectral maxima for the calibrated and un-
expected interferent in both modes (resulted not shown), which revealed
that the overlapping effect in the ML improvement vary in a complex way
with the interferent positions. The elucidation of this behavior will be the
focus of future simulation studies. However, in all simulated cases, the
ML approach showed a clear improvement in prediction ability, showing
that the presently adopted simplification can handle, at least in part, the
consequences of the presence of proportional noise in the data.

4.2. Experimental data

As in the simulation studies, experimental data sets described in
Section 3.2 were analyzed using three models: classical U-PCR/RBL,
classical U-PLS/RBL, and MLU-PCR/RBL. To estimate the ECM for the
latter ML model, a similar strategy to the one described in Ref. [12] was
applied. This analogy was possible due to the following similarities be-
tween the system presented in Ref. [12] and the presently described one:
(1) both have a low number of replicates and (2) it is possible to find a
“stable region” for each data matrix, which in our experimental data
corresponds to the time range between 180 and 291 s, where the spectra
remain almost constant, as can be observed in Fig. S1 of the Supple-
mentary Material. In addition, as presented in Fig. S1, the spectral range
between 208 and 298 nm was selected. Assuming that the main source of
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Table 2
Comparison of RMSEP values obtained for the experimental data sets processed using
different models and relative improvement (RI) values.”

Data set UPCR/RBL UPLS/RBL MLUPCR/RBL
Nine RMSEP Nine RMSEP Nine RMSEP RI”
AAS
VALL 0 1.0 0 0.98 0 1.3 -30
VAL2 1 9.8 1 9.5 1 2.4 76
PP 1 2 6.2 2 13 2 1.5 76
PP 2 2 14 2 27 2 4.5 68
PP 3 1 8.8 1 9.9 1 2.9 67
PP 4 1 6.1 1 45 1 4.9 20
AA
VALL 0 0.81 0 0.49 0 0.57 30
VAL2 1 1.5 1 1.4 1 1.3 13
PP 1 2 2.8 2 2.9 2 1.2 57
PP 2 2 8.4 2 7.6 2 2.5 70
PP 3 1 2.0 1 2.0 1 0.87 57
PP 4 1 2.2 1 2.1 1 0.95 57

@ Concentration values expressed as mg L', Nine: number of RBL latent variables used to
model unexpected interferents. VAL1: validation set 1. VAL2: validation set 2. PP: Phar-
maceutical Products. PP1: Aspirina® +C (Bayer S.A.). PP2: Melhoral® C (DM Indstria
Farmacéutica LTDA). PP3: Doril® (DM Inddstria Farmacéutica LTDA). PP4: Sandoz®
(Novartis Biociéncias S.A.).

> Computed with respect to UPCR/RBL.

error comes from the UV spectral measurements at each time, it is
possible to find an empirical estimation for the instrumental error, by
pooling along the stable region the ECMs built from the spectra extracted
at different times and using both replicates, as described in Ref. [12]. The
procedure consists of two steps: an ECM is first built from replicate
spectra within a certain time region. This step is repeated for each
spectrum in the pooling region, and can be summarized by:

(10)

N
=) (% — %) (% — x)'
n=1

where Ejz is an ECM from spectral replicates at time j, Xp; is the spectrum
for replicate n and time j, and X;the mean replicate spectrum calculated at
time j. These matrices may be extremely noisy due to the small number of
replicates. Thus, in a second step an ECM is built by pooling the matrices
from the previous step:

= (BB 44/ an
where Zgook is the pooled ECM for a given sample and J, is the number of

time points included in the pooling region. eq. (11) provides an ECM with
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considerably lower noise, and is a valid resource to infer about the error
structure along the spectral mode.

In a recently published article by Wentzell et al. [23], an alternative
strategy to model multivariate measurement errors using an objective
function based on the Wishart distribution has been presented. This work
showed that it is possible to obtain simple models that adequately
describe the error structure. However, no further studies were made
regarding the use of these models for calibration and prediction. More-
over, as recognized by the authors, a significant amount of work still
remains to characterize other first-order analytical systems. The appli-
cation of the presently discussed modeling strategies to second-order
systems remains as a promising perspective.

Fig. 3 illustrates the resulting ECM, estimated from the calibration
samples of the experimental data set, which was subsequently used to
build the MLU-PCR/RBL model. Its visual inspection suggests that spec-
tral proportional noise along the spectral mode contributes as a signifi-
cant error source affecting the system. To confirm this suspicion, the
mean signal intensity is plotted against its standard deviation at each
spectral sensor, as shown for all calibration matrices in Fig. S2 (Supple-
mentary Material).

In the calibration phase of the models compared in this work, the
optimal number of calibration latent variables was 5. This value can be
explained on the basis of the properties of the analytes used to build the
samples, because of the two different acid-base forms adopted by AA and
ASA according to the pH value in the gradient, and an additional physical
effect generated by the change of the refraction index in the gradient
zone, known as Schlieren effect. However, unexpected interferents may
arise in test samples, making it essential to determine the number of
latent variables that optimally model the contribution of these interfer-
ents in the RBL phase. The criterion here adopted to estimate this latter
number was the obtainment of root mean squared values of the RBL
decomposition residuals at the same level to those observed in the
calibration.

There are some important observations to make regarding the model
development. First, the stable region mentioned above only contains
useful information regarding error structure elucidation, but does not
significantly contribute in predictive terms. The initial half of the
gradient region contains the same information of the second half, but
shows a larger Schlieren effect. Moreover, its inclusion would lead to a
considerable increase in the calculation time of the algorithm, given the
large size of the data matrices in both modes. Therefore, the useful time
interval of 57 s in the range from 94 to 150 s was used for model
development. Second, the same simplification applied for the case of
proportional noise in the simulated data sets was also employed for the
experimental data sets. This means that both in the calibration and RBL
phases, the same ECM was employed, calculated by pooling individual
ECMs obtained by the procedure described in Ref. [12] for each cali-
bration sample (Fig. 3).

Table 2 shows the prediction results for the concentration of AA and
ASA in the different test sets. In general, a significant decrease in RMSEP
is observed when the ML strategy is used, compared to the classical
models, with RI values reaching a maximum of 76%. Although the
improvement appears to be significantly larger than for the simulated
datasets, the trend is in agreement with the theoretical results. Further-
more, even though the pooled ECM indicates that proportional noise
contributes significantly to the overall noise, the off-diagonal elements
also indicate the presence of correlated noise in the data. The contribu-
tion of both noise types is consistent with the significantly better results
obtained in the experimental data with the ML model. Additionally, the
most notorious changes were obtained when the second-order advantage
is employed, which highlights the benefits of implementing the ML
strategy in the RBL procedure.

5. Conclusions

The results obtained in both simulated and experimental data sets
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strongly indicate that the introduction of the maximum likelihood
approach in the conventional second-order U-PCR/RBL model leads to
better analytical performance in terms of lower prediction errors. The use
of the pooling strategy for estimating the error covariance matrix showed
significant analytical improvement, even with a relevant contribution of
proportional noise is present in the second-order data. The newly intro-
duced model complements the already known maximum likelihood
versions of trilinear parallel factor analysis and bilinear multivariate
curve resolution, and can be applied when the data cannot be adequately
modeled by the latter two methods.
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