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Summary
This study evaluated different strategies for implementing a single-step genomic

selection programme in two autochthonous Spanish beef cattle populations (Pire-

naica—Pi and Rubia Gallega—RG). The strategies were compared in terms of

accuracy attained under different scenarios by simulating genomic data over the

known genealogy. Several genotyping approaches were tested, as well as, other

factors like marker density, effective population size, mutation rate and heritability

of the trait. The results obtained showed gains in accuracy with respect to pedi-

gree BLUP evaluation in all cases. The greatest benefit was obtained when the

candidates to selection had their genotypes included in the evaluation. Moreover,

genotyping the individuals with the most accurate predictions maximized the

gains but other suboptimal strategies also yielded satisfactory results. Furthermore,

the gains in accuracy increased with the marker density reaching a plateau at

around 50,000 markers. Likewise, the effective population size and the mutation

rate have also shown an effect, both increasing the accuracy with decreasing val-

ues of these population parameters. Finally, the results obtained for the RG popu-

lation showed greater gains compared to the Pi population, probably attributed to

the wider implantation of artificial insemination.
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1 | INTRODUCTION

The Genomic Selection (GS) methodology (Meuwissen,
Hayes, & Goddard, 2001) has already shown to be a
promising development for animal breeding. In fact, the
dairy cattle industry has quickly incorporated it into their
selection schemes to produce highly accurate genomic
breeding values (GEBVs) for young bulls (Hayes, Bow-
man, Chamberlain, & Goddard, 2009; Spelman, Hayes, &
Berry, 2013; VanRaden et al., 2009) and pig companies
have started using it regularly in elite populations (Hidalgo
et al., 2015; Ostersen et al., 2011; Tusell et al., 2016).

However, the beef cattle industry has been more reluc-
tant in the implementation of this technology due to several

reasons (Berry, Garcia, & Garrick, 2016). Compared to
dairy cattle, most of the beef cattle breeds have a limited
population size and the use of artificial insemination (AI) is
not as widely spread. These phenomena contribute to the
poor connectedness among and within populations. In fact,
the usual dairy cattle strategy to evaluate very young bulls,
as an alternative of progeny testing (Hayes et al., 2009),
cannot be automatically mimicked. Thus, the appeal for
implementing a GS programme should be specifically
tested in each population.

The first attempts to implement GS (Meuwissen et al.,
2001) involved a two-step approach: first, markers’ effects
had to be estimated from a training population and, next,
the results were used to derive the genomic EBVs on
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testing populations. Later on, Habier, Fernando, and Dek-
kers (2007) probe that the standard mixed-model equations
(Henderson, 1984) can be easily adapted to incorporate
genomic information through a genomic relationship matrix
(G) and lead to predictions of GEBVs equivalent to the
Gaussian regularization proposed by Meuwissen et al.
(2001). Further, Legarra, Aguilar, and Misztal (2009) and
Aguilar et al. (2010) developed an extension of this model
denoted as single-step GBLUP, which allows predicting at
the same time the breeding values for genotyped and non-
genotyped individuals.

This latter approach could be useful for populations that
cannot support a broad genotyping effort due to their small
size and/or poor connectedness. To test so, we developed a
large simulation experiment under different strategies. Our
ultimate goal was to investigate the potential application of
a single-step genomic selection programme in two Spanish
autochthonous populations (Pirenaica—Pi and Rubia
Gallega—RG).

2 | MATERIALS AND METHODS

2.1 | Pedigree and phenotypic information

We used the genealogical and phenotypic data on birthweight
available for two populations, Pirenaica and Rubia Gallega.
The data for Rubia Gallega comprised of 92,046 individuals in
the genealogy and 64,030 birthweight data. The systematic
effects considered for this trait in the current genetic evaluation
model were (i) sex with two levels, (ii) age of dam with 16
levels and (iii) a random herd-year-season (HYS) effect with
10,160 levels. Likewise, the data for Pirenaica included
55,203 individuals in the genealogy and 32,702 birthweight
records. The systematic effects considered were the same with
2, 16 and 5,343 levels, respectively. These data were used to
frame the following simulation study.

2.2 | Simulation

First, an historical population of 100 individuals that
evolved under random mating for 500 generations was sim-
ulated for each breed with the objective of generating link-
age disequilibrium, as suggested by Meuwissen et al.
(2001). The simulated genome comprised of 30 chromo-
somes with 2,000 markers each, from which 100 were ran-
domly selected as causative mutations (QTLs). The QTL
effects were drawn from a Gaussian distribution with mean
zero and variance one. The mutation rate for both markers
and causative mutations was fixed at 2.5 9 10�3. These
parameters were chosen to obtain genotypes of around
50,000 (50k) neutral markers mimicking the information
provided by the BovineSNP50 BeadChip (Illumina INC,
San Diego, CA, USA).

In the last generation, the individuals were randomly
mated to generate a simulated genome for each of the foun-
ders of the actual Pi and RG recorded populations. After
that, the genomic information of the remaining individuals
of the populations was obtained by gene-dropping (Mac-
Cluer, Vandeburg, Read, & Ryder, 1986) over the available
recorded pedigree. Thus, the last historical generation of
the evolving population was used as the base for the indi-
viduals that comprise the recent genealogy of the popula-
tion. This procedure allowed obtaining simulated genotypes
for markers and QTL for pseudo-populations with the same
genealogical structure as the actual ones.

In addition, phenotypic records were simulated for each
individual that had a recorded phenotype on the real data
set. Thus, they replicate the actual distribution of records
across systematic, herd-year-season (HYS) and additive
genetic effects. They were generated by summing a general
mean (1,000), the effects of the QTLs, according to their
specific genotype, and a residual drawn from a Gaussian
distribution with zero mean, and a variance adequate to
create two traits with heritability 0.1 and 0.4. Finally, the
breeding values and the genotypes for all individuals in the
pedigree were recorded. Note that all systematic effects
were set to zero, although the distribution of the amount of
phenotypic information available for its estimation repli-
cated the real populations.

2.3 | Single step

The data provided by the simulation study was analysed by
standard BLUP (Henderson, 1984) and by single-step
GBLUP—ssGBLUP (Aguilar et al., 2010). Both analyses
were performed using the BLUPf90 suite of programmes
(Misztal et al., 2015).

The model used for all analyses was

y ¼ Xbþ Z1mþ Z2uþ e;

Where y is the vector of phenotypes, b is the vector of the
systematic effects, sex with two levels and age of dam with
16 levels, m is the vector of the herd-year-season random
effect with 5,343 and 10,160 levels for Pi and RG, respec-
tively, u is the vector of additive genetic effects and e is
the vector of errors. X, Z1 and Z2 are the incidence
matrices for b, m and u, respectively.

The only difference between ssGBLUP and BLUP is
that in ssGBLUP, the inverse of the numerator relationship
matrix A�1 is replaced in the mixed-model equations by
matrix H�1 defined as:

H�1 ¼ A�1 þ 0 0
0 G�1 � A�1

22

� �

where G is the genomic relationship matrix and A22 is the
numerator relationship matrix for the genotyped individuals.
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The default parameter options of the BLUPf90 software
such as minor allele frequency of 0.05, individual and SNP
call rate of 0.90 and H matrix scaling parameters (a = 0.05
and b = 0.95) were used in all cases. In addition, variance
components were assumed to be known.

2.4 | Simulation scenarios

We first developed several base scenarios of simulation by
changing the following parameters:

1. Heritability of the trait (h2 = .1 and .4)
2. Reference population: number of historical individuals

genotyped (4,000, 2,000, 1,000, 500 and 250)
3. Genotypes for sires and dams of the candidates to selec-

tion (Yes or No) not included in the reference population.
4. Genotypes for the actual candidates to selection (Yes or No).
5. Phenotypic records for the candidates to selection (Yes

or No).

The simulation strategy assumed that the populations
had a reference genotyped population of varying size (from
250 to 4,000 individuals), and, after that, decisions to
genotype the parents of the candidates or the candidates
themselves had to be taken.

Combining all of them, the total number of cases of
simulation was 80, plus four cases of standard BLUP eval-
uation (two heritabilities, either including or not the pheno-
typic records of the candidates to selection). In this study,
the genotyped individuals were selected according to the
estimated prediction error variance (PEV) achieved from a
standard BLUP evaluation. Thus, the individuals were first
ranked according to their PEV, and the bottom—or with
lower PEV—4,000, 2,000, 1,000, 500 and 250, regarding
the case of simulation, were next selected to be genotyped
(this strategy is referred to as Top Historical—TH).

In addition, we performed a sensitivity analysis by com-
paring the results of each of these base scenarios with some
other alternatives. These alternatives included.

1. Replacing the Top Historical (TH) individuals with the
individuals with lower PEV, but born exclusively from
2010 to 2013 (Top Recent—TR).

2. Replacing the Top Historical individuals with a random
sample of individuals born between 2010 and 2013
(Random Recent—RR)

3. Three combinations of the RR and TH strategies that
included one-quarter, one-half or three-quarters of TH
individuals combined with RR individuals.

4. Five alternative marker densities including: 4,000 (4k),
10,000 (10k), 23,000 (23k), 100,000 (100k) and
200,000 (200k) neutral markers.

5. Two alternative effective population sizes (Ne) in the
simulation of the historical population (50 and 200)

6. Two alternative mutation rates for markers and QTL
(1 9 10�3 and 4 9 10�3).

A total of 20 replicates were simulated for each one of
the scenarios described.

2.5 | Validation

The alternative procedures studied were compared in terms
of the accuracy of the predictions, calculated as the Pearson
correlation between the estimated breeding values and the
simulated breeding values for the individuals born in last
available year—2014. These individuals were considered
the actual candidates to selection (579 and 1,738 animals
for Pi and RG, respectively).

3 | RESULTS AND DISCUSSION

The data sets of the two populations used in this study dif-
fer significantly in their structure as it can be seen in
Table 1. RG uses notably more artificial insemination (AI)
than Pi, as it is reflected on the pedigree structure. The
number of sires used for reproduction represents the 1.81%
(1,669 animals) of the total number of males for RG,
whereas they represent up to the 5.45% (3,010) for the Pi.
Moreover, the average number of offspring per sire is
47.82 (SD = 225) for RG and just 17.21 (SD = 39.64) for
Pi. To reinforce this statement, Figure 1 shows the number
of offspring born in the year 2014 per sire for both popula-
tions. In RG, 283 sires have 1738 offspring (average 6.14
offspring per sire) while in Pi, 145 sires have 579 (average
3.99 offspring per sire).

3.1 | Standard BLUP evaluation

First, we performed a standard BLUP evaluation in each
population and for each trait in order to define a reference

TABLE 1 Comparison of the pedigree structures between the
Rubia Gallega (RG) and the Pirenaica (Pi) populations

RG Pi

No. of animals 92,046 55,203

No. of generations 16 25

Total no. of males 25,678 18,837

Sires (with offspring) 1,669 3,010

Mean no of offspring
(SD)

47.82 (225) 17.21 (39.64)

Total no of females 66,368 36,366

Dams (with offspring) 35,156 23,373

Mean no of offspring
(SD)

2.27 (1.68) 2.24 (1.8)
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point to compare the results of the alternative genotyping
strategies. The results are presented in Table 2 and ranged
between 0.446 and 0.727. It should be noted the high accu-
racy achieved when candidates to selection were not phe-
notyped (0.446 to 0.550). The cause of these high
accuracies is the amount of phenotyped half-sibs of the
candidates to selection (49.2 � 65.3 and 314.5 � 648.5
for Pi and RG, respectively). Moreover, it can be observed
that the accuracy of prediction for the individuals born in
2014 was very similar between populations when the heri-
tability was larger (h2 = .4), but there were remarkable dif-
ferences between them for the low heritability cases
(h2 = .10). The reason for this latter difference can be
attributed to the genealogical structure of the RG popula-
tion. The more extended prevalence of AI implies a larger
accuracy in the prediction of the breeding values of sires
simply due to the larger half-sib family size, as pointed out
above. This larger accuracy is reflected on the accuracies
of their offspring. The effect is more evident with lower
heritability, because more progeny is needed to achieve a
larger accuracy (Falconer & Mackay, 1996). In addition,
and as it was expected, the accuracy of the cases of simula-
tion that included the phenotypes of the candidates to
selection was larger. Finally, as it was also expected, the
accuracy was larger for the scenarios with h2 = .4 than
with h2 = .1.

3.2 | Base scenarios

The detailed results of the average accuracy of prediction
among candidates to selection for all cases of simulation
are presented in Tables S1 to S4. First of all, it is worth to
mention that the bias of the prediction of breeding vales
was almost null. In fact, the slope of the regression
between true and predicted was always very close to 1. All
these results are summarized in Figure 2, where the aver-
age accuracy and its confidence interval for each base sce-
nario are depicted relative to the standard BLUP procedure.
Overall, it can be observed that the accuracy of candidates
to selection was always larger than the one provided by the
standard BLUP procedure. In contrast, the two-step
approach of genomic selection requires a minimum number

of genotyped and phenotyped individuals to compete with
the pedigree-based approaches, as probed by Daetwyler,
Villanueva, and Woolliams (2008). So, the appropriateness
of the single-step approach (Aguilar et al., 2010) for popu-
lations that cannot afford huge genotyping efforts, like the
Spanish autochthonous beef cattle breeds, is very clear.

As expected, the increase of accuracy is greater as the
number of genotyped individuals increases. However, it
should be noted that this gain is only worthy when the can-
didates to selection are genotyped. In fact, the maximum
gain obtained without genotyping the candidates to selec-
tion and their parents was just 2.5 � 0.4% (Pi, 4000 geno-
typed individuals, h2 = .1) and this figure only increased
up to 9.6 � 1.0% when the genotypes of the sires and
dams of the candidates to selection were added. On the
contrary, and for the same scenario, the increase of accu-
racy goes up to 23.9 � 2.2% (4000 TH + candidates to
selection genotyped) and 24.8 � 2.2% (4000 TH + sires
and dams + candidates to selection). When records from
candidates to selection were included in the analyses, these
differences were always smaller. It should be noted that the
sires and dams of the candidates to selection were fre-
quently included in the group of genotyped individuals
and, therefore, only slight differences were found between
this genotyping strategy and the one that did not include
them. Genotyping all candidate individuals could be an
important effort for the breeders associations. Nonetheless,
it is important to mention that the imputation techniques
work very efficiently (Khatkar, Moser, Hayes, & Raadsma,
2012; Mulder, Calus, Druet, & Schrooten, 2012) even with
low-density panels. Thus, a genotyping strategy that uses
low-density chips for candidate individuals combined with
imputation techniques can be appropriate for these breeders
associations.

Comparing the performance of the method with respect to
the heritability of the trait, it can be observed that the rate of
increase of accuracy is greater for h2 = .4 than for h2 = .1
when the records of the candidates to selection are not
included in the analysis. This means that the number of geno-
typed individuals required for traits with lower heritability is
greater because of the poorer information provided by the
phenotypes when heritability is low. The well-established
strategies of genomic selection in dairy cattle (Hayes et al.,

FIGURE 1 Number of offspring born in the year 2014 per sire

TABLE 2 Average accuracies (SD) obtained from the standard
BLUP evaluation

Trait A h2 = .4 Trait B h2 = .1

Without
2014 data

With 2014
data

Without
2014 data

With 2014
data

Pi 0.554 (0.011) 0.724 (0.004) 0.446 (0.013) 0.515 (0.011)

RG 0.550 (0.010) 0.727 (0.004) 0.479 (0.012) 0.549 (0.007)
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2009) involve training the prediction equation on sires with
extremely high accuracies, overcoming the informativeness
of each individual phenotype by averaging over a huge num-
ber of daughters. This strategy cannot be replicated with the
population structure of smaller populations. On the other
hand, when the records of the candidates to selection are
included in the analysis, the rate of increase in accuracy is
greater for the cases of simulation that involved a lower heri-
tability. The cause of this difference can be attributed to the
higher base accuracy for phenotyped individuals with a mod-
erate or high heritability (h2 = .4).

Moreover, and as it was expected, the gain in accuracy
is considerably greater when the records of the candidates
to selection are not included in the analysis. This specific
scenario tries to represent traits that are measured late in
life (i.e., maternal traits) or difficult and expensive to mea-
sure (i.e., carcass traits, disease resistance). As an example,
the maximum gain in accuracy for non-phenotyped candi-
dates to selection was 36.5 � 1.7% (RG, 4000 TH, + sires
and dams + candidates to selection, h2 = .4) whereas in the
same scenario but with candidates recorded, the percentage
of increase was just 14.1 � 0.4%. This result confirms the

FIGURE 2 Relative accuracy with respect to the standard BLUP procedure for the different alternatives of the base scenario. RG: Rubia
Gallega; Pi: Pirenaica; ped: standard BLUP evaluation; TH-250: 250 “Top Historical” genotypes; TH-500: 500 “Top Historical” genotypes; TH-
1000: 1000 “Top Historical” genotypes; TH-2000: 2000 “Top Historical” genotypes; TH-4000: 4000 “Top Historical” genotypes; +none: no
additional genotypes included; +sires+dams: genotypes of the parents of the candidates to selection included; +2014: genotypes of the candidates
to selection included
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appropriateness of the GS for traits that cannot be easily
measured on the candidates to selection.

Finally, it is relevant to note that the gain in accuracy
was generally greater for RG than for Pi, even when both
populations started with the same base level of accuracy,
such as when they are analysed with a standard BLUP
without genotypic information and with h2 = .4. As before,
the cause of this difference must be attributed to the
genealogical structure of the RG population. Due to the
wider application of AI, in this breed, a smaller number of
individuals contributed greater to the extant population
genetic diversity. These individuals contribute to the
increase of the average accuracy of the candidates to

selection through the genomic relationship matrix, which
can be considered as an improved estimate of the true
genetic relationship between individuals, based on SNP
markers instead of only the pedigree information (Legarra,
Christensen, Aguilar, & Misztal, 2014), and by the
detection of older relationships hidden in the pedigree
information.

3.3 | Sensitivity analysis

The results of the base scenario analysis covered a wide
range of variables. However, it should be noted that they
were conditioned to a set of predefined simulation

FIGURE 3 Sensitivity analysis with respect to the genotyping strategies. RG: Rubia Gallega; Pi: Pirenaica; TH: “Top Historical”; TR: “Top
Recent”; RR: “Random Recent”; Size of reference sets: 4,000; +none: no additional genotypes included; +sires+dams: genotypes of the parents
of the candidates to selection included; +2014: genotypes of the candidates to selection included
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parameters. Thus, and in order to extract more general con-
clusions, we performed a sensitivity analysis with respect
to the following variables: (i) the method of choice of
genotyped individuals, (ii) the marker density, (iii) the
effective population size along the evolutionary history of
the population and (iv) the mutation rates for QTL and
SNP markers.

The results of the sensitivity analysis with respect to the
genotyping strategy are presented in Figure 3. As it can be
observed, there were no relevant differences in accuracy
regarding the method of choice of genotyped individuals

when compared to the base strategy of sampling from the
full historical population (TH individuals). It can be noted
only a slight reduction of accuracy for lower heritabilities
(h2 = .1) when the TH individuals are replaced by RT and
RR, that disappear when just one-quarter of TH individuals
were included in the genotyped subset. The consequences
of this result imply that, although the most informative
individuals (with lower PEV) provide a better accuracy, the
results are robust enough to suboptimal genotyping strate-
gies forced by the availability of biological samples of
older individuals.

FIGURE 4 Sensitivity analysis with respect to the marker density. Genotype set used: TH 4,000 genotypes; RG: Rubia Gallega; Pi:
Pirenaica; 4k: 4,000 SNPs; 10k: 10,000 SNPs; 23k: 23,000 SNPs; 50k: 50,000 SNPs; 100k: 100,000 SNPs; 200k: 200,000 SNPs; +none: no
additional genotypes included; +sires+dams: genotypes of the parents of the candidates to selection included; +2014: genotypes of the candidates
to selection included
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The second sensitivity analysis was focused on the mar-
ker density, as the base simulation scenario tried to repre-
sent the density that can be obtained by the BovineSNP50K
BeadChip. The results are presented in Figure 4. The main
conclusion of this analysis is that the accuracy of GS
increases with marker density, but it reaches a plateau at
around 50k. Further increases of accuracy were small for
denser chips. This result confirms the postulates of Ca~nas-
�Alvarez et al. (2016) who suggested that the Spanish
autochthonous beef cattle populations need at least 38,000
segregating SNP markers. Thus, the potential increase that
can be obtained from higher densities can be considered

negligible, as it was also suggested by Solberg, Sonesson,
Woolliams, and Meuwissen (2008), even for unrelated indi-
viduals (Meuwissen, 2009).

Further, the results of the sensitivity analysis with
respect to effective size of the evolutionary historical popu-
lation are presented in Figure 5. As it can be observed,
there was a reduction in accuracy as the Ne increases as
predicted by Solberg et al. (2008). These authors proposed
that equivalent accuracies can be obtained as a function of
Ne 9 L (number of markers). Thus, doubling or halving
the effective size implies that double or half of the markers
are needed to achieve the same accuracy. The Ne of the

FIGURE 5 Sensitivity analysis with respect to effective population size. Genotype set used: TH 4,000 genotypes; RG: Rubia Gallega; Pi:
Pirenaica; Ne: effective population size; +none: no additional genotypes included; +sires+dams: genotypes of the parents of the candidates to
selection included; +2014: genotypes of the candidates to selection included
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Spanish autochthonous populations was estimated between
26 and 47 (Ca~nas-�Alvarez et al., 2016) and, as a conse-
quence, the results of the base simulation study presented
earlier can be considered as a conservative estimation of
the potential gain in accuracy.

Finally, the last sensitivity analysis was devoted to
mutation rate. The results are presented in Figure 6. The
results showed only small differences in the accuracy when
the mutation rate varied. However, there was a clear ten-
dency to produce higher accuracies for lower mutation
rates. The reason for those differences can be attributed to
the fact that higher mutation rates provide lower LD
between SNP markers and QTL. However, the assumed

mutation rates were extremely high with respect to estima-
tions in the literature (Hodgkinson & Eyre-Walker, 2011;
Kumar & Subramanian, 2002), and, as before, this result
ensures that the output of our base simulation study con-
sists of a conservative estimation of the potential increase
of accuracy that can be achieved with GS in the Spanish
autochthonous beef cattle populations.

4 | CONCLUSIONS

The results of this study showed a potential benefit in
terms of gain in accuracy by implementing a GS

FIGURE 6 Sensitivity analysis with respect to mutation rate. Genotype set used: TH 4,000 genotypes; RG: Rubia Gallega; Pi: Pirenaica;
Mutation rates tested = 1 9 10�3, 2.5 9 10�3, 4 9 10�3; +none: no additional genotypes included; +sires+dams: genotypes of the parents of the
candidates to selection included; +2014: genotypes of the candidates to selection included
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programme for the Spanish autochthonous populations,
even though the genotyping efforts that can be achieved by
the breeders association are intermediate to low. This
improvement can be achieved through the implementation
of the single-step genomic selection approach (Aguilar
et al., 2010; Legarra et al., 2009) that combines genomic-
and pedigree-based relationships into the same relationship
matrix. Under this approach, the pedigree-based relation-
ship matrix sets a lower bound of accuracy, and it is
improved as more individuals with genotypes are incorpo-
rated into the genomic evaluation. As expected, the GS
approach has been found to be more relevant for traits with
low heritability or when records for the candidates to selec-
tion are not available, and only when the candidates to
selection are genotyped. Finally, it is important to mention
that the potential benefits of GS is greater for RG than for
Pi populations, because of the genealogical structure that is
provided by the wider implantation of AI. So, a parallel
increase of the rate of AI along with the genotyping efforts
will lead to a greater success of GS in populations with a
low percentage of AI.
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