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Abstract
We study theoretically the single ionization of noble gas atoms by the combined action of an
attosecond pulse train with linear polarization and an assistant laser field with circular
polarization. We employ a non-perturbative model that under certain approximations gives
closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model
allow us to interpret these angular distributions as two-centre interferences where the orientation
and the modulus of the separation vector between the virtual emitters is governed by the assistant
laser field. Additionally, we show that such a configuration of light fields is similar to the
polarization control technique, where both the attosecond pulse train and the assistant laser field
have linear polarizations whose relative orientation may be controlled. Moreover, in order to
compare our results with the available experimental data, we obtain analytical expressions for the
cross sections integrated over the photoelectron emission angles. By means of these expressions,
we define the ‘magic time’ as the delay for which the total cross sections for atomic targets
exhibit the same functional form as the one of the monochromatic photoionization of diatomic
molecular targets.

Keywords: atoms, photoionization, attopulses, laser

(Some figures may appear in colour only in the online journal)

1. Introduction

Attosecond radiation in the form of isolated pulses and trains
of pulses were obtained in 2001 and became the cornerstone
of the still-growing branch of science called attophysics.
These (trains of) pulses are routinely produced by a high-
order harmonic generation (HHG) process by focusing an
intense ultrashort infrared laser field pulse into a noble gas
atom chamber [1]. Due to the low intensity of the attosecond
pulses obtained in this way, the most fruitful scheme is
achieved by combining the attosecond pulse (train) with a
remanent part of the generating laser, resembling the tradi-
tional pump-and-probe arrangement in time-resolved
spectroscopy.

In particular, the combination of an attosecond pulse train
(APT) with a low intensity near-infrared (NIR) laser field

gives rise to the so-called reconstruction of attosecond beating
by interference of two-photon transition (RABBITT) techni-
que [2]. Although it is possible to obtain attosecond pulse
trains with different properties [3, 4], the simplest ones have a
discrete frequency spectrum containing only the odd harmo-
nics of a given fundamental frequency. Therefore, the pho-
toelectron spectrum for a RABBITT scheme implemented
with these attosecond pulse trains, presents dressed harmonic
lines populated (mainly) by the single-photon ionization of
the target by the APT. Between consecutive dressed harmonic
lines, the spectra presents sideband lines populated mainly by
wavepackets that exchange an additional NIR photon. As a
consequence, the sideband population is produced by wave-
packets that follow different quantum paths and the inter-
ference between them may be controlled changing the delay
between the APT and the NIR (henceforth delay).
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Alternatively, an isolated attosecond pulse in combina-
tion with a stronger NIR leads to the attosecond streak camera
[5, 6]. The ionization of an atomic or molecular target with a
single attosecond pulse produces a photoelectron wavepacket
in the continuum that interacts with the assistant laser field.
This interaction produces a shift in the photoelectron energy
according to the instantaneous value of the NIR vector
potential at the time of the wavepacket injection into the
continuum [5]. In this way, the instantaneous value of
the assistant laser field vector potential may be traced from
the photoelectron spectrum considered as a function of the
delay [7].

More recently, angular streaking was demonstrated [8].
In this scheme, only a strong femtosecond laser field with a
nearly circular polarization is employed. The highly non-
linear ionization probability for this reaction increases in the
small windows of time near the extrema of the electric field,
and thus the ionization instant is mapped to the final angle of
the momentum vector in the polarization plane [8]. Conse-
quently, this scheme is able to produce measurements with
attosecond precision employing only femtosecond lasers.

Another extensively employed configuration is that of
polarization control [9–11]. In this scheme, the vast majority
of experiments are performed with linearly polarized mono-
chromatic ionizing radiation, assisted by a low intensity NIR
laser field with linear polarization along a tunable direction.
Using this configuration for different relative orientations of
the fields it is possible, for instance, to measure the relative
partial wave contributions for a photoelectron in the con-
tinuum [9].

To the best of our knowledge, only one exception to the
rule of monochromatic ionizing radiation for the polarization
control technique is encountered in the literature [12],
whereas the low NIR intensity condition persists even in these
experiments. On the theoretical side, the reason for this may
be traced to the inherently difficult task of taking into account
the contributions from several harmonics and their mutual
interferences [9]. As a consequence of the multiphoton tran-
sitions, an appropriate description of the reaction requires
theoretical treatment beyond the second-order perturbation,
which is not simple at all.

Solving the time-dependent Schrödinger equation for
reactions such as the photoionization of multielectronic
atomic targets assisted by an NIR laser field represents a
challenge for current computational resources [13]. The use of
simplified models leading to predictions in reasonable
agreement with ab initio calculations and/or experimental
results reveals as a valuable option to understand the physical
processes involved, as the numerical results do not often have
a straightforward interpretation.

Nowadays, several models able to describe reactions
assisted by stronger NIR laser fields are available. Among
them, the soft-photon approximation [14] was successfully
applied to study angular distributions in laser-assisted atomic
photoionization by photons from a free-electron laser [9] or
high harmonic generation [13, 15] sources. Moreover, the
separable Coulomb–Volkov (SCV) model was revealed as a
versatile alternative to provide in certain situations quite

accurate results or at least in qualitative agreement with
ab initio calculations for atomic or molecular targets [16–18].

More recently, and based on an extension of the SCV
model [19], we obtained non-perturbative closed-form
expressions for the angular distribution of photoelectrons
ionized by attosecond pulse trains in the presence of an NIR
laser field. These expressions are similar to the ones
corresponding to the monochromatic photoionization of dia-
tomic molecular targets aligned in the direction of the NIR
polarization, with a separation between virtual emitters that
depends on the amplitude and frequency of the NIR electric
field and the delay. An excellent agreement between our
analytical results and the experimental angular distributions
for atomic targets [15, 20] was found.

In this paper, we extend our study of the laser-assisted
photoionization of atomic targets to the case of assistant laser
fields with circular polarization. Moreover, we show that if
the fast stage (photoionization) of the reaction is performed
by an attosecond pulse train of in-phase odd harmonics, the
result is analogous to the polarization control technique for an
assistant laser field with linear polarization along a tunable
direction. Alternatively, the results may be considered as a
crossover between the RABBITT and angular streaking
schemes, where the delay, and thus the instantaneous NIR
electric field direction, is mapped into an specific orientation
of the virtual emitters. Closed-form expressions for angle-
integrated and angle-resolved cross sections of sidebands and
dressed harmonics lines are provided.

Atomic units are used throughout otherwise explicitly
stated.

2. Theory

Let us consider the photoionization of atomic targets by a
train of attopulses arising from HHG assisted by a circularly
polarized monochromatic laser in the NIR region. Let us
assume that the intensity of each harmonic in the train is
sufficiently low, so they may ionize the target only through
single-photon processes [2]. Considering the single-active-
electron approximation, the interaction of the electron in the
atom with the train of attopulses (the first stage of the SCV
approach) may be treated in the frame of the time-dependent
perturbation theory [13, 21]. On the other hand, the assistant
laser field may easily induce multiphoton transitions in the
continuum (the third stage of the SCV approach) requiring a
non-perturbative treatment. Therefore, the transition matrix
amplitude within the dipole approximation in the velocity
gauge is given by

M t t t tp r A p ri d , , , 1f iSCV ò= - áY Y ñ
-¥

¥
( ) ( )∣ ( ) · ˆ ∣ ( ) ( )

where p is the photoelectron momentum associated to the
momentum operator p̂ and tr,i f,Y ( ) are the wavefunctions in
the initial and final channels of the reaction, respectively. The
vector potential tA( ) represents the attosecond pulse train and
it can be expressed as a combination of harmonics with a
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Gaussian envelope,

t AA e e e , 2
j

j
j t ti i 2j0

2
T
2åP= w f t- -( ) ( )

where P is the polarization vector, 0w is the fundamental
frequency and jf is the individual phase of each frequency
component whose amplitude is given by Aj, respectively. The
full-width at half-maximum (FWHM) duration of the train is
related to the parameter Tt through the expression

2 2 ln 2FWHM Tt t= .
The effect of the assistant laser field on the initially

bound atomic states has been considered previously [21–24].
It was shown that bound–continuum transitions from atomic
states with large ionization and excitation energies are barely
affected when the laser field intensity is small or moderate,
and the photoelectron energy is sufficiently far from the
ionization threshold. Therefore, we neglect the polarization
and the ionization due to the assistant laser field. Under this
approximation, the state of the system in the initial channel of
the reaction may be described by the laser-free wavefunction,

tr r, e , 3i i
I t0 i pyY »( ) ( ) ( )

where Ip is the ionization potential associated with the initial
atomic orbital ri

0y ( ).
The final channel of the reaction, where the interaction

between the photoelectron and the assistant laser field is
treated to all orders, is represented through the ansatz
[16, 18, 19],

t t tr r p A, exp
i

2
d , 4f f

t

L
0 2òyY » - + ¢ ¢{ }( ) ( ) [ ( )] ( )

where rf
0y ( ) is the laser-free continuum wavefunction with

asymptotic momentum p. The importance of including the
Coulomb interaction between the released photoelectron and
the parent ion, particularly for photoelectrons with relatively
low kinetic energy, was highlighted in previous works
[21, 23]. A widespread theoretical approach leading to ana-
lytic results is to account for this interaction through the use
of the wavefunction

N Gr r2 e , 5f p
p r0 3 2 iy p= -( ) ( ) ( ) ( )·

that represents asymptotically the Coulomb interaction of
the residual target with the photoelectron, where Np =
e 1 i2 nG +pn ( ), Z pfn = being Zf the net charge of the
residual target and G F prr p ri ; 1; i1 1 n= - - +( ) ( ( · )) is the
confluent hypergeometric function.

In contrast with our previous work [19], where a linearly
polarized assistant laser field was considered, in this case we
take into account a circularly polarized assistant laser field
with vector potential tAL( ) given by,

t t tA
E E

sin cos , 6L
z

L
y

L
0

0
0

0
w

w f
w

w f- - - -( ) ( ) ( ) ( )

and, consequently,

t
t

t
E

A
7L

L= -
¶
¶

( ) ( ) ( )

t tE Ecos sin 8z L y L0 0w f w f- - - ( ) ( ) ( )

where E Ez y=∣ ∣ ∣ ∣ are the amplitudes of the electric field along
the Cartesian axes z and y in the laboratory frame, respec-
tively, and Lf is a phase related to the delay t0 through the
relation tL 0 0f w= .

As we noted previously [19], the transition matrix
amplitudes in equation (1) for an atomic target with initial and
final states described by equations (3) and (4), respectively,
photo-ionized by an in-phase odd-harmonics APT assisted by
an NIR laser, are given by,

M Mp p e e , 9q ph q
p p

SCV
i iq q0 0µ a a-( ) ( )( ) ( )· ·

when the asymptotic photoelectron momentum satisfies the
relation p I U q2q p p

2
0w+ + = , being U E 2p z

2
0
2w= ∣ ∣ the

ponderomotive energy. The plus sign applies to the case of
dressed harmonic (DH) lines, described by an odd integer
number q. On the other hand, the minus sign applies to the
case of sideband (SB) lines, described by an even integer
number q. The monochromatic transition matrix amplitude
M pph q( ) is given by,

M p r ri , 10ph q f r i
0 0y yP= - á  ñ( ) ( )∣ · ∣ ( ) ( )

and the vector 0a corresponds to the classical excursion of a
free electron in the presence of the electric field tEL( ), eval-
uated at time t=0. Considering the vector potential tAL( ) in
equation (6), we get for the classical excursion vector,

t t tA d 11
t

Lòa = ¢ ¢( ) ( ) ( )

t t
E E

cos sin , 12z
L

y
L

0
2 0

0
2 0

w
w f

w
w f= - - -( ) ( ) ( )

that evaluated at time t=0 yields,

E E
0 cos sin , 13z

L
y

L0
0
2

0
2

a a
w

f
w

f= = +( ) ( )

indicating that the orientation of the vector 0a depends on the
delay Lf . As according to equation (9) the virtual emitters are
located at 0a , we may define the separation vector as
R 2L 0a= to finally get the following expressions for the
differential cross section of SB and DH lines,

Mp p p R
d

d
sin 2 SBs 14

e
q ph q q L

2 2s
W

µ( ) ∣ ( )∣ ( · ) ( ) ( )

Mp p p R
d

d
cos 2 DHs 15

e
q ph q q L

2 2s
W

µ( ) ∣ ( )∣ ( · ) ( ) ( )

respectively, where d sin d de e e eq q fW = is the differential
solid angle element in the photoelectron emission direction as
measured from the polarization vector P. Detailed analyses
of the physical interpretation of the vector RL as well as the
expected behaviour in the low NIR intensity limit of the
above expressions can be found in [19].

We point out here that the differential cross sections for
the ionization of an atom by a sequence of in-phase odd
harmonics in the presence of a circularly polarized NIR are
analogous to those of the monochromatic ionization of a
homonuclear diatomic molecule with internuclear separation
RL [25–28], whose orientation is given by the instantaneous
NIR electric field direction at time t=0. In this analogy (see
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a pictorial representation in figure 1), the DHs (SBs) play the
role of the bound–continuum transition of molecules from an
initial state of gerade (ungerade) symmetry.

In addition, the equations (14) and (15) bear some
resemblance with the ones describing some interference
effects in the recombination step of the HHG process in
aligned molecular targets [29–31]. In turn, the suppression of
the harmonic emission observed in that process, for some
photon energies, was attributed to this interference mech-
anism [31–33]. In the latter, the crucial parameters to describe
the phenomenon are the molecular orientation and the de
Broglie wavelength of the photoelectron p2q ql p=( ).
Therefore, this allow us to identify some parallelisms between
our results for atomic targets with those for the HHG in
aligned molecular targets.

In our previous work on linearly polarized assistant laser
fields [19], we showed that a change in the delay results in
different values for the modulus of RL. In contrast, for the
circularly polarized assistant laser field considered here a
change in the delay Lf gives place to different orientations of
the vector RL, whereas its modulus is preserved.

In figure 1, we show a pictorial representation of the
reaction corresponding to the ionization of an atomic target by
an attosecond pulse train assisted by a circularly polarized
laser field. The single-photon ionization of the target is
induced by the APT with in-phase odd harmonics linearly
polarized along the z axis in the laboratory frame. Due to the
APT temporal structure, containing two opposite pulses per
NIR cycle, the reaction is characterized by the interference of
the signals emerging from two virtual emitters located at

0a . Moreover, as indicated in equation (13), the position of
the virtual emitters is related to the NIR electric field prop-
erties and, therefore, different orientations of the virtual dimer

may be obtained changing the delay Lf . Finally, as the
instantaneous assistant laser field vector at the ionization
times points to the specific directions 0a , this behaviour is
reminiscent to the polarization control [9, 12] and/or the
angular streaking [8], or even the HHG process for oriented
molecular targets [31, 32].

To calculate the photoionization differential cross
sections (or alternatively, the angular distributions) for atomic
targets by using equations (14) and (15), we need to compute
the square modulus of the monochromatic photoionization
amplitude M pph q( ). Now, provided that the magnetic sub-
levels of the atomic target are equally populated, the differ-
ential cross sections for the photoionization by linearly
polarized monochromatic radiation has the general form [34],

P Mp p
d

d 4
1 cos , 16

at

e
q e ph q

tot
2

2s s
p

b q
W

= + µ( ) [ ( )] ∣ ( )∣ ( )
( )

where tots is the total photoionization cross section, β is the
asymmetry parameter, and P x x3 1 22

2= -( ) ( ) is the sec-
ond-order Legendre polynomial.

The measurement of angularly resolved cross sections for
these reactions is not simple at all and, usually, the available
experimental data are given in the angle-integrated form.
Therefore, analytical expressions for the total cross sections
for these reactions may be useful for the interpretation of the
photoelectron spectra. Keeping this in mind, we present in
the following the results for the cross sections integrated over
the photoelectron emission angles, corresponding to SB and
DH lines. From equations (14), (15) and (16), the angle-
integrated cross sections for SB and DH lines are given by,

p P
p R

p R4
d 1 cos

sin 2

cos 2

17

q e e
q L

q L

tot
2

2

2òs
s
p

b qµ W +
⎪

⎪

⎧
⎨
⎩

( ) [ ( )]
( · )

( · )

( )

After integration, the total cross sections reads (see appendix),

p j p R j p R P
2

1 cos , 18q q L q L
tot

0 2 2s
s

bµ  Q( ) [ ( ) ( ) ( )] ( )

where Θ is the polar angle defining the direction of the vector
RL in the laboratory frame and jn(z) is the spherical Bessel
function of order n. As before, taking account the definition
R 2L 0a= , equation (13) provides the link between the
direction of the vector RL and the delay through
tan tan LfQ = . Thus, the total photoionization cross sections
depend on the delay through the variable Θ, on the laser
intensity through the modulus RL and on the asymptotic
photoelectron momentum modulus pq.

In addition, an interesting result may be obtained from
equation (18). Supposing that p pq q 1~ + , the sum

p pq q 1s s+ +( ) ( ) gives the total cross section tots corresp-
onding to the monochromatic photoionization of the target.
This analytical expression accounts for the population transfer
between sidebands and dressed harmonic lines previously
observed in theoretical [35] and experimental [9] results.
Moreover, this population transfer expresses the fact that the
assistant laser field does not contribute to the primary pho-
toionization process [9]. In this case, the role of the assistant

Figure 1. Pictorial representation of the reaction. A linearly polarized
APT photoionizes an atomic target in the presence of a circularly
polarized assistant laser field. The photoelectron angular distribution
for the reaction is modulated by the interference of signals arising
from two virtual emitters (dark grey spheres). The polar angle Θ is
related to the delay Lf through the relation tan tan LfQ = .
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laser field is limited to merely redistribute the probabilities
among the accessible final states.

3. Results and discussion

We present in figure 2 our results for the total cross sections of
several SB and DH lines, corresponding to the photoionization
of an atomic Ar target by an in-phase odd-harmonics APT,
assisted by a circularly polarized NIR laser with a wavelength
of 810 nm. These results are obtained from equation (18) for
an NIR laser intensity of I 1 10L

12= ´ W cm−2, and the
corresponding β values are interpolated from theoretical data
[36]. Additionally, we show in figure 2(a) the available
experimental results for the polarization control scheme,
obtained for different relative orientations between the APT
and a linearly polarized assistant laser field [12].

In this case, we observe satisfactory agreement between
our analytical results and the experiments for the higher-order

sidebands. In contrast, the experimental results for the lowest
order sidebands (SB14, SB16) are overestimated by our
model, although a qualitative description is obtained. The
reasons for these quantitative discrepancies are not clear.
Firstly, as the experimental results show the same functional
behaviour for all the sidebands, the influence of the resonant
s np3 - excitations may be neglected [12]. Moreover, the
discrepancies cannot be explained by the presence of higher-
order transitions in the continuum, because they are included
to all order in our model. Instead, its origin may be related to
effects not taken into account, or even an inaccuracy of the
model for low photoelectron energies. However, our model
was proved to be correct in a more stringent test such as the
photoelectron angular distributions for the same atomic target
with similar photoelectron energies and laser field intensities
[19]. Therefore, it is not clear why the integrated cross
sections are not well reproduced.

One could argue that deviations come from the fact that
we are employing harmonics with constant phase and
amplitudes. However, we have checked that a restricted
model considering continuum–continuum transitions up to
one NIR photon [19] with amplitudes and phases of each
neighbour harmonic taken as a free-fitting parameter is also
unable to improve the description. The reason behind this
behaviour may be traced to the inherent spatial and temporal
separation in the SCV model [16, 18]. As a consequence, the
amplitude and phase of each neighbour harmonic to a given
sideband can be factored from the squared modulus of the
transition matrix amplitudes, in the second-order perturbative
limit of our model [37]. In turn, this leads to sidebands
independent of these quantities when they are normalized.

Additionally, the predictions of our analytical non-
perturbative model are in very good agreement with pre-
viously reported theoretical results [12] that, for the sake of
clarity, are not shown here. Moreover, we have checked that
the differences between our theoretical results and those from
[12] are smaller than approximately 4% (or 12%, depending
on the set of β values considered) for every sideband index q.
This result is not coincidental. As a matter of fact, by taking a
series expansion of each spherical Bessel function in our
result of equation (18) and retaining terms up to the second
order, the normalized total cross sections for SB lines read,

1
3 sin

5 2
, 19SB

2
s

b
b

µ -
Q

+

⎛
⎝⎜

⎞
⎠⎟ ( )

a result that is exactly the same as the one obtained in [12] for
the normalized SB signals in the polarization control scheme.
Moreover, our result is valid independently of the symmetry
of the initial state as in [11].

The small discrepancies between both theoretical results
may be understood by recalling that the characteristic number
of NIR photons exchanged by the photoelectron and the
assistant laser field may be estimated from N p ELeff 0

2w~ ∣ ∣
[37, 38]. Therefore, as N 1eff ~ for the present conditions, the
perturbative expansion in equation (19) represents a good
approximation to our full-order results for the cross sections

Figure 2. (a) Angle-integrated (total) cross sections of several
sideband lines as a function of the relative angle Θ, for atomic Ar
targets. The different lines indicate our results obtained by means of
equation (18) and the different symbols the experimental results
from [12]. (b) Same as (a) but for the dressed harmonic lines.

5

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 235604 D I R Boll and O A Fojón



integrated over the photoelectron emission angles, as shown
in equation (18).

On the other hand, figure 2(b) shows the results for the
dressed harmonics lines, where the opposite trend is observed
since the signal for each line grows with the index q. This
may be related to the population transfer between sidebands
and dressed harmonic lines mentioned at the end of the pre-
vious section. As before, the assistant laser field does not
contribute to the primary photoionization process so any
change in the SB (DH) lines is (approximately) compensated
with an opposite variation in the DH (SB) lines.

Additionally, equation (18) may be recast into a more
usual form,

P1 cos , 20SB,DH SB,DH 2s bµ + Q[ ( )] ( )

with a modified asymmetry parameter given by,

j p R

j p R1
, 21

q L

q L
SB,DH

2

0

b
b

= 


( )
( )

( )

where the upper (lower) sign corresponds to the SB (DH)
lines case. Consequently, the total cross section for SB and
DH lines as a function of the delay, for a given assistant laser
field, behaves as the differential cross section for the mono-
chromatic photoionization by linearly polarized radiation with
a modified asymmetry parameter, and where the polar angle
Θ in the former plays the role of the photoelectron emission
direction in the later. Moreover, this analogy also applies to
the molecular case, where the angular distribution of photo-
electrons emitted from randomly oriented molecular targets
follows the same functional behaviour [39]. Again, the polar
angle Θ plays the role of the photoelectron emission angle.
Generally, these results are a consequence of conservation of
parity and angular momentum [39–41]. We will return to this
point later when we discuss the angle-resolved cross sections.

Moreover, as the modified asymmetry parameters defined
in equation (21) depend on the asymptotic photoelectron
momentum pq and the assistant laser field intensity through
the variable RL, we study their dependence with the product
p Rq L. The results corresponding to the modified asymmetry
parameters as a function of p Rq L obtained with equation (21)
are shown in figure 3 by the full lines. Additionally, we show
the results for the first term in a Taylor series expansion of
equation (21).

As can be seen, for DH lines, the first term in the Taylor
series expansion for the modified asymmetry parameter is
nearly identical to the full results in the range of p Rq L values
considered previously (grey-shaded area). This behaviour is
consistent with the physical picture of undisturbed DH lines
by the presence of neighbour harmonics in the low NIR laser
intensity limit. In contrast, for SB lines, including the con-
tinuum–continuum transitions to all order leads to a smaller
modified asymmetry parameter as compared with the one
given by the first term in the Taylor series expansion of
equation (21). This, in turn, qualitatively explains the small
differences encountered when comparing the results for the
total cross sections of sideband lines obtained by means of
equations (18) and (19).

In addition, the transformed asymmetry parameters given
by equation (21) remain inside the same limits for the usual β
parameter, i.e., 1 2 b- [34]. Just a visual inspection of
figure 3 is sufficient to conclude that 0.7, 0.8SB,DHb Î -( ],
for every possible β value. This feature of the modified
asymmetry parameter prevents the observation of zeros for
the total cross sections induced by the assistant laser field.
However, an appropriate choice of the parameters pq , RL and
Θ may lead to the obtention of cross sections several times
smaller than the total atomic cross section in the monochro-
matic case for the same photoelectron kinetic energy.

In addition, the crossing of the curves for SBb and DHb
occurs at the zeros of j z2 ( ) predicting a cross section for SB
and DH lines independent of the relative polarization angle Θ.
This, in turn, indicates that the dependence of the total cross
section with the delay is lost for these values of p Rq L. Of
course, these values of the product p Rq L may require
exceedingly high intensities of the assistant laser field for
small values of the asymptotic momentum pq, leading to a
possible breakup of our model. However, for photoelectrons
with high enough kinetic energy, the laser field intensity
required to achieve this behaviour fulfils the validity condi-
tions of our model.

Furthermore, for every value of the product p Rq L if
the delay is equal to 54.7Lf ~  then, as LfQ = the
equation (18) reduces to p R p R1 sin q L q Ltots ( ( ) ), i.e., the
total photoionization cross sections of the atomic target
multiplied by the Cohen–Fano interference factor [25]. So, we
can call this delay as ’magic time’ in analogy with the well-
known magic angle for the monochromatic photoionization.
Additionally, we point out here that a similar expression for
the total photoionization cross sections for diatomic molecular
targets may be obtained after integration over the molecular
orientation and the photoelectron emission direction. In turn,
as shown in [28, 42], such an expression may be used to

Figure 3. Modified asymmetry parameters for SB and DH lines as a
function of p Rq L, as given by equation (21) (full lines). The crosses
and circles correspond to the first term in a Taylor series expansion
of equation (21) for SB and DH lines, respectively. The grey-shaded
region indicates the range of values p Rq L corresponding to the

figure 2, and the arrows show the values for which the modified β for
SH and DH lines are zero.
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analyse the oscillatory behaviour associated with inter-
ferences due to the coherent emission in the total photo-
ionization cross sections of diatomic molecular targets,
particularly at high photoelectron energies. Therefore, for a
delay equal to the magic time, the analytical results for the
total cross sections for the laser-assisted photoionization of
atomic targets obtained with our model reduce to the
(asymptotic) total cross sections corresponding to a diatomic
molecular target. An analogous situation is found when

0SB,DHb = , but in this case the result is independent of the
delay.

As previously noted for the molecular photoionization
case [39, 43], much clearer evidence of the interference
mechanisms may be obtained from the fully differential cross
sections. Moreover, in a previous paper [19] we found the
conditions for the obtention of totally constructive or
destructive interferences for SB and DH lines in the laser-
assisted photoionization of atomic targets by a train of atto-
second pulses. In the latter, we consider that both the atto-
second pulse train and the assistant laser field are linearly
polarized. Therefore, a variation of the delay Lf translates into
different values of RL. In contrast, for the circularly polarized
assistant laser field considered here, a modification of the
delay implies a different orientation of RL while its modulus
is preserved. Moreover, from the above analysis, it is
expected that RABBITT-like reactions employing an assistant
laser field with arbitrary elliptical polarization behave as a
mix of the linear and circular cases.

In order to gain a deeper insight on the effects induced by
the totally constructive and destructive interferences for the
reaction of interest, we calculate the angle–delay spectra for
atomic Ar targets and two different NIR intensities by means
of equations (14) and (15). Additionally, as the equation (13)
indicates that the delay Lf is mapped identically to a definite
orientation of the vector R 2L 0a= , these spectra may be
associated with angle–angle spectra. One of these angles eq( )
corresponds to the electron emission polar angle and the other
Q( ) to the relative angle between the polarization direction of
the APT and the vector RL indicated in figure 1. These
spectra, corresponding to emissions into the plane yz

2ef p=( ) in the laboratory frame, are shown in figure 4.
It can be seen that the spectra for the SB18 remain almost

unchanged when the NIR intensity is increased, except in the
middle part where minor differences are observed. This
finding may be related to the fact that sidebands are less
sensitive to variations in the laser intensity, as shown pre-
viously for the case of an assistant laser field with linear
polarization [19]. The condition for obtaining totally
destructive interferences in sideband lines for an emission at
angles other than p Rq L^ requires twice the photoelectron
momentum (or, alternatively, twice the electric field ampl-
itude) compared to the dressed harmonic lines case. As
expected, the totally destructive interferences for emission in
a direction perpendicular to RL, indicated by the dashed lines
in figures 4(a) and (b), are obtained, irrespective of the laser
intensity.

In contrast, the spectra for the dressed harmonic line
DH19 in figures 4(c) and (d) show profound modifications

when the assistant laser field intensity is increased. This is in
agreement with the linear polarization case [15, 19, 20] where
the angular distributions corresponding to these spectral lines
evolve notably even for small changes in RL. For the lower
intensity case in figure 4(c), two lobes may be identified
corresponding to the totally constructive interference for
electron emission in the direction perpendicular to RL. This
constructive interference mechanism is preserved regardless
of the assistant laser field intensity. In contrast, for the higher
intensity case in figure 4(d), the product p R 2q L· satisfies
(for certain emission angles) the condition for the obtention of
totally destructive interferences. This interference pattern is
highlighted in figure 4(d) by the dashed oblique lines that
indicate a forbidden photoelectron emission for those
conditions.

To analyse further these angle-resolved photoelectron
spectra, we calculate the three-dimensional photoelectron
angular distributions (PADs) for both laser intensities and
some representative delays (different Θ values). The results
are shown in figure 5 and, in general, it can be seen that
changing the delay in a quarter of the period
T 2 2.7 fsL 0p w= ~( ) of the assistant laser field induces
strong variations in the PADs allowing thus the sub-femto-
second control of the photoelectron angular distributions.

Let us begin the analysis of these angular distributions by
studying the results for the sideband SB18. According to
equation (14), the PADs for these spectral lines present a
nodal plane perpendicular to RL irrespective of the NIR
intensity. The presence of such nodal planes is more evident
for the delays 0, 2pQ = where xy and xz, respectively, are
the corresponding planes in the laboratory frame.

In particular, the PADs for 0Q = show a pseudo-p
character which is qualitatively consistent with the results
expected from the dipole selection rules: starting from an
initial orbital with p symmetry and considering that the
sidebands are populated by transitions involving the exchange
of an even number of photons (one APT photon plus an odd
number of NIR photons), only wavepackets associated to an
odd angular momentum value may be populated.

Alternatively, to understand these results it is helpful to
expand the angular distributions in spherical harmonics. As
usual for diatomic molecular targets [39], the expansion is
done in the molecular frame where the quantization axis is
given by the internuclear separation vector. In our case, this
role is played by the vector RL. After lengthy but otherwise
straightforward calculations that we omit here for the sake of
brevity, we get,

A Yp
d

d
, 22q

L M
L M L M

0

even

2

2

, ,å ås
q f

W
µ ¢ ¢

= =-

( ) ( ) ( )

where q¢ and f¢ are the polar and azimuthal angles, respec-
tively, that define the photoelectron emission direction in the
molecular reference frame. Interestingly, for the differential
cross sections given by the equations (14) and (15), the
coefficients AL M, can be obtained in closed form. The
expression shown in equation (22) is in full agreement with
previous theoretical results for the resonant multiphoton
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ionization of isotropically distributed atomic or molecular
targets in gas phase [41] and they result from the conservation
of parity and angular momentum [40]. At variance with the
results for the resonant multiphoton ionization, in our case the
target is ionized after the absorption of only one APT photon
and this property of the reaction is the responsible for the
constraint M 2∣ ∣ .

It can be shown that for 0Q = the expansion in
equation (22) reduces to

A Yp
d

d
, , 23q

L
L L

0

even

,0 ,0ås
q f

W
µ ¢ ¢

=

( ) ( ) ( )

indicating that the pseudo-p character observed for the SB18
with 0Q = is obtained combining spherical harmonics with
the opposite parity which, in turn, satisfy the expected up-
down symmetry in the molecular frame for these angular
distributions. We want to stress here that these expansions in
spherical harmonics usually show a quick convergence
towards the results obtained with the full expressions. In turn,
this means that a reasonable convergence is obtained after
considering only a few values of L. For the lower intensity,
the most important contribution comes from the term with
A2,0 closely followed by the one with coefficient A0,0. For the

Figure 4. Angle–delay Q( ) spectra for the SB18 and the DH19 spectral lines corresponding to the photoionization of atomic Ar targets by a
linearly polarized attosecond pulse train assisted by a laser field with circular polarization and different intensities. The dashed lines indicate
the existence of totally destructive interferences.
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higher intensity, the ordering in importance of these coeffi-
cients is reversed.

In contrast, for 4pQ = the symmetry of the system is
broken and the full expression in equation (22) must be
employed. However, a pseudo-p character may still be identified.
Moreover, the skewing of the photoelectron angular distributions
with respect to the vector RL is a consequence of the contribu-
tions with M 1=  [41]. An increase of the laser intensity
implies larger contributions of these terms with a corresponding
augmented skewing of the PADs, as can be seen upon com-
parison of the results for the lower and the higher NIR intensities.

The results for 2pQ = are more interesting as they
resemble the (real) spherical harmonic Y2, 1- , in apparent
contradiction with the qualitative results expected from the
dipole selection rules for sideband lines. Additionally, these
results cannot be easily explained by means of equation (22),
as the only restriction for the coefficients in this case is given
by A 0L, 1 = . In the lower intensity case, the properties
observed in the PAD are a consequence of the nodal plane
predicted by equation (14) that bisects the monochromatic
angular distribution in the xz plane.On the other hand, for the
higher intensity besides to the nodal plane perpendicular to
RL, totally constructive interferences are predicted for emis-
sion angles 45q¢ ~  explaining the signal increase as com-
pared with the lower intensity case.

Finally, the results for the dressed harmonic line DH19
show remarkable changes for the delay 0Lf = when the
intensity of the assistant laser field is modified. In this case, the
strong modification of the probability of emission in the classical
direction may be understood by means of the ratio between the
de Broglie wavelength p2q ql p= associated to the photo-
electron and the modulus of the vector RL. Whereas the
wavelength for a photoelectron in the spectral line DH19 is

6.4ql = , the values for RL corresponding to the lower and the
higher intensities are 2.4 and 4.8, respectively. Consequently, for
the lower intensity the interference factor in equation (15) is
close to the totally destructive interference condition and
explains the smaller photoelectron signal as compared to the
PAD with the higher NIR intensity. For the delays

4, 2Lf p p= , the PADs are similar for both intensities, except
for the larger skewing and the additional lobes nearly coincident
with RL in the case with 4Lf p= and the larger NIR intensity.
As in the sidebands case, the skewing may related to the con-
tributions AL M, with M 1=  in equation (22).

4. Conclusions

We generalize our recently developed non-perturbative model
for the laser-assisted photoionization of atomic targets by
attosecond pulse trains to the case of an assistant laser field
with circular polarization. At variance with our previous
results for an assistant laser field with linear polarization in
[19] where the delay dependence is mapped to different
separations of the virtual emitters predicted by the model, in
this case the delay dependence is translated into different
orientations of these virtual emitters whereas the distance
between them is preserved. In addition to the expressions for
the angle-resolved cross sections, we present analytical results
for the angle-integrated ones. The latter are compared with the
available experimental results for the polarization control
technique, showing an overall good agreement with regards to
the delay dependence particularly for the sidebands of higher
order. Moreover, the results of our model show that the dis-
crepancies between theoretical and experimental results for
the sidebands of lower index are not related with continuum–

continuum transitions of order higher than one.
Additionally, we show that the expressions for the angle-

integrated cross sections may be recast into a well-known
expression for the angular distribution of photoelectrons. In
that case, the role of the polar emission angle is played by the
polar angle defining the orientation of virtual emitters. In
addition, we provide the expression for the modified asym-
metry parameters corresponding to sidebands and dressed
harmonic lines. The analysis of these modified asymmetry
parameters allow us to conclude that, within the validity range
of our model, the assistant laser field is not able to induce
zeros in the total cross sections. However, an appropriate

Figure 5. Three-dimensional photoelectron angular distributions in the SB18 and DH18 for some selected delays corresponding to
0, 4, 2p pQ = and two different values of the assistant laser field intensity. The spatial orientation of the virtual emitters in indicated with

two dark grey spheres. The indicated scaling factor for each PAD is calculated relative to the PAD for DH19, 2pQ = and the lower
intensity.

9

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 235604 D I R Boll and O A Fojón



selection of the system parameters gives place to a total cross
section several times smaller than the monochromatic one
and, more importantly, our results show that the total cross
sections may be controlled just by changing the delay
between the attosecond pulse train and the assistant laser field.

Moreover, we show that there exist a particular delay,
that we call ‘magic time’, for which the total cross sections for
the ionization of atomic targets by a train of attosecond pulses
assisted by a circularly polarized laser field assume the same
functional form corresponding to the total cross sections for
the monochromatic photoionization of molecular targets
given by Cohen–Fano.

Finally, we turn our attention to the angle-resolved cross
sections. We find that the expansion of the angular distribu-
tions into a combination of spherical harmonics is in full
agreement with previous results for the resonant multiphoton
ionization of isotropically distributed targets. In addition, in
our case, it is possible to obtain closed-form expressions for
the coefficients in the expansion. These analytical results were
employed to analyse the three-dimensional angular distribu-
tions obtained for different delays and intensities of the
assistant laser field. Moreover, we show that by controlling
the delay and the assistant laser field intensity it is possible to
manipulate the photoelectron angular distributions by means
of the interference mechanisms involved.

We expect that our results will be useful for promoting
the research line of RABBITT-like experiments assisted by
stronger infrared laser fields, by providing simple and yet
accurate expressions for the observables of the reaction that
account for the higher-order continuum–continuum transi-
tions populating the different spectral lines when the intensity
of the assistant laser field exceeds the limit imposed by the
second-order approximations usually employed. Moreover, it
is envisaged that employing chirped attosecond pulse trains
and/or assistant laser fields with arbitrary elliptical polariza-
tion might lead to additional control mechanisms as observed
previously for the high-order harmonic generation technique
in molecular targets. Work in this direction is in progress.
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Appendix

In this appendix we provide an outline of the calculations
performed to obtain the total cross sections as a function of
the delay for SB and DH lines given in equation (18). These
expressions are obtained integrating the equations (14) and
(15) over the photoelectron emission angles, respectively, and

are given by,

p P
p R

p R4
d 1 cos

sin 2

cos 2

A.1

q e e
q L

q L

tot
2

2

2òs
s
p

b qµ W +
⎪

⎪

⎧
⎨
⎩

( ) [ ( )]
( · )

( · )

( )

The scalar product p R 2q L· may be written as,

p Rp R

2 2
sin sin cos cos cos ,

A.2

q L q L
e e eq f q= Q - F + Q

·
[ ( ) ]

( )

where the angles Θ and Φ define the orientation of RL in the
laboratory frame. Additionally, using the half-angle formulae to
expand the squared trigonometric functions in equation (A.1) as

p R1 cos 2q L[ ( · )] , respectively, it is possible to split the
integral above as,

p I I I I I I
4

, A.3q
tot

1 2 3 4 5 6s
s
p

µ + + + + +( ) [ ] ( )

where,

I d
1

2
2 . A.4e1 ò p= W = ( )

For the integral I2 we obtain,
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e q L e e

2
0

0

2

ò

ò

q q q
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p
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where the integral over ef can be obtained from [44]. The I2 term
results,

I p R

J p R

d sin cos cos cos

sin sin , A.6

e e q L e

q L e

2
0

0

òp q q q

q

= Q
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which after the variable change cos ex q= , may be integrated as
[44],

I
p R

p R
j p R2

sin
2 , A.7

q L

q L
q L2 0p p= = 

( )
( ) ( )

where j z0 ( ) is the spherical Bessel function of zeroth order. For
I3 we get,

I p R
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1

2
d sin sin cos cos

d sin cos sin sin , A.8
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3
0
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being,

I 0, A.93 = ( )

as the integral in the ef variable vanishes identically. For the
integral I4, after a trivial integration over the angle ef , we find,

I d Psin cos A.10e e e4
0

2òpb q q q=
p

( ) ( )

0. A.11= ( )

For the integral I5 we obtain,
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where the integral over ef is solved as before to give,
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The last integral is tabulated as finite Gegenbauer integrals [45],
with the result,

I
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cos A.14
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q L5 2 5 2pb
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j p R P2 cos , A.15q L2 2pb=  Q( ) ( ) ( )

where j z2 ( ) is the spherical Bessel function of second order.
Finally, for I6 we get,
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as the integral over ef vanishes identically as in I3.
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