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Conclusion The present work provides novel data con-
cerning the preventive actions of glycerol during the devel-
opment of liver cancer and represents an economically fea-
sible intervention to treat high-risk individuals.
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Introduction

Glycerol (propane-1,2,3-triol) is a viscous, colorless and 
odorless liquid, with sweet taste and completely soluble in 
water and alcohols. Because of its physicochemical proper-
ties glycerol is used in a great number of commercial prod-
ucts including cosmetics, personal care products, pharma-
ceutical formulations, foods and beverages [1, 2]. Glycerol 
use is increasing in food industry. Since it gives sweet taste 
but it does not induce insulin secretion during digestion, 
glycerol is commonly used as an artificial sweetener, espe-
cially in low-fat foods. Glycerol is also used as a thickening 
agent and a preserving additive in a variety of comestible 
products [3]. Besides, it has been proposed the use of glyc-
erol as a food supplement in animal diets and it has also 
been used for rehydration or exercise performance in ani-
mals and even humans [4, 5]. Toxicity data for oral glycerol 
administration indicate that it is safe, with infrequent side 
effects [6].

In clinical practice, glycerol has been used as an osmotic 
adjuvant for controlling intracranial pressure [7]. It has 
also been reported that glycerol inhibits in  vitro prolif-
eration in various cell types [8] and decreases the cerebral 
growth of neonatal rabbits [9]. In the liver, glycerol has a 
potent growth inhibitory effect in vivo during regeneration 
after partial hepatectomy and in  vitro in mitogen-induced 
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hepatocyte cultures as well as in a human HCC cell line 
[10]. However, the mechanisms involved in the antiprolif-
erative actions of glycerol have not been deeply explored.

Hepatocellular carcinoma (HCC) is one of the most 
lethal tumors worldwide and its prognosis largely depends 
on tumor stage at the moment of diagnosis. Incidence of 
HCC has continuously increased over the last years and 
improved surveillance could be associated with identifi-
able high-risk patients, like those with chronic liver disease 
originated from viral infections, high alcohol consump-
tion or non-alcoholic steatohepatitis, among others [11]. 
In these patients, liver preneoplastic foci of altered hepato-
cytes emerge months or years before the diagnosis of HCC 
[12]. Similar preneoplastic lesions are found in rodents dur-
ing early stages of liver cancer induced by chemicals [13].

In the present study, we analyzed whether oral admin-
istration of glycerol during the early stage of rat liver 
carcinogenesis is capable of reducing preneoplastic foci 
development. We also attempt to elucidate the molecular 
mechanisms associated with this phenomenon.

Materials and methods

Reagents and chemicals

Diethylnitrosamine (DEN), 2-acetylaminofluorene (2-AAF) 
and glycerol were obtained from Sigma Chemical Co. 
(St. Louis, MO, USA). Anti-pi class of rat glutathione 
S-transferase (rGST P) was from Stressgen Bioreagents 
(Ann Arbor, MI, USA). Cy3 fluorescent secondary anti-
body was purchased from Jackson ImmunoResearch Labo-
ratories, Inc. (West Grove, PA, USA). Antibodies against 
proliferating cell nuclear antigen (PCNA), p53, p21, cyclin 
D1, cyclin E, cyclin A, cyclin B1, cdk1 (cyclin-dependent 
kinase 1), cdk2, Bax, Bcl-2, Bad, PUMAα/β, cytochrome 
c, p-Akt (Ser473), and Akt were from Santa Cruz Biotech-
nology (Santa Cruz, CA, USA). Anti-p-JNK 1/2/3 (Thr183/
Tyr185), anti-JNK1/2/3 (against JNK 1 and 2/3 isoforms), 
anti-p-Erk1/2 (Thr202/Tyr204) and anti-Erk1/2 (against 
Erk 1 and 2 isoforms) antibodies were purchased from 
Cell Signaling Technology (Danvers, MA, USA). Pierce 
enhanced chemiluminescence (ECL) Western Blotting 
Substrate was from Thermo Fisher Scientific (Rockford, IL, 
USA). All other chemicals were of the highest grade com-
mercially available.

Animals and treatment

Experimental protocols were performed according to the 
NIH “Guide for the Care and Use of Laboratory Animals” 
(Publication no. 25–28, revised 1996) and approved by the 
local animal care and use committee (Permission 6060/234, 

FBioyF, UNR). Adult male Wistar rats were subjected to a 
2-phase (initiation–promotion) model of hepatocarcinogen-
esis, as previously described [14]. All animals received 2 
necrogenic doses of DEN (150 mg/kg body weight, intra-
peritoneally) 2 weeks apart (initiation phase). The promo-
tion stage began one week after the last injection of DEN; 
all rats received 2-AAF (20 mg/kg body weight) by gavage 
4 consecutive days per week during 3 weeks. Before the 
start of the initiation–promotion treatment, animals were 
divided into two goups of six rats each: IP group, animals 
received the carcinogenic treatment plus a saline solution 
(glycerol vehicle); and IPGly group, they received the car-
cinogenic treatment plus 200 mg/kg body weight glycerol 
administered by gavage once a week, 2 hs before DEN or 
2-AAF treatment. A scheme of the experimental protocol 
is shown in Supplementary Fig.  1. As glycerol is rapidly 
absorbed and distributed between liver, blood and skeletal 
muscle within 1–2  h after ingestion [15], no interference 
was expected between glycerol and the carcinogenic drugs.

Animals were anesthetized with ketamin/xylazine (100 
and 3 mg/kg body weight, respectively) and sacrificed by 
exsanguination at the end of the sixth week. Blood samples 
were collected and livers were removed and processed.

Serum‑free glycerol and enzymes activities 
determination

Serum-free glycerol was determined in serum samples 
using Free Glycerol Determination Kit (Sigma Chemical 
Co.). Alanine and aspartate aminotransferases (ALT and 
AST, respectively) and alkaline phosphatase (ALP) were 
determined spectrophotometrically in fresh serum by com-
mercial kits (Wiener Lab, Rosario, Argentina).

Immunofluorescence detection and quantitation 
of rGST P‑positive preneoplastic foci

Immunohistochemical detection of rGST P is the chosen 
method for identification and quantification of preneo-
plastic foci [16]. Immunofluorescent detection of rGST 
P-positive foci was performed as previously described [17]. 
Images were analyzed using ImageJ software (US National 
Institutes of Health, Bethesda, MD, USA). The number 
of preneoplastic foci per liver and the percentage of liver 
occupied by foci were calculated according to the modified 
Saltykov’s method [18].

PCNA detection and proliferative index determination

Immunohistochemical staining of PCNA protein was per-
formed following the method of Greenwell et al. [19]. Pro-
liferative cells inside the foci and in the surrounding tissue 
were distinguished by analyzing consecutive section slides 
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stained with anti-rGST P. The PCNA proliferative index 
was defined as the number of proliferative cells (in  G1, S, 
 G2 and M phases) per 100 hepatocytes counted in 10 high-
power fields. Preneoplastic hepatocytes in each phase of 
the cell cycle were also determined by a blinded histologic 
analysis, using specific PCNA staining patterns, as previ-
ously described [17, 20]. Data were expressed as percent-
age of preneoplastic cells in each stage of the cell cycle.

Western blot analysis

Whole liver samples were homogenized in 300  mM 
sucrose with protease and phosphatase inhibitors. Cyto-
solic, mitochondrial and nuclear extracts were prepared as 
previously described [14, 17]. Equal amounts of protein 
were subjected to electrophoresis on 12% SDS–polyacryla-
mide gels and transferred onto polyvinyl difluoride mem-
branes (PerkinElmer Life Sciences, Boston, MA, USA). 
Membranes were blocked, washed and incubated overnight 
at 4 °C with primary antibodies. Finally, membranes were 
incubated with peroxidase-conjugated secondary antibod-
ies and bands were detected by the ECL detection system 
and quantified by densitometry using the Gel-Pro Analyzer 
software (Media Cybernetics, Silver Spring, MD, USA). 
Equal loading and protein transference were checked by 
Ponceau S staining of the membranes.

Caspase‑3 activity assay

Caspase-3 activity was determined using EnzChek Cas-
pase-3 Assay Kit #1 (Molecular Probes Inc, Eugene, OR, 
USA), according to the manufacturer’s suggestions.

Determination of hepatic glycerol phosphate content

Glycerol phosphate in liver homogenates was enzymati-
cally measured as previously described [21], with slight 
modifications. First, glycerol phosphate was oxidized by 
glycerol-3-phosphate oxidase, to generate hydrogen per-
oxide and dihydroxyacetone phosphate; and second, per-
oxidase catalyzed the coupling of hydrogen peroxide with 
4-aminophenazone and chlorophenol to produce a quinon-
eimine dye that can be measured at 540 nm. Glycerol stand-
ard solution (Wiener Lab) was used as negative control.

Lipid peroxidation assay

Lipid peroxidation is considered as an indirect measure of 
reactive oxygen species (ROS) generation [22]. The amount 
of aldehydic products generated by lipid peroxidation in 
liver homogenates was quantified by the thiobarbituric acid 
reaction according to the method of Ohkawa et al. [23] and 
measured by high-performance liquid chromatography.

Liver tissue antioxidant capacity analysis

Reduced (GSH) and oxidized (GSSG) glutathione were 
determined in total liver homogenates according to the 
protocol described by Tietze [24], and GSH/GSSG ratio 
was calculated. Superoxide dismutase (SOD) gel activity 
assay was based on the method of Donahue et  al. [25]. 
Bands quantification was made by densitometry using the 
Gel-Pro Analyzer software. Catalase (CAT) activity was 
determined by monitoring the rate of  H2O2 decomposi-
tion as a function of absorbance decrease at 240 nm [26].

Determination of protein concentration

Protein concentration was determined by the Lowry 
method [27], using bovine serum albumin as a standard.

Statistical analysis

Results were expressed as mean ± SEM. Significance in 
differences was tested by Student’s t test. Differences 
were considered significant when the p value was <0.05.

Results

Serum free glycerol levels and hepatic enzymes 
activities did not change after oral administration 
of glycerol

Oral administration of glycerol had no effect on serum 
free glycerol levels measured at the end of the experimen-
tal protocol (IP: 0.55 ± 0.06 g/L; IPGly: 0.54 ± 0.04 g/L), 
as it is rapidly absorbed in the gastrointestinal tract and 
cleared from blood.

On the other hand, serum markers of liver damage 
ALT, AST and ALP showed no statistical differences 
between groups (data not shown).

Oral administration of glycerol affected the volume 
of preneoplastic foci

Figure 1a shows representative images from IP and IPGly 
groups. Oral administration of 200  mg/kg body weight 
glycerol did not induce significant changes in the number 
of liver foci. However, the percentage of liver occupied 
by foci significantly decreased in IPGly group as com-
pared to IP animals (Fig. 1b).
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Proliferative status of liver foci was modified by glycerol 
treatment

Representative images of PCNA staining from the experi-
mental groups are shown in Fig.  2a. Glycerol administra-
tion induced a significant decrease of the proliferative 
index inside the foci. However, glycerol treatment did not 
affect the proliferative status of the tissue surrounding the 
preneoplastic foci (Fig. 2b).

Furthermore, we analyzed the percentages of preneo-
plastic hepatocytes in each phase of the cell cycle (Fig. 2c). 
Glycerol administration induced a significant increase in 
the percentage of cells in  G1 phase of the cell cycle along 
with a significant decrease in the percentage of cells in M 
phase.

Glycerol affected the expression of cell cycle‑related 
proteins

Western blot studies revealed significant increases in the 
cell cycle-regulatory proteins p53 and p21 in preneo-
plastic livers of animals treated with glycerol (Fig.  3a, 

b, respectively). In addition, protein levels of cyclin D1 
(Fig. 3c) and cyclin-dependent kinase 1 (cdk1, Fig. 3h) 
were significantly decreased in IPGly group. Glycerol 

Fig. 1  Effect of oral glycerol administration on number and volume 
of liver preneoplastic foci. a Representative images of rGST P-pos-
itive preneoplastic foci obtained by confocal microscopy (objective: 
×10). b Changes in number of foci per liver and volume percent-
age of liver occupied by preneoplastic lesions are represented for 
IP and IPGly groups. IP rats with liver preneoplasia, IPGly IP rats 
treated with 200 mg/kg body weight glycerol. Data are expressed as 
mean ± SEM; n = 6. *p < 0.05 vs. IP

Fig. 2  Effect of oral administration of glycerol on the prolifera-
tive status of liver foci. a Representative images of proliferating cell 
nuclear antigen (PCNA)-positive cells obtained by optical micros-
copy (objective: ×20). b Changes in the proliferative index in the foci 
and the surrounding tissue. c Determination of the percentage of pre-
neoplastic hepatocytes in each phase of the cell cycle. IP rats with 
liver preneoplasia, IPGly IP rats treated with 200 mg/kg body weight 
glycerol. Data are expressed as mean ± SEM; n = 6. *p < 0.05 vs. IP
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administration had no effect on cyclins E, A and B nei-
ther on cdk2 (Fig. 3d–g).

Glycerol administration induced programmed cell 
death in preneoplastic livers

Oral administration of glycerol significantly enhanced 
caspase-3 activity (Fig.  4a), which indicated that pro-
grammed cell death was occurring. Also, pro-apoptotic 
Bax levels were increased whereas anti-apoptotic Bcl-2 
levels were decreased in liver mitochondrial fractions of 
IPGly group (Fig. 4b). Accordingly, Bax/Bcl-2 ratio was 
significantly augmented in animals that received glycerol 
(Fig. 4c). In addition, mitochondrial levels of pro-apop-
totic proteins Bad and PUMA were increased in IPGly 
animals (Fig. 4d, e). Finally, the release of cytochrome c 
into the cytosol was increased in IPGly group (Fig. 4f).

Hepatic levels of glycerol phosphate increased 
after glycerol treatment

The first stage in hepatic glycerol metabolism is the con-
version into glycerol phosphate by glycerol kinase [28]. 
Figure  5 shows that hepatic glycerol phosphate levels 
were increased in IP animals upon oral administration of 
glycerol.

Lipid peroxidation and antioxidant capacity were 
modified by glycerol administration

It has been reported that mitochondrial metabolism of 
glycerol phosphate generates ROS intermediates [29, 
30]. Therefore, we analyzed the amount of thiobarbitu-
ric acid reactive substances (TBARS) as a reflection of 
the hepatic oxidative status. As shown in Fig. 6a, glycerol 
administration produced a significant increase in TBARS 

Fig. 3  Effect of oral administration of glycerol on the expression of 
cell cycle-related proteins. Western blot analysis of: a p53, b p21, 
c cyclin D1, d cyclin E, e cyclin A, f cyclin B1, g cyclin-dependent 
kinase 2 (cdk2), and h cdk1. β-actin was detected as loading control. 
IP rats with liver preneoplasia, IPGly IP rats treated with 200 mg/kg 

body weight glycerol. Densitometric analysis was performed and data 
are expressed as percentage of IP group (arbitrarily considered 100%) 
and are mean ± SEM; n = 6 (a, b, c, g and h) or 4 (e, f). *p < 0.05 vs. 
IP
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levels compared to IP group. Also, no significant changes 
in GSH/GSSG ratio were observed between treatments 
(Fig. 6b). On the other hand, Cu/Zn SOD activity was sig-
nificantly increased (Fig. 6c) and CAT activity was signifi-
cantly decreased (Fig. 6d) in IPGly animals. As SOD cata-
lyzes superoxide radical dismutation into  O2 and  H2O2 and 
CAT catalyzes the decomposition of  H2O2 to  O2 and  H2O, 
it is likely that  H2O2 is mainly produced during the treat-
ment of IP animals with oral glycerol.

Glycerol affected JNK1/2/3 and Erk2 activation 
in preneoplastic livers

Previous studies have shown that pyruvate metabolism 
produces mitochondrial oxidants release which mediate 
c-Jun N-terminal kinase (JNK) activation [31]. Since glyc-
erol shares structural and metabolic similarities with pyru-
vate, we analyzed if oxidative stress generation by glycerol 

Fig. 4  Effect of oral administration of glycerol on apoptotic cell 
death. a Caspase-3 activity was determined in cytosolic fractions 
and expressed as percentages, being IP group arbitrarily considered 
as 100%. b Mitochondrial levels of pro-apoptotic Bax and anti-apop-
totic Bcl-2 proteins were analysed by western blot. c After densito-
metric quantitation, Bax/Bcl-2 ratio was calculated, and results were 
expressed as percentage of IP group (arbitrarily considered as 100%). 
Mitochondrial levels of pro-apoptotic d Bad and e PUMA proteins 

were also evaluated by western blot. f Release of cytochrome c was 
determined by western blot in cytosolic extracts from each experi-
mental group. IP rats with liver preneoplasia, IPGly IP rats treated 
with 200  mg/kg body weight glycerol. β-actin and prohibitin were 
probed as loading control in cytosolic and mitochondrial extracts, 
respectively. Data are mean ± SEM; n = 6 (a, b, c, f) or 4 (d, e). 
*p < 0.05 vs. IP

Fig. 5  Analysis of glycerol phosphate hepatic levels. Enzymatic 
detection of glycerol phosphate in liver homogenates was performed 
and corrected by protein concentration. IP rats with liver preneo-
plasia, IPGly IP rats treated with 200  mg/kg body weight glycerol. 
Results are expressed as percentage of IP group (arbitrarily consid-
ered as 100%) and are mean ± SEM; n = 6. *p < 0.05 vs. IP
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metabolism in IPGly animals was able to activate JNK 
signaling. Additionally, we studied extracellular signal-reg-
ulated kinase (Erk) and protein kinase Akt activation, which 
are critical kinases involved in cell proliferation and apop-
tosis usually deregulated in HCC [32]. The levels of total 
and activated (phosphorylated) kinases in liver homogen-
ates were measured by western blot and the phosphoryl-
ated/total kinase ratios were calculated. As seen in Fig. 7a, 
there was a significant increase in the p-JNK/JNK ratio (for 
the three isoforms) in glycerol-treated animals. In addition, 
there was a significant diminution in the p-Erk2/Erk2 ratio, 
with no changes in the activation of Erk1 isoform in IPGly 
group (Fig. 7b). Finally, p-Akt/Akt ratio showed no differ-
ences between the experimental groups (Fig. 7c).

Discussion

In the present study, we tested the potential antiprolifera-
tive effect of oral glycerol supplementation in early liver 

carcinogenesis and also explored the mechanisms by which 
glycerol exerts such effect.

The selected dose was based in a previous study in rats 
which evaluated the effect of oral pure glycerol as a food 
supplement, having no impact on water consumption or 
urinary excretion [4]. Furthermore, the employed dosage in 
our work was lower than the doses of glycerol used for the 
therapeutic treatment of intracranial and intraocular pres-
sures [6, 33].

We observed that serum markers of liver function did 
not change in IP animals treated with 200  mg/kg body 

Fig. 6  Analysis of lipid peroxidation and liver antioxidant capacity. 
a Lipid peroxidation was determined by quantification of the amount 
of thiobarbituric acid reactive substances (TBARS). b Determination 
of reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in 
liver homogenates from the experimental groups. Analysis of c Cu/
Zn superoxide dismutase (SOD) and d catalase (CAT) activities in 
total liver homogenates. IP rats with liver preneoplasia, IPGly IP rats 
treated with 200 mg/kg body weight glycerol. Data are expressed as 
percentage of IP group and are mean ± SEM; n = 6. *p < 0.05 vs. IP

Fig. 7  Effect of glycerol treatment on activation of JNK, Erk and 
Akt signalling. Activated (phosphorylated) hepatic protein levels of a 
JNK1/2/3, b Erk1/2 and c Akt were determined by western blot anal-
ysis. Total levels of the kinases were also measured and phosphoryl-
ated/total kinase ratios were calculated. IP rats with liver preneopla-
sia, IPGly IP rats treated with 200 mg/kg body weight glycerol. Data 
are expressed as percentage of IP group and are mean ± SEM;  n = 4 
(a) or 6 (b, c). *p < 0.05 vs. IP
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weight glycerol, in accordance with the unaffected meta-
bolic parameters previously published. Furthermore, we 
used an intermittent regimen of administration, as previ-
ously reported for quercetin in our experimental model of 
liver preneoplasia [17].

The analysis of number and size of proliferative lesions 
clearly showed that glycerol administration induces a 
reduction in the development of liver foci, without affect-
ing the number of initiated cells that clonally expand to 
generate preneoplastic lesions, but reducing the growth rate 
of these clones instead. Accordingly, the study of the pro-
liferative status of liver foci indicates that a lower number 
of hepatocytes are entering into the cell cycle in glycerol-
treated rats. Our results show that glycerol action seems to 
be specific for preneoplastic hepatocytes. Experiments in 
control (non IP) rats showed that glycerol administration 
did not affect serum liver damage markers, it kept normal 
hepatic architecture and it did not affect PCNA staining 
(data not shown), showing that glycerol exerts its actions 
in hepatocytes primed to proliferate rather than in quiescent 
liver cells, which is in line with previous findings on regen-
erating rat livers [10].

Induction of p53 results in increased p21 protein levels, 
a critical regulator of cell cycle arrest [34]. Although we 
did not deepen the study of the mechanisms involved in 
p53 and p21 activation, the increased expression of these 
proteins in liver tissue of IPGly animals support both the 
antiproliferative and the proapoptotic phenomena observed 
in this experimental group. The decrease in cyclin D1 pro-
tein levels in glycerol-treated rats is in line with the accu-
mulation of preneoplastic cells in  G1 phase. We have also 
observed that glycerol produces a clear decrease in mitosis, 
most likely induced by the decrease of cdk1 protein, a fact 
that does not favor cyclin B/cdk1 complex formation neces-
sary for the cell to enter into the M phase of cell cycle.

Dysregulation of the balance between proliferation and 
apoptosis defines a pro-tumorigenic basis in hepatocarcino-
genesis [35]. Consequently, targeting one or both of these 
features may result in a reduced tumor development. In this 
context, increased caspase-3 activity in IPGly animals indi-
cates that apoptosis is enhanced after treatment. Further-
more, glycerol increases mitochondrial Bax/Bcl-2 ratio and 
Bad and PUMA pro-apoptotic protein expression, together 
with the release of cytochrome c into the cytosol [36]. Col-
lectively, these results support the notion that oral glycerol 
administration induces apoptosis in preneoplastic livers and 
that the mitochondria is implicated in this phenomenon. 
Although apoptosis may be initiated in any phase of the 
cell cycle, most cells undergo apoptosis primarily in the  G1 
phase, indicating a direct connection between apoptosis and 
proliferation. This relationship is explained by the presence 
of some cell cycle regulators/apoptosis inducers such as 
p53, operating at the  G1/S checkpoint [37]. Consequently, it 

can be assumed that glycerol induces a cell cycle blockage 
to favor the apoptotic process which would be its ultimate 
effect to reduce the foci development.

After oral ingestion, glycerol is mainly taken up by 
the liver and converted into glycerol phosphate by glyc-
erol kinase. Once phosphorylated, it is mostly oxidized by 
glycerol-3-phosphate dehydrogenase to dihydroxyacetone 
phosphate [28]. It has been demonstrated that oxidation 
of glycerol phosphate induces mitochondrial ROS forma-
tion, both in normal and in pathophysiological conditions. 
One of the main ROS generated during glycerol phosphate 
metabolism is hydrogen peroxide, as demonstrated in iso-
lated mitochondria from different tissues, including hepatic 
tissue [30, 38]. The study of lipid peroxidation and anti-
oxidant enzyme activities showed that glycerol phosphate 
metabolism induces production of ROS in our experimental 
model. Although hepatic levels of hydrogen peroxide were 
not directly measured, the profile of changes in SOD and 
CAT activities between the experimental groups supports 
the hypothesis that this molecule is primarily being pro-
duced during glycerol treatment.

It has been established that metabolic hydrogen perox-
ide functions as a central hub in redox signaling in major 
processes such as proliferation and cell death [39]. One link 
between oxidative stress signaling and proliferation/cell 
death processes is p53 induction by ROS. Another possi-
ble connection is ROS-induced modulation of kinases such 
as JNK, Erk and Akt. JNK signaling is activated in liver 
tissue of IPGly animals, supporting the well-established 
role of ROS-induced JNK signaling in apoptotic cell death 
[40]. Despite we did not observe any changes in activated 
Erk1 and Akt levels, Erk2 signaling is inhibited in glycerol-
treated rats. In line with this finding, it has been reported 
that glycerol has a stimulating effect on the phosphatase 
activity that specifically induces Erk2 inactivation [41]. 
Moreover, Erk activation is also required for  G1/S transition 
via enhanced cyclin D1 synthesis [42].

A recent study of energy metabolism in HCC shows a 
depression of glycerol phosphate and other energy metab-
olites concentrations within the tumor [43]. These data 
indicate that tumor metabolism turns from mitochondrial 
oxidation to aerobic glycolysis. Furthermore, based on the 
present findings, we hypothesize that tumoral cells attempt 
to avoid glycerol phosphate accumulation as a strategy to 
evade the effects of this metabolite in their growth rate.

Conclusion

Our results provide original data concerning the preventive 
actions of glycerol during the early development of liver 
cancer. Our postulated mechanism is schematized in Fig. 8. 
Briefly, glycerol is taken up by preneoplastic hepatocytes 
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and converted into glycerol phosphate. Then, glycerol 
phosphate undergoes oxidative metabolism inducing mito-
chondrial oxidative stress generation. ROS act as intracel-
lular messengers, producing p53 activation and changes in 
JNK and Erk signaling. These phenomena induce cell cycle 
arrest and mitochondrial apoptotic cell death that finally 
conduct to a reduction of liver lesions. Additional experi-
ments using knockdown and knockout techniques might 
be useful to confirm the proposed mechanism of action of 
glycerol in the initial development of liver lesions.

This study is the first one to show a foci volume decreas-
ing role of glycerol in the liver of rats with hepatic pre-
neoplasia. It is interesting to note that despite oral glyc-
erol consumption is innocuous and it is considered an 
“almost inert” molecule; glycerol exerts its effects in a 
ROS-dependent manner, leading to cell cycle arrest and 
increased cell death. The effect of glycerol administration 
on advanced stages of hepatic carcinogenesis is a manda-
tory step in the study of glycerol anti-proliferative effects. 
The results presented in this paper pave the way for a bet-
ter understanding of natural and risk-free molecules that 
applied in patients with liver chronic diseases, have the 
potential to decrease morbidity and improve the quality of 
life for these patients.
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