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We study the Ruderman-Kittel-Kasuya-Yosida interaction between magnetic impurities embedded in p-doped
transition metal dichalcogenide triangular flakes. The role of underlying symmetries is exposed by analyzing the
interaction as a function of impurity separation along zigzag and armchair trajectories, in specific parts of the
sample. The large spin-orbit coupling in these materials produces strongly anisotropic interactions, including a
Dzyaloshinskii-Moriya component that can be sizable and tunable. We consider impurities hybridized to different
orbitals of the host transition metal and identify specific characteristics for onsite and hollow site adsorption. In
the onsite case, the different components of the interaction have similar magnitude, while for the hollow site,
the Ising component dominates. We also study the dependence of the interaction with the level of hole doping,
which supplies a further degree of tunability. Our results could provide ways of controlling helical long range
spin order in magnetic impurity arrays embedded in these materials.
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I. INTRODUCTION

Spintronics relies on the manipulation of the electron
spin in materials. Metals or semiconductors with strong
spin-orbit coupling (SOC), such as the layered transition-
metal dichalcogenides (TMDs) [1–4], provide very promising
opportunities [5,6]. When exfoliated down to a fundamental
stack of three atomic layers (which we refer to as monolayer
from now on), TMDs display rich electronic and optical
properties [7–12]. MoS2, WSe2, and WS2 are among the
most studied TMDs, all exhibiting a direct optical gap in
the monolayer limit [13]. The process of sample production,
such as mechanical exfoliation or chemical vapor deposition,
often produces nanoscale crystals—nanoflakes—with differ-
ent shapes and boundaries, such as stars [14], hexagons [15],
rhomboids [16], and triangles [14,17,18]. The different shapes
and boundaries can have a large impact on the properties of the
system. For instance, MoS2 zigzag-edge nanoribbons exhibit
unusual ferromagnetic properties [19–21], and small-flake
polycrystalline MoS2 films are reported to exhibit intrinsic
magnetism [17].

A particular form of magnetic interaction takes place
when localized magnetic moments in metals interact effec-
tively through an indirect exchange process mediated by
the conduction electrons, known as the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [22–24]. Even though
TMDs are semiconductors, they can be doped with different
atomic species to achieve conducting character. Hole doping
is particularly important because the SOC produces a large
spin splitting in the valence band near the band edge. Thus the
effects of SOC on different physical properties should be more
noticeable and controllable in this energy region. It has been
found that p doping of MoS2 can be achieved by substituting
Mo for Nb [25,26], with phosphorus implantation [27], and
also predicted in ab initio calculations for different dopants
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[28–30]. Other materials, such as WSe2, have an intrinsic
p-type doping. Localized magnetic moments can be intrinsic
to the sample production process or can be introduced extrin-
sically, for instance, by implantation with an STM tip [31,32].
This method provides a controlled way of designing magnetic
nanostructures. In the case of TMDs, the local moment
formation with magnetic dopants has been analyzed by ab
initio studies [29,33–35] and in experiments [36,37].

The RKKY interaction is well understood in conventional
metals. However, materials with more complex band structure,
with orbital degrees of freedom and strong SOC such as the
TMDs, provide a more complex scenario in which the interplay
of the various components can give rise to interesting features.
In bulk TMD monolayers, a sizable Dzyaloshinskii-Moriya
(DM) interaction appears in the indirect exchange, with
magnitudes that are comparable to the typical Heisenberg
terms [38–42]. In general, the details of the hybridization of
the magnetic species with the local host, as well as the size
of the system, have large impact on the effective interaction
between impurities, such as in two-dimensional (2D) electron
gas nanoribbons [43].

In a 2D lattice, the magnetic moments can hybridize in dif-
ferent ways. The most common places are on top of a lattice site
(onsite), on the line between two lattice sites (bridge), in hollow
sites (plaquette), or substitutional. The onsite hybridization
has been studied extensively in infinite graphene [44,45],
nanoflakes [46–48], nanoribbons [49–51], and infinite TMD
layers [38–40] and flakes [41,42]. The plaquette configuration
has been analyzed in 2D graphene [50,52–54], triangular
flakes [47,48], and carbon nanotubes [55,56]. The effective
interaction has been also studied in other systems with large
intrinsic SOC, such as silicine [57,58], and Pt lattices [59].

Finite TMD samples exhibit highly localized states near the
edges of the flake [60–64], resulting in noncolinear and tunable
long-range interactions when the impurities sit at these edges,
and with slow decay with the impurity separation [41,42]. The
plaquette hybridization geometry has not yet been reported on
TMDs.
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ÁVALOS-OVANDO, MASTROGIUSEPPE, AND ULLOA PHYSICAL REVIEW B 94, 245429 (2016)

FIG. 1. (a) Top view of the effective lattice used to simulate the triangular zigzag-terminated TMD nanoflake. Each site represents a Mo
atom, including the numbering used to construct the flake. The inset shows a top view of the real representation of the flake, with the Mo (S)
atoms shown in dark green (dark yellow). The three hopping directions are given by a1 = a(1,0), a2 = a(1/2,

√
3/2), and a3 = a2 − a1, where

a is the lattice constant. Yellow arrows represent one pair of magnetic moments in the zigzag direction and another pair in the armchair direction.
One impurity is held fixed and the other is moved along the corresponding direction, as indicated by red dashed lines. Two independent zigzag
(b) and armchair (c) trajectories for both onsite and plaquette triangle-down configurations.

In this paper, using an effective three-orbital tight-binding
model [65] that captures the relevant bands and symmetries at
low energies, we study the interaction between two magnetic
impurities in p-doped triangular TMD nanoflakes, for both
onsite and plaquette configurations. In the onsite configuration,
the impurities hybridize on top of single transition-metal
atoms, while in the plaquette case they sit in hollow sites
of transition-metal triangles, as we will describe in detail. We
analyze the effective exchange interaction as a function of the
impurity separation, comparing the behavior of impurities on
the edges to the ones in the bulk of the flake. We find that
both the onsite and plaquette configurations display helical
couplings, with sizable Dzyaloshinskii-Moriya interaction.
Interestingly, the plaquette configuration shows a larger Ising
interaction compared to the in-plane terms, which is explained
by second-order perturbation theory calculations. We also
find that the interaction depends strongly on the direction of
impurity separation, either zigzag or armchair, highlighting the
importance of crystal symmetries in the effective exchange.
We further analyze the possible tunability of the strength and
anisotropy of the interaction with the doping concentration,
and identify different scattering processes that contribute to
the effective coupling.

II. MODEL AND APPROACH

We focus on triangular zigzag-terminated MoS2 nanoflakes
[14], with two magnetic moments (or impurities) hybridized to
different lattice environments, including onsite and plaquette
(or hollow) configurations. The host material can be described
by a triangular lattice of Mo atoms since, at low energies, only
three 4d orbitals from these atoms contribute significantly [65]
(see Fig. 1). We use a three-orbital tight-binding model, with
dz2 , dxy , and dx2−y2 Mo orbitals. The full Hamiltonian is given
by

H = H0 + HI, (1)

where H0 = Hon + Ht (onsite + hoppings) describes the TMD
without impurities, and HI models the interaction of two
magnetic impurities with the conduction electrons of the host.
The onsite Hamiltonian is given by

Hon =
Nt∑

j=1

∑

s=↑,↓

∑

α,α′
εα,α′,s d†

α,s(rj )dα′,s(rj ), (2)

where dα,s(rj ) [d†
α,s(rj )] annihilates [creates] a spin-s elec-

tron at the lattice site rj = j1a1 + j2a2 and orbital dα .
The al are lattice vectors with lattice constant a (Fig. 1),
α ∈ {z2 ≡ 0,xy ≡ 1,x2 − y2 ≡ 2}, and εα,α′,s are the onsite
energies. The total number of sites in the sample, Nt , is
given by the number of rows or atoms on the edge Ne, as
Nt = Ne(Ne + 1)/2. The hopping Hamiltonian Ht is given by

Ht =
∑

j,s,α,α′

3∑

l=1

t
(al )
α,α′ d

†
α,s(rj )dα′,s(rj + al) + H.c., (3)

where the t
(al )
α,α′ are the orbital-dependent hopping parame-

ters in the three nearest-neighbor directions l = 1,2,3. The
different onsite energies and hopping parameters are taken
from Refs. [61,65] and reproduced in Table I. H0 can be
diagonalized by a change of basis

dα,s(rj ) =
3Nt∑

μ=1

ψk,μ,s cμ,s, (4)

such that

H0 =
3Nt∑

μ=1

∑

s

εμc†μ,scμ,s, (5)

where k = 3j − 2 + α, such that ψk,μ,s is the μth component
of the eigenvector for site j , orbital α, and spin projection
s. As the TMD Hamiltonian does not mix spin, each spin
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TABLE I. Onsite εα,α′,s and hopping t
(al )
α,α′ tight-binding energy parameters for MoS2 (taken from Refs. [61,65]), for directions al and orbitals

pairs dα,dα′ , with α,α′ ∈ {z2,xy,x2 − y2}. All the energies in eV.

α,α′

Parameter z2,z2 z2,xy z2,x2 − y2 xy,z2 xy,xy xy,x2 − y2 x2 − y2,z2 x2 − y2,xy x2 − y2,x2 − y2

εα,α′,↑ 1.046 0 0 0 2.104 0.073i 0 −0.073i 2.104
εα,α′,↓ 1.046 0 0 0 2.104 −0.073i 0 0.073i 2.104

t
(a1)
α,α′ −0.184 0.401 0.507 −0.401 0.218 0.338 0.507 −0.338 0.057

t
(a2)
α,α′ −0.184 0.640 0.094 0.239 0.097 −0.268 −0.601 0.408 0.178

t
(a3)
α,α′ −0.184 −0.640 0.094 −0.239 0.097 0.268 −0.601 −0.408 0.178

block can be diagonalized separately. Due to time-reversal
symmetry, we have that ψk,μ,↑ ≡ ψk,μ = ψ∗

k,μ,↓. Here, we
have assumed that the original (spin up block) basis is ar-
ranged as [d0,↑(r1),d1,↑(r1),d2,↑(r1), . . . ,d0,↑(rNt

),d1,↑(rNt
),

d2,↑(rNt
)]T and the diagonal one as [c1,↑,c2,↑, . . . ,c3Nt ,↑]T , in

ascending order of eigenvalues εμ. In order to simplify the

notation, we define ψz2

j,μ ≡ ψ3j−2,μ, ψ
x2−y2

j,μ ≡ ψ3j−1,μ, and
ψ

xy

j,μ ≡ ψ3j,μ.
In the infinite MoS2 monolayer, the first Brillouin zone

has two inequivalent K and K ′ points, with a sizable spin
splitting around the valence band maximum (VBM), as shown
in Fig. 2(a). There is a direct band gap (∼1.6 eV) between
the VBM and the conduction band minimum (CBM) at
these two points, with definite spin-valley relation, due to
the absence of inversion symmetry. On the other hand, for
finite systems, such as the triangular flakes studied here, the
electronic spectrum is fully discrete, showing both bulk- and
edge-like states, as shown in Fig. 2(b). States from both the
valence and conduction bands have been brought into the gap,
corresponding to one-dimensional-like (1D) extended states
localized near the borders of the sample [60,62].

FIG. 2. (a) High symmetry directions in the first Brillouin zone
of the infinite MoS2 monolayer. The valence band maximum (VBM)
at K is shifted to zero energy and the energy levels of the � point,
and K for spin up and down are shown in dashed lines. The light blue
area indicates the direct gap (∼1.6 eV). (b) Discrete energy levels for
a 50-row flake. Edge states generated by the finite size appear in the
gap. Inset shows states near the VBM. εF1 and εF2 represent the two
different levels of doping (or gating) considered in this work.

Figures 1(b) and 1(c) show onsite and plaquette connections
along zigzag and armchair trajectories respectively. The
Hamiltonian for the magnetic impurities connected to specific
sites of the TMD lattice is given by

HI =
∑

i=1,2

Jαi
Si · sαi

(r i), (6)

where Jαi
is the exchange coupling between the localized

magnetic moment i, represented by Si , and electron spin
density at lattice site r i and orbital αi , given by

sα(r) = 1

2

∑

s,s ′
d†

α,s(r)σ s,s ′dα,s ′ (r), (7)

where σ is the vector of spin- 1
2 Pauli matrices. If the impurity

is in a plaquette environment, the previous description holds
but now, in Eq. (6), one has to sum over the three Mo sites
surrounding the impurity as well.

In the bulk 2D crystal, the electronic degrees of freedom
can be integrated out using second-order perturbation theory
and the effective interaction can be obtained analytically [40].
This procedure yields the effective exchange Hamiltonian

HRKKY = JXX

(
Sx

1 Sx
2 + S

y

1 S
y

2

) + JZZSz
1S

z
2

+ JXY (S1 × S2)z, (8)

where all the effective J ’s are proportional to the static
spin susceptibility tensor of the electron gas [22–24]. The
net effective interaction is a competition between Ising JZZ ,
in-plane parallel JXX (=JYY ), and cross JXY Dzyaloshinskii-
Moriya (DM) terms. In the TMDs, these spin anisotropies are
generated by the strong SOC and the absence of inversion
symmetry.

In order to calculate the effective J ’s in our finite sample,
we consider the difference between ground-state energies of
the electron gas with triplet and singlet configurations of the
impurities (hybridized to orbitals α1 and α2 respectively),
as [50,66]

J
α1,α2
ββ ′ = 2[E(↑β ,↑β ′ ) − E(↑β ,↓β ′)], (9)

where β (β ′) ∈ {X,Y,Z} represents the direction of the spin
projection for the first (second) magnetic impurity.1 For

1Notice that we use capital letters for the spin direction in order to
avoid confusion with the notation for orbitals.
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FIG. 3. (a) Four different impurity trajectories for onsite hybridization, fixing the first impurity on top of a given atom and moving the
second one away from the first. In trajectory 1 (red solid line), the first impurity is located at the 10th row on the edge and the second one is
moved along the zigzag direction a2, starting on the 11th row. Trajectory 2 (dashed blue line) represents a different zigzag direction in the bulk
of the flake. For trajectory 3 (orange dotted line), the first impurity is at the bottom corner of the flake, while the second moves up along the
armchair direction a2 + a3. Trajectory 4 (pink dot-dashed line) is shifted laterally with respect to the previous one. (b)–(f) Orbital-resolved
magnitude squared of the wave function, for two doping levels and the three different orbitals, as indicated in each panel.

instance, J
z2,xy

XY is the interaction strength between impurities
when the spin of the first one is pointing in the X direction
and is hybridized to a Mo dz2 orbital, whereas the spin of
the second one is pointing along Y and is hybridized to
a dxy orbital. This nonperturbative approach is valid even
for large values of local J and is capable of generating
results for any hybridization geometry and separation between
impurities [50]. Notice that positive [negative] values of J

correspond to antiferromagnetic (AFM) [ferromagnetic (FM)]
alignment between impurities. The ground-state energy of the
system, including both impurities in a given spin configuration,
is defined as the sum of the sorted energy states of the full
Hamiltonian up to the Fermi energy εF, as

E(S1,S2) =
εF∑

s,ν=1

Eν,s . (10)

These eigenenergies are obtained by exact numerical diago-
nalization of the full Hamiltonian H , described by a matrix of
size 6Nt × 6Nt . The eigenvalues are sorted in ascending order,
such that Eν,s � εF , to carry out the summation.

III. RESULTS

Our triangular MoS2 flakes consist of Ne = 50 rows,
corresponding to a total of Nt = 1275 sites (
160 Å on
edge). Midgap states appear because of the finite size, having
a majority dz2 character and amplitudes that are strongly
localized near the borders of the crystallite. These edge
states have clear 1D character with momentum along the
edge of the flake [61,62], and their role mediating the

effective exchange interaction between magnetic impurities
has been recently explored [41,42]. In this work, however,
we focus on the bulk-like states at lower energies, close to
the VBM, for two different doping levels represented by
Fermi energies εF1 = −0.0332 eV and εF2 = −0.1018 eV,
as shown in the inset of Fig. 2(b). These doping levels
correspond to 106 and 160 holes in the flake, or 9.6 × 1013 and
1.4 × 1014 holes/cm2, respectively. Notice that one could also
consider an intrinsically n-doped flake. However, the splitting
of states by the SOC is much smaller (≈3 meV).

Next, we consider the role of different hybridization
environments on the effective exchange interaction between
impurities. We focus first on onsite hybridizations in Sec. III A,
followed by plaquette environments in Sec. III B. In each
environment, we contrast the behavior at different doping
levels, as they contain different orbital and spatial symmetries.
In all cases, the first impurity is fixed at a given initial position
and the second one is moved along high symmetry directions,
as shown schematically in Figs. 1(b) and 1(c). In order to
explore boundary effects from the finite system, we consider
two zigzag and two armchair trajectories, as shown in Fig. 3(a).
For simplicity, we also consider that the local exchange
coupling J is the same for both impurities, irrespective of
the orbital to which they hybridize.

A. Onsite hybridization

1. Doping level εF1

We first set our attention on doping level εF1 near the top
of the VBM, as seen in Fig. 2(b). At this doping level there
are no states from the � point in the infinite monolayer; thus
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FIG. 4. The three components of the effective impurity interac-
tion, scaled by (r/a)2, vs relative distance along zigzag directions.
All curves correspond to εF1, and onsite hybridization to the orbitals
indicated in the panels. The different trajectories are explained in
Fig. 3(a).

we expect the states in the flake to have a majority dxy and
dx2−y2 character. In Figs. 3(b) and 3(c) we show the normalized
wave functions in real space, |ψα

j,εF1
|2, for the corresponding

unperturbed state. We can see that for orbital dz2 the wave
function is mostly localized at the flake edges (as seen in the
case of midgap doping levels [41,61]), while for dxy and dx2−y2

the wave function is symmetric in the xy plane and mostly
located inside the flake with much larger amplitudes. Notice
that each state is doubly degenerate due to conservation of the
spin projection in the pristine flake. The wave functions for
each spin are complex conjugates, so the spatial distribution
of the magnitude squared is identical.

Now we analyze the RKKY interaction along trajectory 1
on the edge of the flake, as indicated in Fig. 3(a), for εF1. In
Fig. 4(a) we show the interaction, in units of J and scaled by
(r/a)2, versus the distance between impurities r = |r1 − r2|,
when both of them are hybridized to dz2 orbitals. The nearly
constant amplitude of the curves indicates a r−2 decay, as
expected for 2D systems. Notice that the Ising component,
JZZ , has a long period of oscillation, of about 15 sites, and
JZZ > 0 for r > 10, so that the impurities align mostly AFM
for large separations. On the other hand, the parallel and
crossed in-plane interactions JXX and JXY possess a much
shorter period of oscillation, about 3 sites, alternating between
AFM and FM as the impurities separate. Also notice that
these in-plane interactions have a relative phase difference of
nearly one site between them. At specific separations, however,
both in-plane interactions are FM (e.g., r/a = 13,28), while
in general they compete against each other. The interaction
along trajectory 1 is strong only when one of the impurities is
hybridized to a dz2 orbital. We find that J z2,xy and J z2,x2−y2

are
typically 10 times smaller than J z2,z2

, but with similar periods
of oscillation. On the other hand, hybridizations with in-plane
orbitals (dxy with dx2−y2 and vice versa) produce interactions

that are 100 times smaller than J z2,z2
since, on the edges, these

wave functions are nearly negligible (not shown).
In general, we find that the strength of the indirect

interaction can be tailored by setting the impurities at points
where the modulus squared of the wave function has large
amplitudes. However, this should be taken only as a qualitative
reference because, in fact, the RKKY interaction is composed
of a combination of particle-hole excitations in the electron
gas, and it is not directly related to the wave functions of the
states at the Fermi level only.

When the impurities are located away from the edges,
we notice qualitative changes. Along trajectory 2, the wave
functions dxy and dx2−y2 are large in magnitude, but dz2 is
negligible. The interaction shows the same modulation as
that on the edge, i.e. a large period for JZZ and a short one
for the in-plane terms, but with amplitudes that depend on
orbital hybridization. For J z2,x2−y2

[Fig. 4(b)], or J z2,xy , the
interaction is of the same order as that on the edge. When
both impurities are hybridized to dx2−y2 [Fig. 4(c)], or dxy ,
the largest interaction is nearly 10 times larger than that on
the edge. When the first impurity is connected to dx2−y2 or
dxy , and the second to dz2 , the in-plane interactions oscillate
as expected, but the slow varying envelope provided by JZZ

shows here a rather weak modulation (not shown), associated
with the rather constant (and small) amplitude of dz2 in this
internal region of the flake.

We can see from Figs. 4(a)–4(c) that the Ising JZZ effective
interaction shows a longer oscillation period than the parallel
JXX and DM JXY in-plane interaction terms. This behavior
can be explained from the different intravalley (for JZZ) and
intervalley (for JXX and JXY ) scattering processes dominating
the interaction. JZZ is dominated by processes that occur
within the same K or K ′ valley, where no spin flips are allowed
in the scattering processes. In JXX and JXY , the short period
is due to intervalley processes that occur when the electron
scatters from K to K ′ or � (and vice versa), together with
a spin flip. Interestingly, we observe a beating pattern in the
in-plane terms with the Ising term acting as the envelope. The
details of the oscillation periods naturally depend on the Fermi
level, a property inherited from the 2D bulk structure [40].

The interactions along armchair directions are shown in
Figs. 5(a)–5(d). Trajectory 3 follows a high symmetry line
where the impurities lie on the line bisecting the flake [see
Fig. 3(a)]. The interaction is modulated mostly by the large
amplitude of dxy and dx2−y2 orbitals, as shown in Fig. 3(c).
Figure 5(a) shows J z2,xy , scaled by (r/b)2, vs the relative
distance between impurities in units of b = a

√
3 = |a2 + a3|,

the nearest neighbor distance along armchair directions. The
interaction is much weaker than the corresponding exchange
along the zigzag directions. J z2,x2−y2

has very similar behavior.
We can see that both JZZ and JXX have a long-period
oscillation, in contrast to the zigzag case, with period 8b ≈
14a, and out of phase with each other. Most importantly, notice
JXY = 0 for any orbital hybridization, reflecting the perfect
cancellation seen in the infinite monolayer for impurities
placed along the armchair direction [40]. Figure 5(b) shows
J x2−y2,xy along the same trajectory. The interaction is of
the same order of magnitude and shows the same behavior
as J z2,xy , although slightly smaller in magnitude due to a
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FIG. 5. The three components of the effective impurity interac-
tion, scaled by (r/b)2, vs relative distance along armchair directions,
with b = a

√
3 = |a2 + a3|. All curves correspond to εF1 and onsite

hybridization to the orbitals indicated in the panels. Trajectories are
explained in Fig. 3(a). Notice that in panels (a) and (b) there is no
DM interaction, since the impurities lie on the line bisecting the flake,
where reflection symmetry forbids its appearance.

suppressed dx2−y2 at the bottom of the flake. We notice similar
features as in Fig. 5(a), with an absence of DM interaction due
to symmetry, and the long-period oscillation of the remaining
components. To highlight the importance of symmetry, we
now move the impurities along the armchair trajectory 4,
displaced laterally with respect to the vertical bisecting line
of the triangle. The lack of reflection symmetry now allows
the DM term to appear, although with smaller amplitude than
the other component, as seen in Fig. 5(c) for J z2,xy . An even
weaker DM interaction results for J x2−y2,xy , as shown in
Fig. 5(d). In all these interactions we see a long wavelength
spatial modulation, signaling intravalley scattering processes.

In this finite triangular flake, JXY is always present for any
zigzag trajectory and for armchair trajectories along lines with
lower symmetry. The only trajectory which respects reflection
symmetry is indeed trajectory 3. Displacing the armchair
trajectory further away toward the edge of the flake results
in larger JXY , in general, although strongly modulated by
the spatial dependence of the different orbital components
of the states near the Fermi level. To illustrate this point, we
follow the strength of two interaction terms, JZZ and JXY , for
armchair trajectories that follow vertical lines parallel to the
bisecting line of the flake. Figure 6 shows the characteristic
values of the interaction for orbitals dx2−y2 ,dxy , as a function
of the distance from the middle of the flake. We track the
maximum in each J for impurity separations that lie in
the interval r/b ∈ [10,15]. The horizontal axis in Fig. 6
indicates the x distance from the bisecting line, where x = 0

FIG. 6. Maximum interaction strength vs separation of parallel
armchair trajectories with respect to the central bisecting line. Curves
correspond to εF1 and onsite hybridization. The zero value in x

represents trajectory 3 and, as the vertical trajectory moves to the
right, x > 0, it approaches the edge of the flake.

corresponds to trajectory 3, and larger x indicate armchair
trajectories that are closer to the edge of the flake. We see
that both JZZ and JXY maintain their sign, either AFM or FM
respectively, as the trajectories are displaced. The maxima
are clearly modulated in both JZZ and JXY , reaching the
largest amplitude at x 
 10( a

2 ), which is the characteristic
length scale of the wave function antinode lobes in Fig. 3(c).
The strong modulation of different interaction terms due
to the wave function spatial patterns is ubiquitous in finite
systems and provides another way to tune or find the most
favorable or desired interaction between impurities. These
results also highlight the importance of crystal symmetries
in the interaction, further complicated by the shape of the
finite flake, as diverse as stars [14], hexagons [15], and
rhomboids [16], among others, in experimental systems.

2. Doping level εF2

For a deeper doping level, such as εF2 [Fig. 2(b)], the
bulk monolayer has contributions from the bands at the �

point, which introduces �-K(K ′) intervalley scattering. The
magnitude squared of the wave functions for this level are
shown in Figs. 3(d)–3(f). In this case, the wave function is
dominated by the dz2 component, as one would expect from
the strong � content. As the Fermi energy gets deeper into
the valence band, the states are also more bulk-like, extending
throughout the crystal flake with all three orbital components.

We find that the indirect exchange in zigzag trajectories
1 and 2 has similar behavior to the one described for εF1,
with natural quantitative differences on the overall amplitude,
which turns out to be two or three orders of magnitude larger,
depending on the orbital to which impurities hybridize and on
the spatial modulation of the wave functions near the Fermi
level. The interactions (not shown) oscillate between FM and
AFM behavior, with additional frequencies and modulations,
reflecting the participation of energy states from the spin-
degenerate band at the � point, which provides a sizable
contribution to the scattering processes. The interplay between
different valleys and subtle wave function modulations result
in a complex oscillatory pattern for the different exchange
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FIG. 7. Effective interaction vs relative distance along armchair
direction. These results correspond to εF2 and onsite hybridization.
(a) When both impurities hybridize to dz2 orbitals, a Heisenberg-like
interaction is found. (b) For this pair of orbitals, XX gets out of phase
with coinciding Ising and DM terms.

components. We observe larger strength, the appearance of
beatings, and subtle interaction modulations as the different
scattering processes compete with each other. This is very
similar to the behavior seen in 2D bulk systems at these
doping levels [40], with strong noncolinear interaction JXY ,
as well as JZZ and JXX, which adds to the tunability and
complexity of the resulting interaction. We find somewhat
different behavior for exchange interactions along armchair
directions. The results are shown in Fig. 7, with J z2,z2

and
J z2,xy along trajectory 4. It is interesting that the interaction
decays much more slowly than 1/r , signaling the strong size
quantization of the dz2 component, which dominates these
interactions. Notice in Fig. 7(a) that the Ising and XX terms
match (the same as in the zigzag case for this doping). As
the DM interaction is vanishingly small, the net interaction is
Heisenberg-like: collinear and symmetric. On the other hand,
Fig. 7(b) shows that JZZ and JXY are nearly in phase with
each other, competing against JXX, which turns out to be out
of phase with the previous two. Notice as well that for this
dxy hybridization, the amplitude of the interactions is largely
suppressed.

3. Varying doping levels

Figure 8 represents a two-dimensional map of the Ising
component of the indirect exchange [scaled by (r/a)2], as a
function of the p doping, represented by the number of holes
in the sample. Both impurities are hybridized to dz2 orbitals
and displaced along trajectory 1. One can observe that for
some doping levels the interaction is always FM or AFM,
and for others it changes sign along the trajectory. Notice
that, in general, as one gets deeper into the valence band, the
magnitude of the interaction increases. This is an expected
behavior because, as the Fermi level decreases, the energy
states get more densely packed, providing more access to low-
energy particle-hole excitations. In conclusion, the control of
the doping level provides an interesting tunability tool for the
indirect exchange.

FIG. 8. Ising component of the indirect exchange, scaled by
(r/a)2, for various levels of p doping, with trajectory and orbital
hybridization as indicated in the figure. Positive (negative) values
correspond to AFM (FM) impurity alignment.

B. Plaquette hybridization

We now study the role of different atomic environments
on the effective exchange interaction, focusing on plaquette or
hollow sites. This kind of impurity environment has been found
stable for Fe and Mn adatoms, and associated to either adatoms
on a pristine monolayer or on disulfur vacancies [33]. These
environments are associated with two different hollow sites
with three-fold symmetry, which one can identify as triangle-
up and triangle-down environments. Figures 1(b) and 1(c)
show plaquette impurities in a triangle-down configuration,
which in the lattice correspond to hollow sites in hexagons
formed by Mo and S2 atoms. In triangle-up configurations
(not shown), the impurities sit on a disulfur location, also
equidistant from the three Mo atoms. In either case, the RKKY
interaction is composed of an interference of nine scattering
terms, corresponding to a combination of onsite interactions
between pairs of atoms that surround each impurity. For
instance, if |r| denotes the distance between the lower vertices
of each triangle (in the triangle-down environment), then we
have three interactions with distance |r|, and the remaining
six correspond to distances given by |r ± al|, with l = 1,2,3.
Let us study the plaquette triangle-down configuration, with
impurities following zigzag and armchair trajectories. For the
zigzag case, the first impurity is fixed at the lower corner of the
sample. For armchair, we study trajectory 3. The doping level
is set to εF1. Each impurity hybridizes to three surrounding
Mo atoms, with an exchange coupling of J

3 to each of them.
In Fig. 9, we show the spatial dependence of the indirect
interaction J z2,z2

for the zigzag and J x2−y2,xy for the armchair
direction respectively. We observe the typical quadratic decay,
and also fast and slow oscillations for the in-plane JXX, JXY ,
and Ising JZZ terms, respectively, in the zigzag direction. In
the armchair direction, notably, the in-plane components are
strongly reduced in magnitude. Although the previous features
agree with the ones seen for the onsite configuration, there
is a notable difference. In the plaquette case, the Ising JZZ
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FIG. 9. (a) Effective impurity interaction, scaled by (r/a)2, vs the relative distance in zigzag direction between the impurities r . All curves
for εF1 and plaquette triangle-down configuration. The first magnetic impurity is located at bottom corner of the flake (surrounded by sites 1,
2, and 3), and the second one moves along the zigzag edge on the right. (b) The same, but for armchair trajectory 3 (notice that the scales for
XX = YY and XY have been amplified 10 and 100 times respectively, for better visualization). Orbitals are indicated in each panel.

interaction term has larger magnitude than the in-plane ones,
as one can see in Fig. 9. If we compare the zigzag cases, we
observe that JZZ detaches from the envelope of the modulation
created by JXX and JXY by a typical factor of 2 or 3 times larger
in magnitude. In the armchair direction, the detaching is more
dramatic, as seen in Fig. 9. As in Fig. 4, the intravalley (for JZZ)
and intervalley (for JXX and JXY ) processes are the scattering
mechanisms responsible for the interaction wavelengths.

To gain understanding of this behavior, we analyze the terms
corresponding to the lowest two particle-hole excitations in
perturbation theory (see the Appendix for calculation details).
Figures 10(a) and 10(b) show the most relevant components
of the JZZ and JXX interaction terms in the zigzag direction
defined with the first impurity at the hollow site of the
triangle in the bottom corner of the flake, and both impurities
hybridized to dz2 orbitals. Each panel shows curves for the nine
different onsite interaction terms, together with the average. As
one can observe, for ZZ all the long-wavelength components
are in phase, resulting in an average of the same order of the
individual onsite components. On the other hand, for XX,
we can see that the short-wavelength components get out of
phase, resulting in a suppressed average interaction. The case
is similar for the XY term. This would explain the detaching
behavior seen in Fig. 9(a). In the armchair trajectory, a similar
situation occurs, as seen in Figs. 10(c) and 10(d). Again, ZZ

has all its onsite components in phase, whereas XX has out-
of-phase components that almost perfectly cancel each other,
resulting in a negligible XX term. This detaching behavior is
not seen for any case in the onsite configuration, and provides
an extra tunable tool when the impurities are hybridized in a
plaquette environment. Notice that the perturbation results of
Fig. 10 provide just a qualitative explanation of the real picture,
because only the two lowest particle-hole excitations are
shown. By adding up higher energy processes, the oscillations
start looking like the ones in Fig. 9.

The results for the plaquette triangle-up absorption config-
uration are similar to the ones of triangle down (off by a typical
magnitude factor of 1/10 and shifted by one r/a period). As

discussed before, the interaction is largely influenced by the
wave function modulation, and adjacent up and down triangles
do not possess the same wave function distribution, although
it is quite similar.

IV. DISCUSSION

In this paper, we investigated the effective indirect inter-
action between two magnetic impurities embedded in a p-
doped triangular zigzag-terminated MoS2 flake. We analyzed
the interaction when impurities are displaced along various
trajectories, including bulk and edge cases, and considering
hybridization to different transition metal orbitals. We studied
onsite and plaquette configurations, which are the most
probable adsorption sites from an experimental point of view.
We concentrated on two levels of hole doping and also
provided an example of the interaction as a function of the
impurity separation, for a range of doping levels.

As a general rule, the interaction decays as r−2, as in con-
ventional 2D electron gases. However, there can be exceptions
for which the decay is slower. The interactions show long
wavelength spatial modulations along armchair directions, and
for the Ising component along zigzag directions, signaling
intravalley scattering processes which conserve the spin
projection. On the other hand, the in-plane components along
zigzag directions display short-period oscillations, signaling
intravalley scattering processes that flip the spin.

We have also found that the symmetries of the host play an
important role in determining the behavior of the interaction.
In the infinite MoS2 monolayer, it was predicted that the DM
interaction vanishes along the armchair direction due to lattice
reflection symmetry [40]. Here, we showed that this property
holds only when considering a trajectory along the vertical line
bisecting the triangular flake, which is the only direction that
respects this symmetry.

For the triangle-down plaquette configuration, we found
that the Ising interaction is larger than the in-plane ones.
We provided a qualitative explanation of this phenomenon,
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FIG. 10. Contribution of the two lowest energy particle-hole excitations, obtained from perturbation theory, to the effective impurity
exchange components ZZ and XX, in the triangle-down plaquette configuration. Trajectories and orbitals are the same as in Fig. 9. The legend
for each thin curve, 1γ − 2γ ′, with γ,γ ′ ∈ {B, L, R}, indicate the first (1) and second impurity (2) connection to the (bottom, left, right) Mo
atom in the respective surrounding triangle. The thick curve indicates the average of the nine onsite terms.

calculating two components of the interaction, corresponding
to the lowest particle-hole excitations in perturbation theory.
For the Ising component, each of the nine individual onsite
terms associated with scattering processes between pairs of
atoms surrounding each impurity turn out to be in phase,
giving a constructive interference that results in a sizable
average value of JZZ . For the in-plane interactions, different
components turn out to be out of phase, producing a reduced
plaquette interaction.

At given doping levels, the distribution of the modulus of the
wave function on the sample can be used as a qualitative guide
to tune the strength of the RKKY interaction. In particular, a
scanning tunneling spectroscopy (STS) experiment over TMD
flakes could be used to map the local density of states (LDOS)
over the sample, and use the microscope tip to embed magnetic
impurities in regions with high LDOS [27]. A spin-polarized
tip can then measure the resulting indirect exchange. All
in all, our results provide tools for designing noncolinear
arrangements between impurities, suggesting interesting long-
range ordering of spin chains and 2D arrays of magnetic
moments in these materials.
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APPENDIX: PERTURBATION THEORY

The effective exchange integrals can also be calculated in
perturbation theory [67,68] for small Jαi

in Eq. (6). Con-
sidering for simplicity that the local hybridization parameter
between conduction electrons and impurities J is the same for
every orbital, we can rewrite Eq. (6) as

HI = J
∑

i=1,2

Sz
i s

z
αi

(r i) + 1

2

[
S+

i s−
αi

(r i) + S−
i s+

αi
(r i)

]
, (A1)

with

sz
α(rj ) = 1

2
[d†

α,↑(rj )dα,↑(rj ) − d
†
α,↓(rj )dα,↓(rj )],

s+
α (rj ) = d

†
α,↑(rj )dα,↓(rj ),

s−
α (rj ) = d

†
α,↓(rj )dα,↑(rj ). (A2)

In the basis that diagonalizes H0, defined in Eq. (4), the
spin operators read

sz
α(rj ) = 1

2

∑

μ,μ′
[ψ∗

k,μψk,μ′c
†
μ,↑cμ′,↑ − ψk,μψ∗

k,μ′c
†
μ,↓cμ′,↓],

s+
α (rj ) =

∑

μ,μ′
ψ∗

k,μψ∗
k,μ′c

†
μ,↑cμ′,↓,

s−
α (rj ) =

∑

μ,μ′
ψk,μψk,μ′c

†
μ,↓cμ′,↑. (A3)
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The second-order correction to the energy in perturbation
theory is given by

E(2) =
∑

ex,D′

|〈GS;D | HI | ex;D′〉|2
EGS − Eex

. (A4)

In this expression, |GS;D〉 ≡ |GS〉 |D〉, where |GS〉 is the
ground state of H0 and |D〉 is the ground-state spin configura-
tion of the two disconnected magnetic moments. Similarly,
|ex〉 denote particle-hole excitations of the electron gas,
and |D′〉 are excited configurations of the two impurities.
Inserting (A3) in (A1), one can compute expression (A4).
After some algebra, one gets

E
(2)
α,α′ = J 2

2

∑

μ � μF

μ′ > μF

1

εμ − εμ′
〈D| J α,α′

ZZ (rj ,rj ′ )Sz
jS

z
j ′

+ J
α,α′
XX (rj ,rj ′ )

(
Sx

j Sx
j ′ + S

y

j S
y

j ′
)

+ J
α,α′
XY (rj ,rj ′ )

(
Sx

j S
y

j ′ − S
y

j Sx
j ′
) |D〉 (A5)

with

J
α,α′
ZZ (rj ,rj ′ ) =

∑

μ � μF

μ′ > μF

Re
[(

ψα
j,μ

)∗
ψα

j,μ′ψ
α′
j ′,μ

(
ψα′

j ′,μ′
)∗]

,

J
α,α′
XX (rj ,rj ′ ) =

∑

μ � μF

μ′ > μF

Re
[
ψα

j,μψα
j,μ′

(
ψα′

j ′,μ
)∗(

ψα′
j ′,μ′

)∗]
,

J
α,α′
XY (rj ,rj ′ ) = −

∑

μ � μF

μ′ > μF

Im
[
ψα

j,μψα
j,μ′

(
ψα′

j ′,μ
)∗(

ψα′
j ′,μ′

)∗]
.

(A6)

In these last expressions, we have used the short-hand notation
for the eigenvectors introduced in the main text. μF denotes
the level index associated with a given Fermi energy εF in the
TMD flake. The curves shown in Fig. 10 correspond to μ =
μF , μ′ = μF + 1, and μ′ = μF + 2, where μF correspond to
106 holes or, equivalently, εF1 in the main text.
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