

Contents lists available at ScienceDirect

## Advances in Applied Mathematics

www.elsevier.com/locate/yaama

# The automorphism group of the *s*-stable Kneser graphs $\stackrel{\Rightarrow}{\approx}$



APPLIED MATHEMATICS

霐

Pablo Torres

Universidad Nacional de Rosario and CONICET, Rosario, Argentina

#### ARTICLE INFO

Article history: Received 15 September 2015 Received in revised form 20 March 2017 Accepted 5 April 2017 Available online xxxx

MSC: 05C99 05E99

Keywords: Stable Kneser graph Automorphism group

#### ABSTRACT

For  $k, s \ge 2$ , the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of  $\{1, \ldots, n\}$  such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for  $n \ge 2k + 1$  the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for  $s \ge 2$ and  $n \ge sk+1$  the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n.

© 2017 Elsevier Inc. All rights reserved.

#### 1. Introduction

Given a graph G, V(G), E(G) and  $\operatorname{Aut}(G)$  denote its vertex set, edge set and automorphism group, respectively. Let  $[n] := \{1, 2, 3, \ldots, n\}$ . For positive integers n and ksuch that  $n \ge 2k$ , the Kneser graph  $\operatorname{KG}(n, k)$  has as vertices the k-subsets of [n] with edges defined by disjoint pairs of k-subsets. A subset  $S \subseteq [n]$  is s-stable if any two of its

 $<sup>^{*}</sup>$  Partially supported by MathAmSud Project 13MATH-07 (Argentina–Brazil–Chile–France), PID CONICET 2015-0277, PICT-2012-1324 and PICT-2015-2218.

*E-mail address:* ptorres@fceia.unr.edu.ar.

elements are at least "at distance s apart" on the n-cycle, i.e.  $s \leq |i - j| \leq n - s$  for distinct  $i, j \in S$ . For  $s, k \geq 2$ , we denote  $[n]_s^k$  the family of s-stable k-subsets of [n]. The s-stable Kneser graph KG $(n, k)_{s-\text{stab}}$  [6,10] is the subgraph of KG(n, k) induced by  $[n]_s^k$ .

In a celebrated result, Lovász [5] proved that the chromatic number of  $\mathrm{KG}(n,k)$ , denoted  $\chi(\mathrm{KG}(n,k))$ , is equal to n-2k+2, verifying a conjecture due to M. Kneser [3]. After this result, Schrijver [7] proved that the chromatic number remains the same for  $\mathrm{KG}(n,k)_{2-\mathrm{stab}}$ . Moreover, this author showed that  $\mathrm{KG}(n,k)_{2-\mathrm{stab}}$  is  $\chi$ -critical. Due to these facts, the 2-stable Kneser graphs have been named *Schrijver graphs*. These results were the base for several papers devoted to Kneser graphs and stable Kneser graphs (see e.g. [1,4,6,8–10]). In addition, it is well known that for  $n \geq 2k + 1$  the automorphism group of the Kneser graph  $\mathrm{KG}(n,k)$  is isomorphic to  $S_n$ , the symmetric group of order n(see [2] for a textbook account).

More recently, in 2010 Braun [1] proved that the automorphism group of the Schrijver graphs  $KG(n,k)_{2-\text{stab}}$  is isomorphic to the dihedral group of order 2n, denoted  $D_{2n}$ . In this paper we generalize this result by proving that the automorphism group of the *s*-stable Kneser graphs is isomorphic to  $D_{2n}$ , for  $n \geq sk + 1$ .

Firstly, notice that if n = sk, the s-stable Kneser graph  $KG(n, k)_{s-\text{stab}}$  is isomorphic to the complete graph on s vertices and the automorphism group of  $KG(n, k)_{s-\text{stab}}$  is isomorphic to  $S_s$ .

From the definitions we have that  $D_{2n}$  injects into  $\operatorname{Aut}(\operatorname{KG}(n,k)_{s-\operatorname{stab}})$ , as  $D_{2n}$  acts on  $\operatorname{KG}(n,k)_{s-\operatorname{stab}}$  by acting on [n]. Then, we have the following fact.

**Remark 1.1.**  $D_{2n} \subseteq \operatorname{Aut}(\operatorname{KG}(n,k)_{s-\operatorname{stab}}).$ 

In the sequel, the arithmetic operations are taken *modulo* n on the set [n] where n represents the 0. Let us recall an important result due to Talbot.

**Theorem 1.2** (Theorem 3 in [8]). Let n, s, k be positive integers such that  $n \geq sk$  and  $s \geq 3$ . Then, every maximum independent set in  $\operatorname{KG}(n, k)_{s-\text{stab}}$  is of the form  $\mathcal{I}_i = \{I \in [n]_s^k : i \in I\}$  for a fixed  $i \in [n]$ .

For  $n \ge sk + 1$  we observe that  $\{i, i + s, i + 2s, \dots, i + (k - 1)s\}$  and  $\{i, i + s + 1, i + 2s + 1, \dots, i + (k - 1)s + 1\}$  belong to  $[n]_s^k$  for all  $i \in [n]$ . Then, we can easily obtain the following fact.

**Remark 1.3.** Let  $n \ge sk + 1$  and  $i, j \in [n]$ . If  $i \ne j$ , then  $\mathcal{I}_i \ne \mathcal{I}_j$ .

#### 2. Automorphism group of $KG(n, k)_{s-stab}$

This section is devoted to obtain the automorphism group of  $KG(n, k)_{s-\text{stab}}$ . To this end, let us introduce the following graph family. Let n, s, k be positive integers such that  $n \ge sk + 1$ . We define the graph G(n, k, s) with vertex set [n] and two vertices  $i, j \in [n]$ 



Fig. 1. Examples of graphs G(n, k, s).

are adjacent if and only if it does not exist  $S \in [n]_s^k$  such that  $\{i, j\} \subseteq S$ . See examples in Fig. 1.

Two vertices i, j of G(n, k, s) are *consecutive* if i = j+1. Let us see a direct result about consecutive vertices and dihedral groups, which we will use in the following theorem.

**Remark 2.1.** An injective function  $f : [n] \mapsto [n]$  sends consecutive vertices of G(n, k, s) to consecutive vertices of G(n, k, s) if and only if f belongs to the dihedral group  $D_{2n}$ .

Next, we obtain the main result of this section that states the link between the automorphism groups of  $KG(n,k)_{s-\text{stab}}$  and G(n,k,s).

**Theorem 2.2.** Let n, s, k be positive integers such that  $n \ge sk + 1$  and  $s \ge 3$ . Then, the automorphism group of  $KG(n, k)_{s-stab}$  is isomorphic to the automorphism group of G(n, k, s).

**Proof.** As we have mentioned, given  $i \in [n]$ , Theorem 1.2 guarantees that the sets  $\mathcal{I}_i$  are the maximum independent sets in  $\mathrm{KG}(n,k)_{s-\mathrm{stab}}$ . Besides, any automorphism of  $\mathrm{KG}(n,k)_{s-\mathrm{stab}}$  send maximum independent sets into maximum independent sets, i.e. for each  $\alpha \in \mathrm{Aut}(\mathrm{KG}(n,k)_{s-\mathrm{stab}})$  and  $i \in [n]$ ,  $\alpha(\mathcal{I}_i) = \mathcal{I}_j$  for some  $j \in [n]$ . From Remark 1.3, if  $i \neq j$  then  $\alpha(\mathcal{I}_i) \neq \alpha(\mathcal{I}_j)$  and so  $\alpha$  permutes these independent sets. Hence we define the homomorphism  $\phi$  from  $\mathrm{Aut}(\mathrm{KG}(n,k)_{s-\mathrm{stab}})$  to  $S_n$  such that

$$\phi(\alpha)(i) = j \Leftrightarrow \alpha(\mathcal{I}_i) = \mathcal{I}_j.$$

We will show that  $\phi$  is injective and its image is Aut(G(n, k, s)).

Given a non-trivial element  $\alpha \in \operatorname{Aut}(\operatorname{KG}(n,k)_{s-\operatorname{stab}})$ , there exists  $S \in [n]_s^k$  such that  $\alpha(S) \neq S$ , i.e. there exists  $j \in S$  such that  $j \notin \alpha(S)$ . It follows that  $\alpha(S) \in \mathcal{I}_{\phi(\alpha)(j)}$ , but  $\alpha(S) \notin \mathcal{I}_j$ , hence  $\phi(\alpha)(j) \neq j$  and  $\phi(\alpha)$  is non-trivial. Then,  $\phi$  is injective.

Now, we first prove that  $\operatorname{Aut}(G(n,k,s)) \subseteq \phi(\operatorname{Aut}(\operatorname{KG}(n,k)_{s-\operatorname{stab}}))$ . For each  $\beta \in \operatorname{Aut}(G(n,k,s))$  we define the function  $\gamma : V(\operatorname{KG}(n,k)_{s-\operatorname{stab}}) \mapsto V(\operatorname{KG}(n,k)_{s-\operatorname{stab}})$  such that for each  $S = \{s_1, \ldots, s_k\} \in V(\operatorname{KG}(n,k)_{s-\operatorname{stab}}), \gamma(S) = \{\beta(s_1), \ldots, \beta(s_k)\}.$ 

Since S is a stable set of G(n, k, s),  $\gamma(S)$  is also a stable set of G(n, k, s) and  $\gamma$  is well defined. It is not hard to see that  $\gamma$  is bijective. Furthermore, S and S' are adjacent in  $\operatorname{KG}(n, k)_{s-\text{stab}}$  if and only if  $\gamma(S)$  and  $\gamma(S')$  are adjacent in  $\operatorname{KG}(n, k)_{s-\text{stab}}$ . Therefore  $\gamma \in \operatorname{Aut}(\operatorname{KG}(n, k)_{s-\text{stab}})$  and from definition  $\phi(\gamma) = \beta$ .

Let us prove that  $\phi(\operatorname{Aut}(\operatorname{KG}(n,k)_{s-\operatorname{stab}})) \subseteq \operatorname{Aut}(G(n,k,s))$ , i.e.  $\phi(\alpha)$  is an automorphism of G(n,k,s) for each  $\alpha \in \operatorname{Aut}(\operatorname{KG}(n,k)_{s-\operatorname{stab}})$ . Let  $i,j \in [n], i' = \phi(\alpha)(i)$  and  $j' = \phi(\alpha)(j)$ . If  $ij \in E(G(n,k,s))$ , since  $\mathcal{I}_i \cap \mathcal{I}_j = \emptyset$  and  $\alpha$  is injective,  $\mathcal{I}_{i'} \cap \mathcal{I}_{j'} = \emptyset$ , i.e.  $\nexists S \in V(\operatorname{KG}(n,k)_{s-\operatorname{stab}})$  such that  $\{i',j'\} \subseteq S$ . Thus  $i'j' \in E(G(n,k,s))$ . Since  $\phi(\alpha)$  is bijective, we conclude that  $\phi(\alpha) \in \operatorname{Aut}(G(n,k,s))$ .

Therefore the image of  $\phi$  is Aut(G(n, k, s)) and the proof is complete.  $\Box$ 

This result allows us to obtain  $\operatorname{Aut}(\operatorname{KG}(n,k)_{s-\operatorname{stab}})$  from  $\operatorname{Aut}(G(n,k,s))$ . Next section is devoted to analyze the structure and the automorphism group of the graphs G(n,k,s).

#### 2.1. The automorphism group of G(n,k,s)

Let G be a simple graph. For a vertex  $v \in V(G)$ , the open neighborhood of v in G is the set  $N(v) = \{u \in V(G) : uv \in E(G)\}$ . Then, the closed neighborhood of v in G is  $N[v] = N(v) \cup \{v\}$ . The degree of a vertex  $v \in V(G)$  is  $\deg(v) = |N(v)|$ . For any positive integer d, we denote by  $G^d$  the d-th power of G, i.e. the graph with the same vertex set V(G) and such that two vertices u, v are adjacent if and only if  $\operatorname{dist}_G(u, v) \leq d$ , where  $\operatorname{dist}_G(u, v)$  is the distance between u and v in G, i.e. the length of the shortest path in G from u to v. We denote by  $C_n$  the n-cycle graph with vertex set [n] and edge set  $\{ij : i, j \in [n], j = i + 1\}$ .

**Theorem 2.3.** Let n, s, k be positive integers such that  $n \ge sk + 1$  and  $s \ge 3$ . Then,

- 1. if  $s(k+1) 1 \leq n$ , then G(n,k,s) is isomorphic to  $C_n^{s-1}$ , and
- 2. if  $sk + 1 \le n \le s(k+1) 2$ . Then G(n, k, s) is the graph on [n] and edges defined as follows:

$$ij \in E(G(n,k,s)) \Leftrightarrow i \neq j, \ |j-i| \notin \bigcup_{d=1}^{k-1} \{ds, ds+1, \dots, ds+r\},$$

where r = n - sk.

**Proof.** From the symmetry of G(n, k, s) (see Remark 1.1), to prove this result it is enough to obtain the open/closed neighborhood of vertex 1 in G(n, k, s) for each case.

1. Case  $s(k+1) - 1 \le n$ : We have to prove that  $[n] \setminus N[1] = \{s+1, \ldots, n-s+1\}$ . By definitions,  $i \in N(1)$  for every  $i \in \{2, \ldots, s\} \cup \{n-s+2, \ldots, n\}$ . We only need to show that for all  $i \in \{s+1, \ldots, n-s+1\}$  there exists  $S_i \in [n]_s^k$  such that  $\{1, i\} \subseteq S_i$ . So, let  $i \in \{s+1, \ldots, n-s+1\}$  and  $t = \lfloor \frac{i-1}{s} \rfloor$ .



Fig. 2. Neighborhood of vertex 1 in G(n, k, s).

If  $t \ge k-1$ , let  $S_i = \{1, 1+s, \dots, 1+(k-2)s, i\}$ . Then  $S_i \in [n]_s^k$ , since  $s+1 \le i \le n-s+1$  and  $i-(1+(k-2)s) \ge i-(1+(t-1)s) \ge i-(1+(\frac{i-1}{s}-1)s) = s$ . If  $t \le k-2$ , let  $S_i = \{1, 1+s, \dots, 1+(t-1)s, i, i+s, \dots, i+(k-t-1)s\}$ . To prove that  $S_i \in [n]_s^k$  it is enough to show that  $i-(1+(t-1)s) \ge s$  and  $n-(i+(k-t-1)s) \ge s-1$ . The first inequality trivially holds. To see the second inequality, notice that

$$i - (1 + (t - 1)s) = i - 1 + s - s \left\lfloor \frac{i - 1}{s} \right\rfloor < i - 1 + s - s \left( \frac{i - 1}{s} - 1 \right) = 2s$$

Then,  $i - (1 + (t - 1)s) \le 2s - 1$ . Therefore  $n - (i + (k - t - 1)s) = n - (i - 1 - (t - 1)s + (k - 2)s + 1) = n - (i - (1 + (t - 1)s)) - ((k - 2)s + 1) \ge n - (2s - 1) - ((k - 2)s + 1) = n - 2s + 1 - (k - 2)s - 1 = n - sk \ge s - 1$ .

2. Case  $sk + 1 \leq n \leq s(k+1) - 2$ : Let  $F_d = \{1 + ds, 1 + ds + 1, \dots, 1 + ds + r\}$  for  $d \in [k-1]$  and  $F = \bigcup_{d=1}^{k-1} F_d$ . We will prove that N[1] = [n] - F, which implies that 1 and j are adjacent in G(n, k, s) if and only if  $j - 1 \notin \bigcup_{d=1}^{k-1} \{ds, ds + 1, \dots, ds + r\}$ , as required.

Firstly, since n-(r+1+(k-1)s) = s-1, the set  $S_p = \{1, p+s, p+2s, \dots, p+(k-1)s\} \in [n]_s^k$  for all  $p \in [r+1]$ . Furthermore,  $\{1\} \cup F = \bigcup_{p=1}^{r+1} S_p$  and then  $N[1] \subseteq [n] - F$ . To see the converse inclusion, observe first that if  $h \in [s] \cup \{n-s+2, \dots, n\}$  then

 $h \in N[1]$  from definition of G(n, k, s).

Hence, if k = 2 we have finished.

Now, let  $k \geq 3$  (see Fig. 2). We have that

$$[n] \setminus (F \cup [s] \cup \{n - s + 2, \dots, n\}) = \bigcup_{m=1}^{k-2} \{ms + 2 + r, \dots, (m+1)s\}.$$

Let  $h \in \bigcup_{m=1}^{k-2} \{ms+2+r, \ldots, (m+1)s\}$ . We will prove that it does not exist  $S \in [n]_s^k$  such that  $\{1, h\} \subseteq S$ . Let W be an s-stable set of [n] such that  $\{1, h\} \subseteq W$ . Notice that  $|W \cap [h-1]| \leq \lfloor \frac{h-1}{s} \rfloor$  and

$$|W \cap \{h, \dots, n\}| \le \left\lfloor \frac{n-h+1}{s} \right\rfloor$$

Consider  $m' \in [k-2]$  such that  $h \in \{m's + 2 + r, \dots, (m'+1)s\}$ . Then,

•  $\left\lfloor \frac{h-1}{s} \right\rfloor \le \left\lfloor \frac{(m'+1)s-1}{s} \right\rfloor = m'.$ 

•  $\lfloor \frac{n-h+1}{s} \rfloor \leq \lfloor \frac{n-(m's+2+r)+1}{s} \rfloor \leq \lfloor \frac{n-r-1}{s} \rfloor - m' = \lfloor \frac{n-n+sk-1}{s} \rfloor - m' = k-1-m'.$ Thus,  $|W| \leq \lfloor \frac{h-1}{s} \rfloor + \lfloor \frac{n-h+1}{s} \rfloor \leq k-1$ . Therefore, any *s*-stable set of [n] containing the set  $\{1, h\}$  has cardinality at most k-1, i.e. it does not exist  $S \in [n]_s^k$  such that  $\{1, h\} \subseteq S$ . Hence  $h \in N[1]$  and the result follows.  $\Box$ 

In order to obtain Aut(G(n, k, s)), let us recall a well known result on automorphism group (see, e.g. [9]).

**Remark 2.4.** Let m and q be positive integers such that  $m \ge 2q+3$ . Then, the automorphism group of  $C_m^q$  is the dihedral group  $D_{2m}$ .

Let x be the degree of the vertices in G(n, k, s) (which is a regular graph). Then, we have the following result.

**Theorem 2.5.** Let n, s, k be positive integers such that  $n \ge sk + 1$  and  $s \ge 3$ . Then, the automorphism group of G(n, k, s) is the dihedral group  $D_{2n}$ .

**Proof.** Firstly, observe that if  $s(k + 1) - 1 \leq n$  the result immediately follows from Case 1 of Theorem 2.3 and Remark 2.4. Let us consider  $sk + 1 \leq n \leq s(k + 1) - 2$ . From Remark 2.1 we only need to prove that every  $\alpha \in \text{Aut}(G(n, k, s))$  sends consecutive vertices to consecutive vertices. Moreover, by Remark 1.1 and Theorem 2.2 it is enough to show that  $\alpha(1)$  and  $\alpha(2)$  are consecutive vertices. Without loss of generality we consider  $\alpha(1) = 1$ .

Let r = n - sk. From Theorem 2.3,

$$N[2] \cap \{1 + ds, \dots, 1 + ds + r\} = \{1 + ds\}$$

for d = 1, ..., k - 1, and

$$[n] \setminus N[1] = \bigcup_{d=1}^{k-1} \{1 + ds, 1 + ds + 1, \dots, 1 + ds + r\}.$$

So,

$$|N[1] \cap N[2]| = x + 1 - (k - 1) = x - k + 2.$$

Analogously,  $|N[1] \cap N[n]| = x - k + 2$ .

Let  $i \in N(1)$ . Recall that

$$N(1) = \{2, \dots, s\} \cup \{n - s + 2, \dots, n\} \cup \left(\bigcup_{m=1}^{k-2} \{ms + 2 + r, \dots, (m+1)s\}\right)$$

If  $i \in \{3, ..., s\}$  we have that  $\{1 + s, 2 + s\} \subseteq N[i]$ . Besides, if  $k \ge 3$  observe that  $\{i + 1 + (d - 1)s + r, ..., i + ds - 1\} \subseteq N[i]$  for d = 2, ..., k - 1. Hence, since  $3 \le i \le s, 1 + ds \le i + ds - 1$  and  $i + 1 + (d - 1)s + r \le 1 + ds + r$ . Therefore,  $\{i + 1 + (d - 1)s + r, ..., i + ds - 1\} \cap \{1 + ds, ..., 1 + ds + r\} \neq \emptyset$  for d = 2, ..., k - 1. Then,  $|N[i] \cap \{1 + s, ..., 1 + s + r\}| \ge 2$  and  $|N[i] \cap \{1 + ds, ..., 1 + ds + r\}| \ge 1$  for d = 2, ..., k - 1. So, if  $k \ge 2$ ,  $|N[1] \cap N[i]| \le x + 1 - k \le x - 1$  and thus  $\alpha(2) \ne i$ . Similarly if  $i \in \{n - s + 2, ..., n - 1\}$ , we have  $\alpha(2) \ne i$ . So, if k = 2 the result follows.

Now, let  $k \ge 3$ . Consider  $i \in \bigcup_{m=1}^{k-2} \{ms+2+r, \dots, (m+1)s\}$  and let  $m_i \in \{1, \dots, k-2\}$  such that  $i \in \{m_i s + 2 + r, \dots, (m_i + 1)s\}$ .

Notice that

$$\{1 + m_i s, \dots, 1 + m_i s + r\} \cup \{1 + (m_i + 1)s, \dots, 1 + (m_i + 1)s + r\}$$
$$\subseteq \{i - (s - 1), \dots, i + s - 1\} \subseteq N[i].$$
(1)

Therefore,

$$\{1 + m_i s, \dots, 1 + m_i s + r\} \cup \{1 + (m_i + 1)s, \dots, 1 + (m_i + 1)s + r\} \subseteq N[i] \setminus N[1].$$

Now, let  $m \in [k-2]$ . If  $m < m_i$  then  $1 + (m_i - m)s + r \le i - (1+ms) \le (m_i + 1 - m)s - 1$ . From Theorem 2.3, we have that  $1 + ms \in N[i]$  if  $m < m_i$ . By a similar reasoning we have that  $1 + ms + r \in N[i]$  if  $m > m_i + 1$ . Then,

$$\{1 + ms: m < m_i, m \in [k]\} \cup \{1 + ms + r: m > m_i + 1, m \in [k]\} \subseteq N[i] \setminus N[1].$$

These facts together with (1) imply that

$$|N[1] \cap N[i]| = x + 1 - (N[i] \setminus N[1]) \le x + 1 - (2(r+1) + (k-4)) \le x - k + 1.$$

Thus  $\alpha(2) \neq i$ . Therefore  $\alpha(2) \in \{2, n\}$  and the thesis holds.  $\Box$ 

Finally, we have the main result of this work.

**Theorem 2.6.** Let n, s, k be positive integers such that  $n \ge sk + 1$  and  $s \ge 2$ . Then, the automorphism group of  $KG(n, k)_{s-stab}$  is isomorphic to the dihedral group  $D_{2n}$ .

**Proof.** The result for the case s = 2 follows from [1] and for the remaining cases can be obtained from Theorems 2.2 and 2.5.  $\Box$ 

#### 3. Further results

In this section we will obtain some properties of s-stable Kneser graphs as a consequence of the results in the previous sections. Firstly, as a consequence of Theorem 2.6, we have the following result.

**Theorem 3.1.** Let  $n, k, s \ge 2$  with  $n \ge sk + 1$ . Then,  $KG(n, k)_{s-stab}$  is vertex transitive if and only if n = sk + 1.

**Proof.** Without loss of generality, we assume that every vertex  $S = \{s_1, s_2, \ldots, s_k\}$  of the s-stable Kneser graph  $\operatorname{KG}(n, k)_{s-\operatorname{stab}}$  verifies that  $s_1 < s_2 < \ldots < s_k$ . Then, S is described unequivocally by  $s_1$  and the gaps  $l_1(S), \ldots, l_k(S)$  such that for  $i \in [k-1]$ ,  $l_i(S) = s_{i+1} - s_i$  and  $l_k(S) = s_1 + n - s_k$ . Observe that every automorphism of  $\operatorname{KG}(n, k)_{s-\operatorname{stab}}$  "preserves" the gaps  $l_i$ , i.e. if  $\phi \in \operatorname{Aut}(\operatorname{KG}(n, k)_{s-\operatorname{stab}})$  there exists  $\alpha \in D_{2k}$  such that  $l_i(\phi(S)) = l_{\alpha(i)}(S)$  for all  $i \in [k]$ .

If  $n \ge sk+2$ , then  $S_1 = \{1, 1+s, 1+2s, \dots, 1+(k-1)s\} \in [n]_s^k$  and  $S_2 = \{1, 2+s, 2+2s, \dots, 2+(k-1)s\} \in [n]_s^k$ . Therefore, from Theorem 2.6, we have that no automorphism of KG $(n, k)_{s-\text{stab}}$  maps  $S_1$  to  $S_2$ , since  $l_1(S_2) = s+1$  but  $l_i(S_1) = s$  for  $i \in [k-1]$  and  $l_k(S_1) \ge s+2$ .

Besides, in [9] it is proved that if  $S \in [ks+1]_s^k$  then exactly one gap  $l_m(S)$  is equal to s+1 and the remaining gaps are equal to s. From this fact we have that  $\operatorname{KG}(sk+1,k)_{s-\text{stab}}$  is vertex transitive.  $\Box$ 

Next, we will analyze some aspects related to colorings of s-stable Kneser graphs. Let  $\alpha(G)$  and  $\chi^*(G)$  the *independence number* and *fractional chromatic number* of a graph G, respectively.

### **Proposition 3.2.** Let $n, k, s \ge 2$ with $n \ge sk + 1$ . Then, $\chi^*(\mathrm{KG}(n, k)_{s-\mathrm{stab}}) = \frac{n}{k}$ .

**Proof.** It is immediate to observe that  $\chi^*(\mathrm{KG}(n,k)_{s-\mathrm{stab}}) \leq \frac{n}{k}$  (see, e.g. Theorem 7.4.5 in [2]). To see the converse inequality, we use the fact that for all graph  $G, \chi^*(G) \geq \frac{|V(G)|}{\alpha(G)}$ .

So, let us compute  $|[n]_s^k| = |V(\operatorname{KG}(n,k)_{s-\operatorname{stab}})|$ . From [8], since the sets  $\mathcal{I}_i$  are maximum independent sets for  $i \in [n]$ ,  $\alpha(\operatorname{KG}(n,k)_{s-\operatorname{stab}}) = |\mathcal{I}_i| = \binom{n - (s-1)k - 1}{k-1}$ .

Then, to compute  $|[n]_s^k|$ , let us observe that  $\bigcup_{i=1}^n \mathcal{I}_i = [n]_s^k$  and  $\sum_{i=1}^n |\mathcal{I}_i| = n \binom{n - (s-1)k - 1}{k-1}$ , where each vertex of  $\operatorname{KG}(n,k)_{s-\operatorname{stab}}$  is computed k times. Then,

$$|[n]_{s}^{k}| = n \left( \frac{n - (s - 1)k - 1}{k - 1} \right) - (k - 1)|[n]_{s}^{k}|.$$

Hence  $|[n]_s^k| = \frac{n}{k} \begin{pmatrix} n - (s-1)k - 1 \\ k - 1 \end{pmatrix}$  and the result follows.  $\Box$ 

As we have mentioned before, Schrijver [7] proved that the graphs  $KG(n, k)_{2-\text{stab}}$  are  $\chi$ -critical subgraphs of KG(n, k) but it is an open problem to compute the chromatic number of s-stable Kneser graphs. From the last result and Proposition 2 in [6] we have

$$\frac{n}{k} \le \chi(\mathrm{KG}(n,k)_{s-\mathrm{stab}}) \le n - (k-1)s.$$

In particular, if n = ks + 1 we obtain that  $\chi(\text{KG}(ks + 1, k)_{s-\text{stab}}) = s + 1$ , which is an alternative proof to compute the exact value of  $\chi(\text{KG}(ks + 1, k)_{s-\text{stab}})$  already studied in [6] and [9].

#### References

- [1] B. Braun, Symmetries of the stable Kneser graphs, Adv. in Appl. Math. 45 (2010) 12–14.
- [2] C.D. Godsil, G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, Springer, 2001.
- [3] M. Kneser, Aufgabe 360, in: Jahresbericht der Deutschen Mathematiker-Vereinigung, 2. Abteilung, vol. 50, 1955, 27 pp.
- [4] B. Larose, F. Laviolette, C. Tardif, On normal Cayley graphs and hom-idempotent graphs, European J. Combin. 19 (1998) 867–881.
- [5] L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory Ser. A 25 (1978) 319–324.
- [6] F. Meunier, The chromatic number of almost stable Kneser hypergraphs, J. Combin. Theory Ser. A 118 (2011) 1820–1828.
- [7] A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch. Wiskd. (3) 26 (3) (1978) 454–461.
- [8] J. Talbot, Intersecting families of separated sets, J. Lond. Math. Soc. (2) 68 (1) (2003) 37–51.
- [9] P. Torres, M. Valencia-Pabon, Shifts of the stable Kneser graphs and hom-idempotence, European J. Combin. 62 (2017) 50–57.
- [10] G. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, Invent. Math. 147 (2002) 671–691.