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For k, s ≥ 2, the s-stable Kneser graphs are the graphs with 
vertex set the k-subsets S of {1, . . . , n} such that the circular 
distance between any two elements in S is at least s and 
two vertices are adjacent if and only if the corresponding 
k-subsets are disjoint. Braun showed that for n ≥ 2k + 1 the 
automorphism group of the 2-stable Kneser graphs (Schrijver 
graphs) is isomorphic to the dihedral group of order 2n. In 
this paper we generalize this result by proving that for s ≥ 2
and n ≥ sk+1 the automorphism group of the s-stable Kneser 
graphs also is isomorphic to the dihedral group of order 2n.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Given a graph G, V (G), E(G) and Aut(G) denote its vertex set, edge set and auto-
morphism group, respectively. Let [n] := {1, 2, 3, . . . , n}. For positive integers n and k
such that n ≥ 2k, the Kneser graph KG(n, k) has as vertices the k-subsets of [n] with 
edges defined by disjoint pairs of k-subsets. A subset S ⊆ [n] is s-stable if any two of its 
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elements are at least “at distance s apart” on the n-cycle, i.e. s ≤ |i − j| ≤ n − s for 
distinct i, j ∈ S. For s, k ≥ 2, we denote [n]ks the family of s-stable k-subsets of [n]. The 
s-stable Kneser graph KG(n, k)s−stab [6,10] is the subgraph of KG(n, k) induced by [n]ks .

In a celebrated result, Lovász [5] proved that the chromatic number of KG(n, k), 
denoted χ(KG(n, k)), is equal to n − 2k+2, verifying a conjecture due to M. Kneser [3]. 
After this result, Schrijver [7] proved that the chromatic number remains the same for 
KG(n, k)2−stab. Moreover, this author showed that KG(n, k)2−stab is χ-critical. Due to 
these facts, the 2-stable Kneser graphs have been named Schrijver graphs. These results 
were the base for several papers devoted to Kneser graphs and stable Kneser graphs (see 
e.g. [1,4,6,8–10]). In addition, it is well known that for n ≥ 2k + 1 the automorphism 
group of the Kneser graph KG(n, k) is isomorphic to Sn, the symmetric group of order n
(see [2] for a textbook account).

More recently, in 2010 Braun [1] proved that the automorphism group of the Schrijver 
graphs KG(n, k)2−stab is isomorphic to the dihedral group of order 2n, denoted D2n. In 
this paper we generalize this result by proving that the automorphism group of the 
s-stable Kneser graphs is isomorphic to D2n, for n ≥ sk + 1.

Firstly, notice that if n = sk, the s-stable Kneser graph KG(n, k)s−stab is isomorphic 
to the complete graph on s vertices and the automorphism group of KG(n, k)s−stab is 
isomorphic to Ss.

From the definitions we have that D2n injects into Aut(KG(n, k)s−stab), as D2n acts 
on KG(n, k)s−stab by acting on [n]. Then, we have the following fact.

Remark 1.1. D2n ⊆ Aut(KG(n, k)s−stab).

In the sequel, the arithmetic operations are taken modulo n on the set [n] where n
represents the 0. Let us recall an important result due to Talbot.

Theorem 1.2 (Theorem 3 in [8]). Let n, s, k be positive integers such that n ≥ sk and 
s ≥ 3. Then, every maximum independent set in KG(n, k)s−stab is of the form Ii = {I ∈
[n]ks : i ∈ I} for a fixed i ∈ [n].

For n ≥ sk + 1 we observe that {i, i + s, i + 2s, . . . , i + (k − 1)s} and {i, i + s + 1, i +
2s + 1, . . . , i + (k− 1)s + 1} belong to [n]ks for all i ∈ [n]. Then, we can easily obtain the 
following fact.

Remark 1.3. Let n ≥ sk + 1 and i, j ∈ [n]. If i �= j, then Ii �= Ij .

2. Automorphism group of KG(n, k)s−stab

This section is devoted to obtain the automorphism group of KG(n, k)s−stab. To this 
end, let us introduce the following graph family. Let n, s, k be positive integers such that 
n ≥ sk + 1. We define the graph G(n, k, s) with vertex set [n] and two vertices i, j ∈ [n]
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Fig. 1. Examples of graphs G(n, k, s).

are adjacent if and only if it does not exist S ∈ [n]ks such that {i, j} ⊆ S. See examples 
in Fig. 1.

Two vertices i, j of G(n, k, s) are consecutive if i = j+1. Let us see a direct result about 
consecutive vertices and dihedral groups, which we will use in the following theorem.

Remark 2.1. An injective function f : [n] �→ [n] sends consecutive vertices of G(n, k, s)
to consecutive vertices of G(n, k, s) if and only if f belongs to the dihedral group D2n.

Next, we obtain the main result of this section that states the link between the auto-
morphism groups of KG(n, k)s−stab and G(n, k, s).

Theorem 2.2. Let n, s, k be positive integers such that n ≥ sk + 1 and s ≥ 3. Then, 
the automorphism group of KG(n, k)s−stab is isomorphic to the automorphism group of 
G(n, k, s).

Proof. As we have mentioned, given i ∈ [n], Theorem 1.2 guarantees that the sets Ii
are the maximum independent sets in KG(n, k)s−stab. Besides, any automorphism of 
KG(n, k)s−stab send maximum independent sets into maximum independent sets, i.e. for 
each α ∈ Aut(KG(n, k)s−stab) and i ∈ [n], α(Ii) = Ij for some j ∈ [n]. From Remark 1.3, 
if i �= j then α(Ii) �= α(Ij) and so α permutes these independent sets. Hence we define 
the homomorphism φ from Aut(KG(n, k)s−stab) to Sn such that

φ(α)(i) = j ⇔ α(Ii) = Ij .

We will show that φ is injective and its image is Aut(G(n, k, s)).
Given a non-trivial element α ∈ Aut(KG(n, k)s−stab), there exists S ∈ [n]ks such that 

α(S) �= S, i.e. there exists j ∈ S such that j /∈ α(S). It follows that α(S) ∈ Iφ(α)(j), but 
α(S) /∈ Ij , hence φ(α)(j) �= j and φ(α) is non-trivial. Then, φ is injective.

Now, we first prove that Aut(G(n, k, s)) ⊆ φ(Aut(KG(n, k)s−stab)). For each β ∈
Aut(G(n, k, s)) we define the function γ : V (KG(n, k)s−stab) �→ V (KG(n, k)s−stab) such 
that for each S = {s1, . . . , sk} ∈ V (KG(n, k)s−stab), γ(S) = {β(s1), . . . , β(sk)}.
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Since S is a stable set of G(n, k, s), γ(S) is also a stable set of G(n, k, s) and γ is well 
defined. It is not hard to see that γ is bijective. Furthermore, S and S′ are adjacent in 
KG(n, k)s−stab if and only if γ(S) and γ(S′) are adjacent in KG(n, k)s−stab. Therefore 
γ ∈ Aut(KG(n, k)s−stab) and from definition φ(γ) = β.

Let us prove that φ(Aut(KG(n, k)s−stab)) ⊆ Aut(G(n, k, s)), i.e. φ(α) is an automor-
phism of G(n, k, s) for each α ∈ Aut(KG(n, k)s−stab). Let i, j ∈ [n], i′ = φ(α)(i) and 
j′ = φ(α)(j). If ij ∈ E(G(n, k, s)), since Ii ∩ Ij = ∅ and α is injective, Ii′ ∩ Ij′ = ∅, i.e. 
� S ∈ V (KG(n, k)s−stab) such that {i′, j′} ⊆ S. Thus i′j′ ∈ E(G(n, k, s)). Since φ(α) is 
bijective, we conclude that φ(α) ∈ Aut(G(n, k, s)).

Therefore the image of φ is Aut(G(n, k, s)) and the proof is complete. �
This result allows us to obtain Aut(KG(n, k)s−stab) from Aut(G(n, k, s)). Next section 

is devoted to analyze the structure and the automorphism group of the graphs G(n, k, s).

2.1. The automorphism group of G(n, k, s)

Let G be a simple graph. For a vertex v ∈ V (G), the open neighborhood of v in G is 
the set N(v) = {u ∈ V (G) : uv ∈ E(G)}. Then, the closed neighborhood of v in G is 
N [v] = N(v) ∪{v}. The degree of a vertex v ∈ V (G) is deg(v) = |N(v)|. For any positive 
integer d, we denote by Gd the d-th power of G, i.e. the graph with the same vertex set 
V (G) and such that two vertices u, v are adjacent if and only if distG(u, v) ≤ d, where 
distG(u, v) is the distance between u and v in G, i.e. the length of the shortest path 
in G from u to v. We denote by Cn the n-cycle graph with vertex set [n] and edge set 
{ij : i, j ∈ [n], j = i + 1}.

Theorem 2.3. Let n, s, k be positive integers such that n ≥ sk + 1 and s ≥ 3. Then,

1. if s(k + 1) − 1 ≤ n, then G(n, k, s) is isomorphic to Cs−1
n , and

2. if sk+ 1 ≤ n ≤ s(k+ 1) − 2. Then G(n, k, s) is the graph on [n] and edges defined as 
follows:

ij ∈ E(G(n, k, s)) ⇔ i �= j, |j − i| /∈
k−1⋃
d=1

{ds, ds + 1, . . . , ds + r},

where r = n − sk.

Proof. From the symmetry of G(n, k, s) (see Remark 1.1), to prove this result it is enough 
to obtain the open/closed neighborhood of vertex 1 in G(n, k, s) for each case.

1. Case s(k + 1) − 1 ≤ n: We have to prove that [n] \N [1] = {s + 1, . . . , n − s + 1}. By 
definitions, i ∈ N(1) for every i ∈ {2, . . . , s} ∪ {n − s + 2, . . . , n}. We only need to 
show that for all i ∈ {s +1, . . . , n −s +1} there exists Si ∈ [n]ks such that {1, i} ⊆ Si. 
So, let i ∈ {s + 1, . . . , n − s + 1} and t =

⌊
i−1⌋.
s
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Fig. 2. Neighborhood of vertex 1 in G(n, k, s).

If t ≥ k − 1, let Si = {1, 1 + s, . . . , 1 + (k − 2)s, i}. Then Si ∈ [n]ks , since s + 1 ≤ i ≤
n − s + 1 and i − (1 + (k − 2)s) ≥ i − (1 + (t − 1)s) ≥ i − (1 + ( i−1

s − 1)s) = s.
If t ≤ k−2, let Si = {1, 1 +s, . . . , 1 +(t −1)s, i, i +s, . . . , i +(k−t −1)s}. To prove that 
Si ∈ [n]ks it is enough to show that i −(1 +(t −1)s) ≥ s and n −(i +(k−t −1)s) ≥ s −1. 
The first inequality trivially holds. To see the second inequality, notice that

i− (1 + (t− 1)s) = i− 1 + s− s

⌊
i− 1
s

⌋
< i− 1 + s− s

(
i− 1
s

− 1
)

= 2s.

Then, i −(1 +(t −1)s) ≤ 2s −1. Therefore n −(i +(k−t −1)s) = n −(i −1 −(t −1)s +
(k−2)s +1) = n − (i − (1 +(t −1)s)) − ((k−2)s +1) ≥ n − (2s −1) − ((k−2)s +1) =
n − 2s + 1 − (k − 2)s − 1 = n − sk ≥ s − 1.

2. Case sk + 1 ≤ n ≤ s(k + 1) − 2: Let Fd = {1 + ds, 1 + ds + 1, . . . , 1 + ds + r} for 
d ∈ [k− 1] and F =

⋃k−1
d=1 Fd. We will prove that N [1] = [n] −F , which implies that 

1 and j are adjacent in G(n, k, s) if and only if j − 1 /∈
⋃k−1

d=1{ds, ds + 1, . . . , ds + r}, 
as required.
Firstly, since n −(r+1 +(k−1)s) = s −1, the set Sp = {1, p +s, p +2s, . . . , p +(k−1)s} ∈
[n]ks for all p ∈ [r + 1]. Furthermore, {1} ∪ F =

⋃r+1
p=1 Sp and then N [1] ⊆ [n] − F .

To see the converse inclusion, observe first that if h ∈ [s] ∪ {n − s + 2, . . . , n} then 
h ∈ N [1] from definition of G(n, k, s).
Hence, if k = 2 we have finished.
Now, let k ≥ 3 (see Fig. 2). We have that

[n] \ (F ∪ [s] ∪ {n− s + 2, . . . , n}) =
k−2⋃

{ms + 2 + r, . . . , (m + 1)s}.

m=1
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Let h ∈
⋃k−2

m=1{ms +2 +r, . . . , (m +1)s}. We will prove that it does not exist S ∈ [n]ks
such that {1, h} ⊆ S. Let W be an s-stable set of [n] such that {1, h} ⊆ W . Notice 
that |W ∩ [h − 1]| ≤

⌊
h−1
s

⌋
and

|W ∩ {h, . . . , n}| ≤
⌊
n− h + 1

s

⌋
.

Consider m′ ∈ [k − 2] such that h ∈ {m′s + 2 + r, . . . , (m′ + 1)s}. Then,
•

⌊
h−1
s

⌋
≤

⌊
(m′+1)s−1

s

⌋
= m′.

•
⌊
n−h+1

s

⌋
≤

⌊
n−(m′s+2+r)+1

s

⌋
≤

⌊
n−r−1

s

⌋
−m′ =

⌊
n−n+sk−1

s

⌋
−m′ = k − 1 −m′.

Thus, |W | ≤
⌊
h−1
s

⌋
+
⌊
n−h+1

s

⌋
≤ k− 1. Therefore, any s-stable set of [n] containing 

the set {1, h} has cardinality at most k − 1, i.e. it does not exist S ∈ [n]ks such that 
{1, h} ⊆ S. Hence h ∈ N [1] and the result follows. �

In order to obtain Aut(G(n, k, s)), let us recall a well known result on automorphism 
group (see, e.g. [9]).

Remark 2.4. Let m and q be positive integers such that m ≥ 2q+3. Then, the automor-
phism group of Cq

m is the dihedral group D2m.

Let x be the degree of the vertices in G(n, k, s) (which is a regular graph). Then, we 
have the following result.

Theorem 2.5. Let n, s, k be positive integers such that n ≥ sk + 1 and s ≥ 3. Then, the 
automorphism group of G(n, k, s) is the dihedral group D2n.

Proof. Firstly, observe that if s(k + 1) − 1 ≤ n the result immediately follows from 
Case 1 of Theorem 2.3 and Remark 2.4. Let us consider sk + 1 ≤ n ≤ s(k + 1) − 2. 
From Remark 2.1 we only need to prove that every α ∈ Aut(G(n, k, s)) sends consecutive 
vertices to consecutive vertices. Moreover, by Remark 1.1 and Theorem 2.2 it is enough to 
show that α(1) and α(2) are consecutive vertices. Without loss of generality we consider 
α(1) = 1.

Let r = n − sk. From Theorem 2.3,

N [2] ∩ {1 + ds, . . . , 1 + ds + r} = {1 + ds}

for d = 1, . . . , k − 1, and

[n] \N [1] =
k−1⋃
d=1

{1 + ds, 1 + ds + 1, . . . , 1 + ds + r}.

So,
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|N [1] ∩N [2]| = x + 1 − (k − 1) = x− k + 2.

Analogously, |N [1] ∩N [n]| = x − k + 2.
Let i ∈ N(1). Recall that

N(1) = {2, . . . , s} ∪ {n− s + 2, . . . , n} ∪
(

k−2⋃
m=1

{ms + 2 + r, . . . , (m + 1)s}
)
.

If i ∈ {3, . . . , s} we have that {1 + s, 2 + s} ⊆ N [i]. Besides, if k ≥ 3 observe that 
{i + 1 + (d − 1)s + r, . . . , i + ds − 1} ⊆ N [i] for d = 2, . . . , k − 1. Hence, since 3 ≤
i ≤ s, 1 + ds ≤ i + ds − 1 and i + 1 + (d − 1)s + r ≤ 1 + ds + r. Therefore, {i +
1 + (d − 1)s + r, . . . , i + ds − 1} ∩ {1 + ds, . . . , 1 + ds + r} �= ∅ for d = 2, . . . , k − 1. 
Then, |N [i] ∩ {1 + s, . . . , 1 + s + r}| ≥ 2 and |N [i] ∩ {1 + ds, . . . , 1 + ds + r}| ≥ 1 for 
d = 2, . . . , k − 1. So, if k ≥ 2, |N [1] ∩ N [i]| ≤ x + 1 − k ≤ x − 1 and thus α(2) �= i. 
Similarly if i ∈ {n − s + 2, . . . , n − 1}, we have α(2) �= i. So, if k = 2 the result follows.

Now, let k ≥ 3. Consider i ∈
⋃k−2

m=1{ms +2 +r, . . . , (m +1)s} and let mi ∈ {1, . . . , k−2}
such that i ∈ {mis + 2 + r, . . . , (mi + 1)s}.

Notice that

{1 + mis, . . . , 1 + mis + r} ∪ {1 + (mi + 1)s, . . . , 1 + (mi + 1)s + r}

⊆ {i− (s− 1), . . . , i + s− 1} ⊆ N [i]. (1)

Therefore,

{1 + mis, . . . , 1 + mis + r} ∪ {1 + (mi + 1)s, . . . , 1 + (mi + 1)s + r} ⊆ N [i] \N [1].

Now, let m ∈ [k−2]. If m < mi then 1 +(mi−m)s +r ≤ i −(1 +ms) ≤ (mi+1 −m)s −1. 
From Theorem 2.3, we have that 1 + ms ∈ N [i] if m < mi. By a similar reasoning we 
have that 1 + ms + r ∈ N [i] if m > mi + 1. Then,

{1 + ms : m < mi, m ∈ [k]} ∪ {1 + ms + r : m > mi + 1, m ∈ [k]} ⊆ N [i] \N [1].

These facts together with (1) imply that

|N [1] ∩N [i]| = x + 1 − (N [i] \N [1]) ≤ x + 1 − (2(r + 1) + (k − 4)) ≤ x− k + 1.

Thus α(2) �= i. Therefore α(2) ∈ {2, n} and the thesis holds. �
Finally, we have the main result of this work.

Theorem 2.6. Let n, s, k be positive integers such that n ≥ sk + 1 and s ≥ 2. Then, the 
automorphism group of KG(n, k)s−stab is isomorphic to the dihedral group D2n.
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Proof. The result for the case s = 2 follows from [1] and for the remaining cases can be 
obtained from Theorems 2.2 and 2.5. �
3. Further results

In this section we will obtain some properties of s-stable Kneser graphs as a conse-
quence of the results in the previous sections. Firstly, as a consequence of Theorem 2.6, 
we have the following result.

Theorem 3.1. Let n, k, s ≥ 2 with n ≥ sk + 1. Then, KG(n, k)s−stab is vertex transitive 
if and only if n = sk + 1.

Proof. Without loss of generality, we assume that every vertex S = {s1, s2, . . . , sk} of 
the s-stable Kneser graph KG(n, k)s−stab verifies that s1 < s2 < . . . < sk. Then, S is 
described unequivocally by s1 and the gaps l1(S), . . . , lk(S) such that for i ∈ [k − 1], 
li(S) = si+1 − si and lk(S) = s1 + n − sk. Observe that every automorphism of 
KG(n, k)s−stab “preserves” the gaps li, i.e. if φ ∈ Aut(KG(n, k)s−stab) there exists 
α ∈ D2k such that li(φ(S)) = lα(i)(S) for all i ∈ [k].

If n ≥ sk+2, then S1 = {1, 1 +s, 1 +2s, . . . , 1 +(k−1)s} ∈ [n]ks and S2 = {1, 2 +s, 2 +
2s, . . . , 2 +(k−1)s} ∈ [n]ks . Therefore, from Theorem 2.6, we have that no automorphism 
of KG(n, k)s−stab maps S1 to S2, since l1(S2) = s + 1 but li(S1) = s for i ∈ [k − 1] and 
lk(S1) ≥ s + 2.

Besides, in [9] it is proved that if S ∈ [ks + 1]ks then exactly one gap lm(S) is equal 
to s + 1 and the remaining gaps are equal to s. From this fact we have that KG(sk +
1, k)s−stab is vertex transitive. �

Next, we will analyze some aspects related to colorings of s-stable Kneser graphs. 
Let α(G) and χ∗(G) the independence number and fractional chromatic number of a 
graph G, respectively.

Proposition 3.2. Let n, k, s ≥ 2 with n ≥ sk + 1. Then, χ∗(KG(n, k)s−stab) = n
k .

Proof. It is immediate to observe that χ∗(KG(n, k)s−stab) ≤ n
k (see, e.g. Theorem 7.4.5 

in [2]). To see the converse inequality, we use the fact that for all graph G, χ∗(G) ≥ |V (G)|
α(G) .

So, let us compute |[n]ks | = |V (KG(n, k)s−stab)|. From [8], since the sets Ii are maxi-

mum independent sets for i ∈ [n], α(KG(n, k)s−stab) = |Ii| =
(
n− (s− 1)k − 1

k − 1

)
.

Then, to compute |[n]ks |, let us observe that 
⋃n

i=1 Ii = [n]ks and 
∑n

i=1 |Ii| =

n 

(
n− (s− 1)k − 1

k − 1

)
, where each vertex of KG(n, k)s−stab is computed k times. Then,
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|[n]ks | = n

(
n− (s− 1)k − 1

k − 1

)
− (k − 1)|[n]ks |.

Hence |[n]ks | = n
k

(
n− (s− 1)k − 1

k − 1

)
and the result follows. �

As we have mentioned before, Schrijver [7] proved that the graphs KG(n, k)2−stab are 
χ-critical subgraphs of KG(n, k) but it is an open problem to compute the chromatic 
number of s-stable Kneser graphs. From the last result and Proposition 2 in [6] we have

n

k
≤ χ(KG(n, k)s−stab) ≤ n− (k − 1)s.

In particular, if n = ks +1 we obtain that χ(KG(ks +1, k)s−stab) = s +1, which is an 
alternative proof to compute the exact value of χ(KG(ks + 1, k)s−stab) already studied 
in [6] and [9].
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