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A B S T R A C T

The understanding of materials and processes is a requirement when it comes to build quality into pharma-
ceutical products. This can be achieved through the development of rapid, efficient and versatile analytical
methods able to perform qualification or quantification tasks along the manufacturing and control process.
Process monitoring, capable of providing reliable real-time insights into the processes performance during the
manufacturing of solid dosage forms, are the key to improve such understanding.

In response to these demands, in recent times multivariate chemometrics algorithms have been increas-
ingly associated to different analytical techniques, mainly vibrational spectroscopies (Raman, MIR, NIR),
but also UV–vis spectroscopy, X-ray powder diffraction and other methodologies. The resulting associations
have been applied to the characterization and evaluation of different aspects of pharmaceutical materials at
the solid state. This review examines the different scenarios where these methodological marriages have been
successful.

The list of analytical problems and regulatory demands solved by chemometrics analysis of solid-state
multivariate data covers the whole manufacturing and control processes of both, active pharmaceutical ingre-
dients in bulk and in their drug products.

Hence, these combinations have found use in monitoring the crystallization processes of drugs and
supramolecular drug associations (co-crystals, co-amorphous and salts), to access the correct crystal mor-
phology, particle size, solubility and dissolution properties. In addition, they have been applied to identify
and quantitate specific compounds, mainly active pharmaceutical ingredients in complex solid state mix
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tures. This included drug stability against different stimuli, solid-state transformations, or detection of adul-
terated or fraudulent medicines.

The use of chemometrics-assisted analytical methods as part of the modern concept of process analyti-
cal technology, where every process step of every product batch from raw materials to final product must
take place in a controlled manner is discussed. Finally, but no less important, the application of chemometrics
methods to chemical imaging, aiming to extract spatial and compositional information is also revised.

© 2017.

1. Introduction

The pharmaceutical industry is perhaps the scenario where the
analysis of complex mixtures founds its most critical applications. It
is the place where it also becomes significantly more important. This
is because the correct composition of each pharmaceutical product is
essential to its quality, efficacy and safety; minor compositional vari-
ations in these complicated mixtures may have profound effects on
their characteristic properties and performance [1], potentially affect-
ing the health condition of human beings.

Due to the current stringent regulations and the increasing con-
sumer and market awareness, pharmaceutical manufacturers are plac-
ing more and more emphasis on product quality and great efforts in its
assurance. Hence, compositional profiling plays a pivotal role in guar-
anteeing the chemical consistency of pharmaceutically-relevant prod-
ucts among batches. The same holds true for other industries, includ-
ing foods, flavors, agrochemicals, etc. [2]. However, the special char-
acteristics of the medicines and their relation to human health turn
knowledge of the identity and content of their active pharmaceutical
ingredients, paramount to their quality assurance and safety. For the
same reasons, knowledge of the formulation impurities and excipients
becomes no less important.

In solution, most pharmaceutical systems can be characterized
through a combination of spectroscopic (ultraviolet, mid-infrared, nu-
clear magnetic resonance and others), chromatographic (gas chro-
matography, high performance liquid chromatography, etc.) and other
methods, partly because the systems are homogeneous. On the con-
trary, the characterization of pharmaceutical solids is somehow differ-
ent, resulting in a different set of suitable methodologies [3]. Because
the material is heterogeneous, consisting of particles of varying sizes
and compositions, quantitative methods exhibit higher data dispersion,
which has impact on method robustness and precision, among other
variables [4].

Many critical measurable properties of interest, such as crystal
form, structural polymorphism and drug–excipient interactions, are
unique to the solid state, and disappear when the material is dissolved.
In addition, the amount and nature of the information provided by dif-
ferent analytical techniques may differ, whether it is generated from
a solid sample or a solution. This turns more necessary the use of a
wider array of techniques, to better characterize a material in the solid
state.

The analytical methodologies used for solid state characterization
can be broadly grouped in two classes: bulk and molecular. Bulk tech-
niques, including hot stage microscopy, thermogravimetry, differen-
tial scanning calorimetry and others, rely upon global properties (ther-
modynamics, particle morphology) of the system, providing informa-
tion about its global state. On the other hand, molecular techniques,
such as spectroscopic (Raman, near infrared, mid infrared, nuclear
magnetic resonance) and X-ray diffraction methods, need to probe the
molecular-level interactions of the system in order to provide informa-
tion [5–10].

Steady advances in statistics, analytical methodologies, new tech-
nologies, and increased computational power at hand of the ana-
lysts have led to an enormous increase in the volume of data gen-
erated even by the most traditional analytical chemistry procedures.

Recording spectra from convoluted mixtures entails the same degree
of difficulty posed by their acquisition from pure compounds; how-
ever, the resulting datasets have much greater complexity, which usu-
ally hinders the extraction of useful information.

The presentation, analysis and interpretation of this huge amount
of otherwise obscured or hidden chemical data needs to be properly
managed, in order to yield quality information. The modern discipline
of chemometrics is defined as the application of statistical and mathe-
matical methods to analytical data to enable maximum collection and
extraction of useful information. In that capacity, chemometrics can
clearly potentiate the capabilities of standard analytical instrumenta-
tion and techniques through its ability to convert seemingly unrelated
and incomprehensible data (involving many hundreds of variables),
into valuable information on the state of a chemical system.

This is because multivariate methods are capable of performing re-
duction of data dimensionality. For example, Principal Components
Analysis (PCA) and Projection to Latent Structures (PLS) are based
on the assumption that only a few variables can account for most of the
variation in the data (i.e., information). During the last two decades,
this has caused a deep impact in many areas and has resulted in a
marked increase in the breadth of application of even the most tradi-
tional analytical techniques.

Being one of the masterpieces of today’s analytical chemistry,
chemometrics is the best way to maximize the quality of the informa-
tion accessible from the samples. It has also been said that it also con-
tributes to the development of greener analytical methods [11].

The application of chemometrics methodologies to the study of
chemical systems of pharmaceutical interest at the solid state still runs
behind the use of chemometrics as a tool for solving chemical prob-
lems of liquid samples. However, the fast pace of the incorporation of
some spectroscopic methods, especially vibrational, X-ray and solid
state nuclear magnetic resonance to the study of pharmaceutical prob-
lems with the aid of chemometrics tools is rapidly bridging the gap.

In the case of solids, sample preparation and the experimental setup
should be carefully planned to obtain the most reliable and consistent
data. Sampling strategies and the experimental design need to be taken
into account in order to reduce the sample preparation burden, and
both must be related to the analytical problem aimed to be solved. De-
sign of experiments strategies, once used only occasionally, is being
employed with more frequency to achieve better results at the lowest
cost.

Chemometrics algorithms have been shown to be useful aids along
the whole manufacturing and control process of solid pharmaceutical
formulations, from the active ingredients up to the controls of the final
product [12]. Accordingly, they have been used to monitor and con-
trol drug crystallization, to obtain the most suitable crystals in terms
of structural polymorph, morphology and size, as well as to monitor
or predict different properties of bulk pharmaceutical solids, including
particle size distribution, powder flowability and angle of repose, from
their spectral data. They proved also suitable to evaluate other useful
properties, such as porosity and hardness of manufactured tablets.
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The chemometrics analysis of spectral data has demonstrated its
aptness to detect and quantitate active pharmaceutical ingredients in
their dosage forms and pinpoint counterfeit drugs and medicines. They
proved also suitable to discover minor amounts of impurities and
degradation products in the presence of major levels of their precur-
sors in quality control analyses and during stability studies. In addi-
tion, the monitoring of the pharmaceutical dissolution of solids as well
as thermal transformations and molecular interactions at the solid state
hava also been carried out by chemometric methodologies.

Another important area of pharmaceutical solids analysis, where
chemometrics plays a center stage role, is chemical imaging. This
branch of the analytical science, resulting from the integration of
microscopic and spectroscopic techniques, is able to generate huge
amounts of complex, hard to analyze, multidimensional data. Thanks
to the recent advances in chemometrics and computation, nowadays
space-related chemical composition, drug distribution and perfor-
mance of these systems can be examined and predicted to such a de-
tailed extent considered impossible short time ago.

No less important is the integration of chemometrics with some
vibrational spectroscopies, as part of the modern monitoring and de-
cision-making philosophy of Process Analytical Technologies (PAT).
In this framework, chemometrics enables to take decisions in real
time, based on the management and analysis of the vast amount of
data generated by the analytical instrumentation placed on-line, in-line
or at-line. Thus, by providing a more comprehensive understanding,
chemometrics makes possible a far better control of the manufacturing
process.

Finally, an additional major subject relating solid state compounds
with chemometrics is structural polymorphism, also termed crystal
polymorphism. The impact of polymorphism in the pharmaceutical in-
dustry is of such an important magnitude and interest that its exam-
ination has been set apart, considering that it deserves a separate re-
view. However, it is worth mentioning that chemometrics analyses
have been employed as an aid to assign polymorphic identity to un-
knowns, to establish the content of given forms in complex mixtures,
and to study polymorphic transformations including polymorph con-
version, solvation and desolvation, as well as amorphization and crys-
tallization processes.

2. The chemometrics tools. Brief theoretical background of the
most used methods

Chemometrics is a young, rapidly evolving and still maturing dis-
cipline, which has caught great attention among pharmaceutical scien-
tists, especially during the last 20 years. Although only part of the cur-
rently available chemometrics toolbox is actually used with a certain
frequency, in most cases there is one or more alternative chemometrics
resource that could be successfully employed to solve the same prob-
lem, and chemometrics methods can be used at different stages during
the drug manufacturing and control process. It is up to the analyst to
experiment and select for the most suitable option.

The basis and in-depth explanations of the different chemomet-
rics methods are discussed elsewhere [13]; however, for the sake of
self-consistency, a brief introduction to some of the most frequently
used methods in the analysis of the solid state is carried out bellow.
For a better understanding, the different methodologies are grouped
according to their scope; these include the Design of Experiments
(DOE), a very useful approach for defining the best operational condi-
tions, data pre-treatment, which involves data conditioning for proper
analysis, and multivariate data analysis, which comprises both, quali-
tative and quantitative methodologies.

2.1. Design of experiments

DOE is a rational approach to understand how process parameters
affect the response variables, analytical signal or product properties.
DOE has been used in several publications as part of the screening
stage, to discover which factors may significantly affect the response
of an experiment. Plackett-Burman and fractional factorial designs are
the most suitable approaches to find the factors which significantly
contribute to the response [14], while performing the minimum num-
ber of experiments on a maximum number of factors.

Another task of DOE is to find the values of the relevant factors
that optimize a given response [15]. Statistical designs, such as factor-
ial (fractional factorial), central composite, Box-Behnken and mixture
models, are among the best choices to define the objectives and plan-
ning the experiments.

In order to visualize the variations, a response surface can be cal-
culated for each variable to be optimized employing multiple linear
regression or artificial neural networks. Finally, Derringer’s desirabil-
ity function [16] can be employed to calculate the optimum values if
many responses are to be optimized simultaneously. Table 1 details
the main objectives and some of most relevant tools of the current
chemometrics arsenal.

2.2. Data pre-treatment

Data pre-treatment has substantial impact on the quality of the final
models and the results of the quali- or quantitative analysis. The objec-
tive of this practice is to remove the influence of physical phenomena
not related to the analytes, suppressing systematic variations, random
signals and uninformative variables. This approach ensures that subse-
quent modeling makes focus on relevant variations in the process data,
improving the quality of the results. Hence, pre-treatment or pre-pro-
cessing of multivariate data is currently an integral part of chemomet-
rics modeling.

The most widely used pre-processing techniques can be broadly
divided in classical pre-processing methods, such as mean-centering
and (auto)scaling, and signal correction methods, which can be fur-
ther sub-divided into two groups: spectral derivatives, which includes
the well-known Savitzky-Golay polynomial derivative filter, and scat-
ter-correction methods [i.e., multiplicative scatter correction (MSC),
detrending, standard normal variate (SNV) and normalization] [17].

A third group is that of dimensionality reduction methods, which
aims at eliminating uninformative signals, in order to enhance the in-
formation and reduce collinearity. This includes variable selection, or-
thogonal signal correction and data compression methods [18]. These
can also be used for quali- or quantitative purposes.

Although there are no written guidelines on what set of pre-pro-
cessing algorithms should be applied in each case, a few approaches
to solve the problem have been discussed [19,20]. However, most of-
ten analysts still have to rely on literature precedents, their own expe-
rience and trial and error approaches.

2.3. Qualitative methods

The major aims of chemometrics qualitative analysis are to dis-
cover groups of objects which have similar characteristics, to visual-
ize and characterize hidden tendencies among groups, and finally to
assign new samples to a known group. Supervised and unsupervised
methods are two of the main categories of this field.
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Table 1
Selected chemometrics resources for studying the solid state and their objectives.

Chemometrics stage Objectives Tools

Design of experiments Screening of relevant factors,
quantifying their effects
Modelling and optimizing the
processes

Factorial (full,
fractional)
Central Composite
(CCD)
Mixture model
Box-Behnken
Plackett-Burman
Doehlert
Kennard-Stone
sampling

Data pre-treatment Reduce random noise and
undesired or unwanted
perturbations in the signal
Diminish uninformative data
variation and remove background
Enhance the detectability of
minor features

Mean centering
(MC)
Baseline correction
Multiplicative
scatter correction
(MSC)
Scaling or
Normalization
Standard normal
variate (SNV)
Data alignment
Detrending (DT)
Savitzky-Golay
smoothing and
derivation (D0, D’,
D”)
Variable selection

Classification and display
methods
(qualitative methods)

Discover groups of objects which
have similar characteristics
Discover hidden tendencies
among groups
Assignment of a new sample to a
known group

Principal
component
analysis (PCA)
Linear
discriminant
analysis (LDA)
Gaussian mixture
models (GMM)
Hierarchical
cluster analysis
(HCA)
Self-organizing
map (SOM)
K-means clustering
Factor analysis
PLS-DA
SIMCA

Calibration (quantitative
methods)

Translate data into quantitative
information, mainly for
predictive purposes. Perform
quantitative analysis by relating
two sets of variables (dependent
and independent)

Multiple linear
regression (MLR)
Principal
components
regression (PCR)
Projection to latent
structures (PLS)
Artificial neural
networks (ANN)
MCR-ALS
PARAFAC

2.3.1. Unsupervised methods
Unsupervised methods are algorithms which require no previous

knowledge about the groups present in the population. Unsupervised
classification is often called clustering. In this type of classification,
it is assumed that the “objects” or samples have a set of features with
hidden relationships with a given class or category. Then, the purpose
of the method is the discovery of groups of objects which have related
characteristics; this enables their separation into different classes.

Among unsupervised methods, PCA is the most widespread used
in the social and natural sciences [21]. PCA is a technique used to re

duce the dimensionality of a data set, being primarily used as a dis-
play methodology in exploratory analysis. PCA involves calculating
the eigenvalue decomposition of the covariance data matrix, usually
after mean-centering the data. Operatively, it can be regarded as a
process for selection of the best coordinate system to project the data.
Fig. 1 outlines the principle of PCA. A closely related method is fac-
tor analysis (FA), where the original variables are also defined as lin-
ear combinations of the factors. However, the main objective of FA is
to explain the covariances or correlations among the variables. There-
fore, unlike PCA, FA can be used to understand the construct underly-
ing the data [22].

A dendrogram is a kind of tree-shaped data chart, obtained by hi-
erarchical clustering analysis (HCA). HCA organizes data into differ-
ent sub-categories, which are then sub-divided to reach the desired
level of detail [23]. Dendrograms allow the examination of grouping
relations between the data, and the successive subdivisions provide an
idea about the grouping criteria.

Gaussian mixture models (GMM) and K-means clustering [24], are
also related methods. In the K-means clustering approach, the user
needs to specify the number (K) of groups to be differentiated. All ob-
jects need to be represented as a set of numerical features (n), being
all features used to describe the objects to cluster. The initial centers
of the clusters are chosen at random, and each object is assigned to the
closest center. Then, a new center is computed for each cluster by av-
eraging the feature vectors of all objects assigned to it. The assignment
of objects and re-computing centers is repeated until the process con-
verges. The features requiring optimization include distance measure-
ment, the choice of the initial center, the computation of new average
centers, and the estimation of the number (K) of clusters.

Like K-means clustering, GMM uses an iterative algorithm that
converges to a local optimum, being more appropriate than K-means
when clusters have different sizes and correlate among them. The
probabilities for each point indicate whether each data point belongs
or not to a given cluster.

Kohonen neural networks or self-organizing maps (SOM) provides
a way of representing multidimensional data in a two-dimensional
map. A SOM consists of components called nodes or neurons, which
are associated with a weight vector of the same dimension as the in-
put data vectors and to a position in the map space. The procedure
for placing a vector from the data space onto the map is to find the
node with less distance. Next, the weight of the vector of this node is
corrected toward object position. The procedure is iteratively repeated
during a user pre-established number of times (ages) [25].

2.3.2. Supervised methods (classification)
In the supervised methods, the classes responsible of data variation

are known and the information which defines each class is available
to extract model information or assign a new sample to a class; these
methods are also known as classification algorithms.

Soft independent modelling of class analogy (SIMCA) [26] is a su-
pervised method which considers each class separately and performs
a PCA on each one to build a class model. Any new object is chal-
lenged to every class model and it is assigned to the class that pro-
duces the smallest residue during the prediction. In this sense, SIMCA
places more emphasis on similarity within a class than on discrimina-
tion among classes.

Linear discriminant analysis (LDA) is one of the most widely
used supervised classification methods. Like PCA, LDA is a lin-
ear feature reduction methodology, which focuses on finding optimal
boundaries (parametric) between object classes. The LDA algorithm
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Fig. 1. Operational principle of PCA. Graphical example of data dimensionality reduction through their projection on orthogonal axes in the direction of the largest variance.

selects the space directions that achieve a maximum separation among
the different classes and uses euclidean distance measurements to clas-
sify unknown samples [27,28].

Canonical discriminant analysis (CDA) is a kind of exploratory
version of LDA. This is a dimensional-reduction technique, linear and
parametric which, unlike LDA, aims to understand which variables are
responsible for the differences among groups [29].

Another method is PLS-discriminant analysis (PLS-DA). This is a
linear and parametric method which carries out a PLS analysis (see
2.4 Quantitative methods) of a Y-set of binary variables (0 or 1),
which describe the categories, on a set X of predictor variables [30].
This technique is especially well-suited to deal with a small number of
observations and with multi-colinearity. Orthogonal-PLS and N-way
PLS can also be coupled to discriminant analysis (OPLS-DA [31]
and NPLS-DA, respectively). These represent variations of PLS-DA,
which improve the performance of the latter.

The k-nearest neighbours (k-NN) algorithm is a non-parametric
method used for classification, where the input consists of the k clos-
est training examples in the feature space. An object is classified by a
majority vote of its neighbours, with the object being assigned to the
most common class among its k nearest neighbours [32].

On the other hand, several types of neural networks can be used for
classification. Back propagation artificial neural networks (ANN) and
support vector machines (SVM) are the most frequently used for dis-
criminant analysis [33]. As in the case of PLS-DA, the ANN-DA and
the SVM-DA algorithms perform a correlation with a binary variable
Y (which contains the classes). These methods are very useful when
data are non-linearly distributed, even after variable transformation.

2.4. Quantitative methods

Quantitative chemometrics methods can be classified in two gen-
eral groups, including first order methods (FOMs) and higher order
methods (HOMs). Whereas FOMs use a data vector for each sample
(such as those resulting from UV, NIR, MIR, Raman, fluorescence
spectra and others) as input signal, HOMs use a data matrix. This data
matrix can be a two-dimensional array (second order matrix, i.e. fluo-
rescence matrix, or temperature-evolving infrared analysis) or a higher
order one array (three-dimensional matrix, infrared image) [34].

Both FOMs and HOMs have several advantages with regard to uni-
variate calibration [35]. FOMs can mitigate the presence of known
or unknown interferences, as long as these interferences have been
taken into account in the calibration procedures; this is termed the
“first order advantage”. This advantage can be achieved by using cal-
ibration mixtures prepared according to a calibration design, where
the concentration of the analyte is already known and the interfer-
ents are present. However, when real samples are used for calibration,

their analyte concentrations must be determined a priori by a standard
method.

Within the FOMs, the standard in chemometrics is PLS [36]. This
is a “full-spectrum” latent variable-based method as its ancestor, prin-
cipal component regression (PCR) [37]. However, unlike PCR where
data compression is made using only the instrumental response (X ma-
trix), in PLS it is performed employing both, signal (X matrix) and
analyte abundance data (Y matrix, reduced to a y vector in the PLS1
version). Therefore, the PLS model can be considered as consisting
in outer relations (X and Y) and an inner relation. Both blocks can
be decomposed into the corresponding products of smaller matrices
of scores and loadings, and error matrices E and F (X = TPT + E and
Y = UST + F). The non-linear iterative partial least squares (NIPALS)
algorithm around which the PLS is built, iteratively attempts to ex-
plain the maximum covariance between X (instrumental data) and the
y vector (concentration data) by minimizing E and F, until conver-
gence is reached The regression coefficients (b), calculated with the
aid of the relevant scores of matrices T and U (inner relation), can then
be used to predict the analyte abundance from new sample spectra.
Fig. 2 depicts the operation of the PLS algorithm.

The PLS method is useful because of its ease of use and ability to
handle band overlaps, colinearity, and interactions within the samples.
Its success and wide applicability explain the availability of the algo-
rithm as part of several free and commercial statistics, chemical and
instrumental software packages. The most critical parameters to opti-
mize are the number of factors (latent variables) and the spectral re-
gion to be used [38].

Back propagation artificial neural networks (ANN) [39] is a nat-
ural computing first-order method. It is just one of the possible ways
to operate a non-linear mapping between an input and a target space;
it operates using a large number of parallelly connected simple arith-
metic units, the neurons. Mathematically, a neuron is a non-linear, pa-
rameterized and bounded function. The “neuron inputs” are the vari-
ables on which this function depends, while the calculated value of
that function is called “neuron output”.

ANN is very flexible; it can be custom-designed to become adapt-
able to different kinds of data structures, being particularly suited to
handle highly non-linear problems, where the traditional statistical
methods usually fail. However, ANN is prone to overfit the system
when the complexity of the underlying relationship between input and
output variables is poor. In addition, they require a large number of
adjustable parameters, making necessary a trained operator to success-
fully handle the algorithm and obtain meaningful results [39].

HOMs are also known as multi-way techniques because data for
a single sample are contained in a multidimensional array (a matrix,
or a higher-order array). HOMs hold the ability to perform determina-
tions in the presence of interferences, not taken into account in the cal-
ibration step. This property is known as “the second-order advantage”
and turns HOMs particularly attractive for determinations in complex
samples.
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Fig. 2. Scheme of the operation of the PLS algorithm.

Only parallel factor analysis (PARAFAC) and multivariate curve
resolution coupled to alternating least squares (MCR-ALS) present an
inherent second-order advantage. For PARAFAC and MCR-ALS, the
calibration and test (unknown) samples are placed together and de-
composed by the model, so the number of factors necessary to perform
the regression model is determined at once and, theoretically, equal
the sum of the independent chemical species in the calibration samples
and the unknown interferences in the test samples.

PARAFAC assumes that the data array for a group of samples fol-
lows a trilinear model [40], i.e., an element (i,j,k) is the sum of contri-
butions of the form (xi × yj × zk), where xi is the relative concentration
of a component in the ith sample; yj and zk are the values of its qual-
itative features (for example, time and spectral profiles) at the jth, kth

channel in each data dimension. The xi values obtained are used for
quantitative analysis using a pseudo-univariate calibration graph.

MCR-ALS places second-order data for a group of samples ad-
jacent to each other along a dimension (usually time, or a dimen-
sion which has lost the tri-linearity), and assumes that the augmented
matrix follows a bilinear model, i.e., a matrix element (m,j) is the
sum of contributions of the form (xm × yj), where xm (m ranges from
1 to I × K) describes the profile for each sample in the augmented
dimension, and yj does the same in the other (usually spectral) di-
mension. For quantitative analysis, areas or heights of the sample re

sponses (in the augmented dimension) are computed, and used to build
a pseudo-univariate calibration graph [41]. Fig. 3 outlines the oper-
ation of MCR-ALS, where mixed information contained in process
data, arranged in a matrix D can be decomposed into a product of ma-
trices C and ST, which contain pure components information, which
can be extracted after analysis.

3. Crystallization from solvents

Crystallization is one of the most important unit operations used
for the preparation and purification of crystalline solids. In the phar-
maceutical industry, one of its main goals is the production of a speci-
fied polymorph with a given morphology and crystal size distribution;
in turn, these properties may have a large impact on the downstream
unit operations, such as filtration and drying, extending its effects to
the biopharmaceutical performance of the final drug products. There-
fore, the appropriate design and control of the crystallization process
is key to consistently obtain products with the desired properties.

PCA derived multivariate statistical process control charts were
applied to the data measured from the whole crystallization process
using a previously selected spectral range, to obtain the true nucle-
ation point [42]. ATR-MIR spectroscopy was coupled to PCR and

Fig. 3. Schematics of the operation of MCR-ALS.
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PLS and applied to multicomponent pharmaceutical systems for the
prediction of the solution concentration and the determination of the
solubility curves [43]. The effects of temperature, solvent composition
and impurities were modelled and the estimations of the inferential
models were in close agreement with the corresponding HPLC results.

On the other hand, critical parameters of the APIs are determined
by the supersaturation profile achieved during crystallization. There-
fore, modelling, measurement and control of supersaturation, are crit-
ical for the crystallization process. The task of accurately determining
the solution concentration in dense crystal slurries typical of industrial
operations is often challenging. Vibrational spectroscopies, especially
MIR and NIR, coupled to chemometrics have been proposed as mod-
ern day approaches to real-time in-line sampling without disturbing
the production environment [44].

In another example, a database of 218 solvents with 24 property
descriptors was explored and visualized using multivariate tools, aim-
ing to select solvents for polymorph screening. PCA analysis exhib-
ited 57% cumulative variance being explained by the first two PCs.
A self-organizing map (SOM) was deemed more suitable for data dis-
play, being chosen as the visually most convenient way to examine
solvent diversity. The strategy also demonstrated that safety aspects
can be considered by labeling the solvents with toxicological infor-
mation [45]. Some chemometrics applications to this problem are de-
tailed in Table 2.

A deeper insight into the crystallization process of semi-crystalline
polymers during formation of solid dispersions is always crucial to
improve control of product quality in drug formulation. PLS model-
ling of small angle X-ray diffraction (SAXD) data of solid disper-
sions of lipids was used in a study where PEG 4000 with 12 differ-
ent lipids were employed as a model system to examine the effect that
incorporated components may have on the crystallization of the poly-
mer [51]. The lipids were melted with PEG 4000 and the crystalliza-
tion of the polymer was studied with DSC and small angle X-ray dif-
fraction (SAXD). The PLS models indicated that small hydrophilic
lipids increased the folding of PEG and that large nonpolar lipids re

Table 2
Chemometrics-assisted methods to monitor drug crystallization.

Drug Method Observations Refs.

Carbamazepine ATR-MIR/PLS Method used to ensure the absence of
metastability with respect to the
undesired polymorphic form along
the process.

[46]

Monosodium
glutamate;
L-Glutamic
acid

ATR-MIR/ELSS
(extended loading
space
standardization)

ELSS handles better than PCR/PLS
temperature-induced spectral
variations, scaling effects resulting
from the use of physical
concentration units, and variation in
optical path-length during batch
cooling crystallization. On-line
method.

[47]

Sulfathiazole ATR-MIR/PLS
(Immersion
probe)

Effect of cooling conditions on
supersaturation level and process
outcome were studied. Concomitant
automated image analysis provided
product size and shape information.

[48]

Trehalose NIR/MLR, PCR,
PLS

PCR and PLS exhibited the best
performance.

[49]

Undisclosed
API, MeOH

NIR/PLS
(Immersion
probe)

PAT tool to monitor in real-time the
API (bias against HPLC = 2.88%)
and the residual methanol
(0.10-0.13 w/w with a maximum
bias of 0.02%) contents. To control
the seeding of an API crystallization
at industrial scale.

[50]

tarded the unfolding during secondary crystallization. Thus, it was
shown that the added lipid governs the behaviour of PEG solid disper-
sions.

4. Determination of physical properties of bulk pharmaceutical
solids

NIR spectroscopy has been receiving an increasing attention in the
pharmaceutical industry as one of the tools that fits into the PAT ini-
tiative, because it can be used to achieve rapid, real-time, non-destruc-
tive determinations with little or no sample preparation. Particle size
and shape have a profound influence in the bulk properties of the pow-
ders and determine their ability to flow, mix, granulate, and dissolve
properly.

NIR spectroscopy is particularly sensitive to these features; hence,
not surprisingly, a number of NIR/chemometrics based methods have
appeared in the literature demonstrating the distinct ability of this
spectroscopy to help to predict physical properties of the bulk solid.
Just a few examples of them are detailed in Table 3. Raman spectrom-
etry has also been employed for the same purposes. Coupled to PLS,
the resulting system was suggested as a suitable tool to examine the
variability of tablet coatings, to predict its thickness [52].

5. Identification and assay for quality control purposes

5.1. Identification of active pharmaceutical ingredients at the solid
state

In the pharmaceutical industry, quality control (QC) is a key ac-
tivity within the process of ensuring that medicines have the required
quality, safety and efficacy for their intended use. Hence, at the phar-
maceutical companies, the QC departments are responsible for all re-
lease testing of final products but also all incoming raw materials. Ac-
cording to the official texts, the identification tests should establish the
identity of the analyzed product and be able to discriminate between
similar or related compounds that may be part of the sample. There-
fore, these tests should be as specific as possible, and the lack of speci-
ficity of an identification method can be solved by combining several,
preferably unrelated, alternatives.

Three different analytical techniques have been coupled to
PLS-DA to identify acetaminophen present in pharmaceutical formu-
lations. Two of these studies, employing XRPD and DSC, respec-
tively, have been developed by the group of Komsta [53,54]. The third
set of models was built from ssNMR spectroscopic data, with the aim
to detect the presence of acetaminophen in over-the-counter pharma-
ceutical formulations [55].

In the latter case, a dataset of 11 spectra of pure substances and 21
spectra of different formulations was processed by PCA and PLS-DA.
In the PCA approach, it was observed that the signal of a co-formula-
tion ingredient strongly affected the second PC, turning it less reliable.
On the other hand, the PLS-DA model was found to be more suitable,
especially when after variable selection it proved to keep its perfor-
mance with only 300 sensors.

Structurally related radiological contrast media (iodixanol, io-
hexol, caldiamide sodium and gadodiamide), were identified by
NIR-chemometrics methods. The performances of classification mod-
els (SIMCA, PLS-DA), Main and Interactions of Individual Princi-
pal Components Regression (MII-PCR) and backward variable elim-
ination-PLS (BVE-PLS) were compared. Variable selection methods
were applied to optimize the classification models. BVE-PLS and
MII-PCR were found to be most effective, not recognizing <1.5% of
the samples [70].
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Table 3
NIR/chemometrics prediction of some physical properties of bulk solids.

Drug Chemometrics Method Observations Reff.

Acetaminophen
and excipients

PLS Prediction of particle size
distribution, powder
flowability, angle of
repose, aerated and
tapped bulk density, and
components
concentration.

[56,57]

Antipyrine PCR Prediction of mean
particle size (MPS),
angle of repose, tablet
porosity and tablet
hardness, in granules.
MPS increased with the
amount of water; larger
spherical granules with
narrow size distribution
were made using a high-
speed mixer.

[58]

Amoxycillin·3H2O PLS Identification and particle
size determination.

[59]

Berberine chloride PCR Prediction of tablet
hardness and porosity.

[60]

Hydrochlorothiazide
Chlorpheniramine

PLS Determination of tablet
hardness.

[61]

Lactose PLS Granule behaviour during
fluid bed drying.
Determination of water
content and granule size.

[62]

Mannitol MIIPCR Determination of residual
moisture content in
freeze-dried product.
Superior to PLS.
MIIPCR is Main and
interactions of
individual PCR.

[63]

Microcrystalline
cellulose

PLS Prediction of powder
density (tap, bulk,
consolidated).

[64]

Orbifloxacin PLS Prediction of
compression force,
crushing strength and
content uniformity. PLS
performed better than
MLR.

[65]

Orbifloxacin PLS Prediction of tablet
coating thickness (with
Eudragit RS/RL).

[66]

Sulpyrine PCR Determination of tablet
hardness and weight
variability.

[67,68]

Theophylline AN PLS2 Calibration for crushing
strength and relative
density.

[69]

A Raman/SVM classification strategy was applied for the identi-
fication of 25 product families without error and in the absence of
prior information about the sample [71]. A Raman-chemical imaging
(CI) approach was used to characterize a self-emulsifying drug deliv-
ery system. This allowed the follow-up of the formulation during sta-
bility studies. A quantitative Raman-CI/PLS to assay the API in the
lipid based formulation was also developed and fully validated follow-
ing the “total error” approach. SNV and MC were employed as data
pre-processing methods [72]. On the other hand, SIMCA and ANN
were employed to classify polymers based on their thermo-mechani-
cal properties [73].

Terahertz spectroscopy was coupled to SIMPLISMA (sim-
ple-to-use interactive self-modeling mixture analysis), a self-model-
ing curve resolution technique closely related to MCR-ALS, to inter-
pret two-way THz spectral data of unknown mixtures of aminoacids
and excipients for spectral resolution of single

species and identification of their ingredients. An inverted second de-
rivative was employed as an intermediate step to optimize the deter-
mination of the pure variables [74].

A combined NIR-MIR-based spectroscopic/chemometrics method
was developed for the analysis of the Traditional Chinese Medicine,
Illicium verum Hook. F., and its noxious adulterant, Illicium lanceo-
latum A.C. Smith. The spectral matrix was submitted for classifica-
tion with LDA, using the successive projections algorithm (SPA) or
the discrete wavelet transform as pre-treatments. The SPA-LDA and
MIR approaches performed somewhat better (95–100% correct classi-
fications) [75].

The classification of Wuyi rock tea was performed by ssNMR with
the aid of PLS-DA, and quantitative descriptive analysis (QDA). The
contents of caffeine, carbohydrate, polyphenol, and terpenoid were
distinguished [76].

The discrimination among pharmaceutical products is an important
task in the pharmaceutical industry and for safety issues. A NIR/PCA
method was used for the discrimination of Chinese patent medicines,
under the principal component accumulation (PCAcc) mode. In the
PCAcc method, an accumulation strategy is used to combine the clas-
sification information contained in multiple PC subspaces by using a
rotation, a projection and a summation operation. To improve the per-
formance of classification, continuous wavelet transform is applied as
the pretreatment method to eliminate the background [77].

Finally, it is worth mentioning that homeopathic medicines have
also been examined by spectroscopic means coupled to chemomet-
rics methods, concluding that they are “not visible” with MIR spec-
troscopy. Ten homeopathic remedies (organic and inorganic) as sugar
granules, were daily subjected to triplicate solid-state MIR and NIR
spectroscopy during 6 days, and the results were analyzed by PCA and
PLS-DA. No visible differences besides atmospheric drift of spectra
could be observed [78]. Table 4 compiles a selection of examples on
chemometrics-assisted detection of APIs. The chemical structures of
−the studied compounds participating are depicted in Fig. 4.

Table 4
Chemometrics-assisted identification of active pharmaceutical ingredients in solid-state
samples.

Drug Method Scope and Observations Ref.

Acetaminophen ss-NMR/
PLS-DA
ss-NMR/
PCA

Used to build discriminant models to
detect the presence of the drug in
over-the-counter formulations. PLS-
DA with 3 factors (LV) performs
better than PCA. RMSECV = 0.38;
RMSEP = 0.48.

[55]

Acetaminophen XRPD/PLS-
DA

Recognize the presence/absence of
the drug in a multi-component
tablet. Pre-process: SNV; LV = 4.

[53]

Acetaminophen DSC/PLS-
DA

Recognize the presence of the drug in
the formulations. Pre-process: SNV,
MC and scaling; LV = 5.
RMSECV = 0.15; RMSEP = 0.39.

[54]

Bisoprolol and
hydrochlorothiazide

NIR/PCA
Raman/PCA

Discriminate between different
dosages (dosage form identity). NIR
exhibited better results than Raman.

[79]

Bisoprolol and
hydrochlorothiazide

NIR/PLS
Raman/PLS
NIR-Raman/
SO-PLS

Semi-quantitative prediction of drug
dosage. Analysis performed for each
API at a time. NIR exhibited better
results than Raman. Sequential-
orthogonalized PLS (SO-PLS)
showed better results than PLS,
when applied sequentially to NIR
and Raman spectroscopic data.

[80]
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Fig. 4. Chemical structures of some of the compounds used in the development of methods for the chemometrics-assisted identification or quantification of active pharmaceutical
ingredients in solid-state samples.

5.2. Assay of active pharmaceutical ingredients at the solid state

Quantitative analysis of the composition of pharmaceutical mix-
tures at the solid state is often used to ensure the safety and efficacy
of their active pharmaceutical ingredients or to establish and validate
the control of the pharmaceutical production process. Each quantita-
tive option presents its own issues when it comes to ensuring accuracy
and precision of the solid-state method. Some of these aspects have
been presented and discussed in several recent reviews [4,80].

It is worth taking into account that in general, the solid-state meth-
ods suffer from the inherent difficulty of achieving sample uniformity.
Hence, a well-developed and rationally optimized method will often
be capable of quantifying down to 5% and exhibit relative standard
deviations up to approximately 10%.

On the other hand, some problems present non-linearity effect
which can be handled with variable selection before applying chemo-
metrics methods [81]. Table 5 details selected examples of chemo-
metrics-assisted methods for determination of APIs in mixtures at the
solid state. On the other hand, the chemical structures of the com-
pounds participating in these studies are depicted in Fig. 4.

6. Detection of adulterated drugs and medicines

As improved analytical methods are developed and more thor-
oughly used, an increasing number of cases of counterfeit and sub

standard drugs is revealed all over the world. The variety of such prod-
ucts is so wide that the World Health Organization (WHO) has coined
the special term “SSFFC Medical product” to refer to these spurious,
substandard, falsified, falsely labeled and counterfeit drugs [103].

Raman spectroscopy has been repeatedly coupled to chemomet-
rics tools for detection and chemical profiling of counterfeit medi-
cines [104]. Confirmation of the authenticity of an API is a challenge
for the pharmaceutical industry. SIMCA classification models built
on Raman spectra of samples of sorbitol have been shown to enable
to distinguish between pure and impure samples of the product, in-
cluding adulterations (<5%) with ethylene glycol and diethylene gly-
col, with no misclassifications. Adulterant concentrations as low as
2% placed the samples in a separate group. In addition, Raman spec-
troscopy was coupled to PLS to develop a quantitative screening tool
to detect trace-level adulteration of sorbitol with ethyleneglycol. The
LOD of this method was 0.9% [105].

In a recent Raman/PCA study, it was possible to discriminate
between samples with different coatings, those containing varying
amount of their corresponding active pharmaceutical ingredients (caf-
feine and quinine sulfate dihydrate, Fig. 5) and a diversity of excipi-
ents [106]. However, in the same study it was possible detected small
chemical changes in the composition of acetylsalicylic acid and ascor-
bic acid tablets, which were caused by inappropriate storage condi-
tions.
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Table 5
Chemometrics-assisted quantification of active pharmaceutical ingredients in solid-state
samples.

Drug Method Scope and Observations Refs.

Acetaminophen NIR/PLS
NIR-SRS/
PLS

To examine the ability of NIR-
spatially resolved spectroscopy
(SRS) to evaluate tablet content and
sample heterogeneity. The single-
point-NIR measurement
spectrometer (RMSEP = 1.27%)
outperformed the SRS apparatus
(RMSEP = 1.71%). SRS outputs
were more sensitive to tablet
heterogeneity.

[82]

Acetaminophen NIR/PLS To compare the results obtained with
those of transmittance and diffuse
reflectance for a quantitative
determination. Pre-process: SNV,
D’. Spectral region:
9500–7500 cm−1. For powder
mixtures, transmittance mode gave
RMSEP values 2.4–5.6 times lower
than the diffuse reflectance
measurements.

[83]

Acetaminophen,
Caffeine,
Diacetylmorphine
(heroine)

DAD-NIR/
PLS
FT-NIR/PLS

Rapid in situ quantitative analysis of
drugs with fiberoptic portable DAD-
NIR. Methods exhibited similar
performance to reference FT-NIR.
Explained variance >90%;
RMSE < 2%. r2 = 0.909 (DAD-
NIR) and 0.989 (FT-NIR).

[84]

Acetaminophen,
Caffeine·H2O,
Lactose·H2O

XRPD/Peak
intensity
XRPD/MCR-
ALS
XRPD/PLS

Simultaneous determination of
multiple components in mixed
powder based on XRPD
(2θ = 5.00–30.0 and 35.0–45.0°).
Among the three approaches, the
PLS method gave the highest
accuracy and precision; it can also
be applied to the higher XRPD
range (35.0–45.0°) where the other
cannot.

[85]

Acetaminophen,
Caffeine,
Phenylephrine

Raman/PLS2
Raman/PLS

Quantification of the constituents in
5 components (3 APIs and 2
excipients) tablets. PLS (5 models,
each optimized for one component)
performed better than PLS2 for the
lower concentration components.
Minor improvements for optimized
spectral range and number of latent
variables.

[86]

Amoxicillin NIR/PLS For the drug in suspension.
Transflectance mode was used. Pre-
process: MSC. LV = 7; range:
40–65 mg mL−1 of amoxicillin;
RMSEP = 1.6 mg mL−1.

[87]

Amoxicillin,
Clavulanic acid

MIR/PLS
MIR/iPLS
MIR/siPLS

Simultaneous determination of two
APIs in commercial products.
DRIFTS mode was used. Synergy
interval-PLS (siPLS) gave better
results than interval PLS (iPLS) and
PLS. For clavulanic acid: Spectra
divided in 30 intervals and
combinations of 2 intervals. For
amoxicillin: Spectra divided in 10
intervals and combinations of 4
intervals. Good correlation with
reference HPLC method.

[88]

Amoxicillin·3H2O NIR/PLS Development, validation and
applicability of a model on real
samples. LV = 4, r2 = 0.9937,
RMSEC = 2.17%,
RMSEP = 2.38%. Good correlation
with the reference HPLC method.

[89]

Table 5 (Continued)

Drug Method Scope and Observations Refs.

Azitromicin Raman/SVM
Raman/k-NN
Raman/PLS

Classification of tablets according to
manufacturer, employing SVM and
k-NN and PLS-DA. PLS used for
quantitative determinations. iPLS
and Monte Carlo based
uninformative variable elimination
were used to select informative
variables for improving the models.
Classification and prediction were
highly accurate. Pre-process: MSC.

[90]

Caffeine,
Loperamide.HCl

FTIR-ATR/
PLS

Quantification of two APIs at
different doses in printed
formulations. Pre-process: SNV.
Spectral range: 400–1750 cm−1.
LV = 5 for both APIs. Improved
predictive performance with regard
to the univariate approach.

[91]

Caffeine,
Cocaine,
Glucose

Raman/PCA
Raman/PLS

Analysis of an illegal drug and two
typical diluents. PCA demonstrated
that the mixtures could be
discriminated according to their
concentration of cocaine and either
diluent. RMSEP = 4.1% (cocaine),
5.2% (caffeine) and 6.6% (glucose).

[92]

Epinephrine,
Ibuprofen

NIR/PLS Quantification of the enantiomeric
excess of two APIs. Pre-process:
MSC and D”. In the absence of
impurities or excipients,
RMSEP < 2% for both substances.
For ibuprofen in the finished
products, RMSE = 7.0%.

[93]

Febantel,
Pyrantel pamoate,
Praziquantel

MIR/siPLS Simultaneous determination of three
APIs in veterinary formulations.
Pre-process: Savitzky–Golay,
smoothing, D’, MC. LV = 5,
RMSEP ≤ 0.69% for the three
analytes. Good agreement with
HPLC–DAD and HPLC–MS/MS
results.

[94]

Hydrochlorothiazide NIR/PLS Determination of the API in drug
products, employing a difuse
reflectance approach. Pre-process:
MC, smoothing (Savitzky–Golay),
D’ and normalization. Spectral
region: 1640–1780 nm, LV = 4.
RMSEP = 1.7%. NAS was used to
obtain the figures of merit. Results
in agreement with reference HPLC
method.

[95]

Ibuprofen Raman/OPLS
NIR/OPLS

Non-destructive quantitative analysis
of the API in solid pharmaceutical
formulations. Pre-process: SNV
and MC. Spectral region:
134.6–2238.5 cm−1 (Raman) and
7105–13,100 cm−1 (NIR). Both
models predicted similar tablet
contents when all matrix variations
were included in the calibrations.

[96]

Ibuprofen NIR/PCA
NIR/PLS

Determination of the API in low
concentration (0–5%, w/w) tablets.
PCA was unable to discriminate
between tablets below a
concentration of ∼0.1% w/w. At
low upper levels, additional PLS
factors are needed to obtain useful
models.

[97]
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Table 5 (Continued)

Drug Method Scope and Observations Refs.

Indapamide NIR/PLS High-throughput method for the
determination of drug content in
tablets (2–3 mg/unit; 2% w/w). Pre-
process: SNV. LV = 6;
RMSEE = 0.0311%. Results agree
with HPLC method.

[98]

α-Lactose,
Citric acid,
Fructose

THz/PCA
THz/PLS
THz/ANN

Qualitative and quantitative analysis
of ternary mixtures. PCA allows to
place the samples in a ternary
diagram. RMSE = 0.9% for the
three constituents and both
quantitative methods. No advantage
for ANN (spectra driven by linear
behaviour).

[99]

Meloxicam NIR/PLS Assay of API in tablets;
determination of crushing strength
and disintegration time. Pre-
process: MSC. LV = 6; r2 = 0.988,
RMSECV = 0.22%. Good
agreement with an HPLC-UV
method and with European
Pharmacopeia methods for crushing
strength and disintegration time.

[100]

Piroxicam MIR/PCR
MIR/PLS

For assay of API in tablets and
ointment. Univariate
determinations seemed to give
better results (RSD < 3%).

[101]

Undisclosed API Raman-CI/
MCR-ALS
SER-CI/
MCR-ALS

Quantitation of an API at low
concentration (0.5–2%) in a dosage
form. The Raman-CI spectra were
acquired at 0.8, 3.0 and 10 s. MCR
restrictions: Non-negativity for
spectra and concentrations, and
normalization of spectra. The
drastic Raman signal enhancement
in the presence of silver
nanoparticles in surface-enhanced
Raman (SER)-CI provided
significantly improved calibration
accuracy and decreased image
acquisition time. r2 = 0.9849.

[102]

The latter modifications took place prior to visual change of the
tablet color. Therefore, it has been recommended to ensure that the ob-
served changes are not a result of inadequate storage before classify-
ing any sample as a counterfeit medicine.

A study by a Brazilian team using ATR-MIR coupled to PCA pro-
vided fast (less than 30 s) and reliable results in the forensic analyses
of samples of sildenafil citrate and tadalafil. Further, it was observed
that the PCA scores corresponding to many counterfeit drugs coming
from unrelated seizures from different cities of Brazil were inserted
in the same cluster, suggesting a common illicit source for all these
medicines. The combination of PCA and similarity match (SM) tech-
niques enabled detecting all counterfeit medicines and grouping dif-
ferent seizures of the illegal products [107].

In a related investigation, MIR spectroscopy was employed on a
larger set of samples of sildenafil citrate and tadalafil with the aim
of obtaining classification models helpful to customs officers in their
effort to obtain a first evaluation of suspected samples during import
inspections. Among the tested methods, models based on Classifica-
tion and Regression Trees (CART) gave good performances; however,
SIMCA resulted provided a 100% correct discrimination between gen-
uine and counterfeit drugs. On the other hand, k-NN was not able to
make the desired discrimination; therefore, it was considered not use-
ful [108].

Some expired drugs are difficult to detect by conventional means.
If they are repackaged and sold back into market, they will consti-
tute a new public health challenge. A recent study for the detection
of repackaged expired drugs still within drug specifications, employed
commercial paracetamol tablets as a model drug. Their Raman spectra
were compared against a spectral library, employing verification and
classification methods. Both methods were able to confidently detect
the expired drugs [109]. Table 6 details some applications of chemo-
metrics methods to this task, which has recently been reviewed [110].

7. Solubility and dissolution studies

7.1. Drug solubility

The solubility of the active pharmaceutical ingredient of a formu-
lation is important for its biological activity. Hence, the estimation of
the solubility of a drug in the design stages, and the optimization of
the formulation for proper dissolution are relevant for product devel-
opment. Chemometrics strategies have been employed in order to pre-
dict drug solubility and solid state behaviour of APIs. Discussed be-
low are a few selected examples.

PCA analysis [116] of a set of 51 compounds revealed that com-
pounds with comparatively high molecular weight and complex mol-
ecular structure displayed increased glass-forming ability. The latter
parameter has also been predicted from the molecular structure by
PLS-DA [117,118]. The model suggested that molecular descriptors
related to size, symmetry, branching, number of aromatic rings, and
distribution of electronegative atoms impact on the glass-forming abil-
ity for 75% of the test compounds. MLR also enabled to develop a pre-
dictive model of the stability of amorphous drugs, especially poorly
water-soluble compounds, employing molecular weight and enthalpy
of fusion data as predictors [119]. PCA was used to ensure that the
sample set was representative of the chemical and physicochemical di-
versity of neutral poorly soluble drugs.

On the other hand, in order to better understand the factors be-
hind the poor solubility of drugs, the intrinsic aqueous solubility of
15 poorly soluble drugs (2.9–1100 nM) was analyzed from a physic-
ochemical perspective, using experimentally determined solid-state
properties and two-dimensional molecular descriptors. The analysis
revealed that poorly soluble drugs are solubility limited by solvation
rather than by their solid state. PCA was used to display the descrip-
tors and PLS to predict de solubility based on these descriptors [120].
This analysis revealed that descriptors related to lipophilicity, size,
and polarizability are important factors for restricted solubility.

In another study, PCA and PLS were employed in an attempt to
gain insight into the relative importance of counterion characteristics
on their corresponding salt properties, and to establish predictive mod-
els capable of describing their effect on 11 procaine derivatives. Some
success was achieved in modeling the crystalline salt solubility and the
glass transition temperature of the amorphous salts [121].

In a more comprehensive study, Wassvik et al. determined the sol-
ubility and solid-state of 299 compounds; in their study, PLS was used
as a multivariate data analysis strategy to deduce relevant structural
features of marketed drugs with limited solubility. It was found that
molecules with extended ring structures and large conjugated systems
were less soluble, indicating that structural features related to rigidity
and aromaticity resulted in restricted solubility. Based on these find-
ings, 2D molecular descriptors of rigidity and aromaticity were ap-
plied in a PLS analysis to predict the solubility of unknowns. The
model successfully predicted the solubility of the test set and the
authors suggested that such calculated molecular descriptors can be



UN
CO

RR
EC

TE
D

PR
OOF

12 Journal of Pharmaceutical and Biomedical Analysis xxx (2017) xxx-xxx

Fig. 5. Chemical structures of some of the studied compounds for the chemometrics-assisted detection of adulterated and counterfeit drugs and medicines.

used for rapid identification of synthetic target compounds with a high
risk of having solid-state limited solubility [122].

Higher internal energy and molecular mobility of disordered mate-
rials can lead to increased aqueous solubility, and improved bioavail-
ability. The potential for small molecule organic crystalline materials
to become disordered as a result of high shear mechanical processing
was investigated by stepwise multivariate logistic regression of differ-
ent materials properties. Glass transition temperature, melting temper-
ature, heat of fusion, crystallographic density, Young’s modulus, mo-
lar volume and attachment energy were identified as having a signifi-
cant correlation with the potential for material disordering [123].

7.2. Pharmaceutical dissolution

The pharmaceutical dissolution rate and the associated dissolution
profiles are invariably identified as critical quality attributes for solid
dosage forms, since they are related to the drug availability for absorp-
tion, a needed stage to exert its effect. Many advances have been re-
cently made regarding the application of chemometrics tools to phar-
maceutical dissolution problems, including the studies of the factors
which impact on the dissolution of drug products, the quantification of
the dissolved drugs during the dissolution test and the determination
of the crystalline state of the API from its dissolution profile.

Analyte quantitation is another way to apply chemometrics to dis-
solution analysis. A demonstrative example is the study of the ini-
tial dissolution kinetics of the carbamazepine-nicotinamide co-crystal,
which was investigated with the aid of the CLS method. The co-crys-
tal was prepared by co-milling and solvent evaporation methods, and
the dissolution tests of the solid were performed using an original
flow cell and an UV–vis spectroscopic detector, which enabled in situ
process monitoring. The acquired spectra were analyzed with CLS to
separately determine the dissolved compounds. The initial dissolution
profiles were interpreted using a simultaneous model of dissolution
and phase changes [124].

An application of the method to a drug formulation was also pre-
sented. The tablets, obtained by direct compression under different
conditions, were scanned at-line using NIR spectroscopy in transmis-
sion mode. A MLR model was built with the PCA scores of the NIR
spectra and the dissolution profile parameters, obtained under two
conditions, including level and shape calculations (model-indepen-
dent) and after fitting a Weibull curve (model-dependent). The models
successfully predicted the dissolution profiles of the individual tablets
manufactured at the targeted set point (similarity factor, f2 = 72) [125].

In related studies, we have shown that MCR-ALS can be employed
as a chemometrics tool to monitor the simultaneous dissolution of
pairs of drugs from fixed doses binary pharmacological associations
[126,127], and to use the resulting dissolution curves to build dissolu-
tion profiles, useful for comparison between brands or lots, as well as
for quality control purposes (Fig. 6).

The dissolution curves are built at once from the set of dissolution
results. This approach, which uses a few calibration standards is also
markedly different from the previous one, which employed PLS as the
chemometrics tool to build the dissolution curves at a time-point by
time-point bases, and required more calibration standards, preferably
arranged according to an experimental design [128–130].

Another interesting application of chemometrics to the analysis of
the dissolution is in the development of alternative statistical methods
to assess similarity of dissolution profiles.

The group of Wang challenged the official method based on the f2
factor with a set of 16 groups of dissolution profiles arranged accord-
ing to a full factorial design (drug strength, tablet stability time, and
dissolution testing condition). According to their values of f2, all 16
groups were considered similar. However, a MANOVA of repeated
measures suggested statistical differences. Therefore, the authors used
a modified PCA to describe the dissolution curves in terms of level
and shape.

This method categorized the set into three similar groups, and was
consistent with the MANOVA test and its subsequent analysis us-
ing Tukey’s Test. They concluded that their approach enables an im
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Table 6
Some applications of chemometrics methods to counterfeit drug detection.

Drug Method Scope and Observations Refs.

A calcium channel
blocker

NIR/DD-
SIMCA

Counterfeit drug detection. This
approach enhanced the applicability
of a miniaturized NIR instrument.
DD-SIMCA is Data driven SIMCA.

[111]

Acetaminophen Raman/PLS-
DA
Raman/SVM
Raman/k-NN

Analysis of expired drugs. Pre-
process: Max-Min normalization.
Average accuracy: 90.1%, 96.8%
and 89.4% respectively.

[109]

Anisodamine Raman/r2 Identify genuine and counterfeit
tablets. Counterfeit tablets
identified with 100% predictive
accuracy.

[112]

Anisodamine NIR/iPCA,
NIR/PLS-DA

Distinguish between manufacturing
plants. The rejection rate and
recognition rate were both 100%.

[112]

Atorvastatin NIR/PLS-DA
Raman/PLS-
DA

Accurate identification of genuine
and counterfeit tablets. PCA
revealed that storage conditions,
affect the NIR data, due to the
adsorption of water after unpacking
from the blister.

[113]

Acetylsalicylic
acid and Ascorbic
acid

Raman/PCA Detection of small chemical changes
in counterfeit tablet composition,
caused by inappropriate storage
conditions before visually
observing their effects.

[106]

Caffeine
and Quinine
sulfate dihydrate

Raman/PCA Detection of a wide range of
counterfeits. Samples with several
coatings, varying amounts of the
API and even different excipients
were distinguished.

[106]

Glibenclamide,
Gliclazide,
Glimepiride,
Glipizide,
Gliquidone,
Metformin,
Pioglitazone

Raman/PCA
Raman/LSLS
(Local
Straight-
Line
Screening)

Identify 3 types of counterfeits:
Types I (no API, only excipients);
Type II (different, unrelated API);
Type III (structurally related less
expensive API). Types I and II are
much easier to discriminate. The
correct rates of the 3 types were all
>95%. Total sensitivity, specificity
and accuracy are 96.8%, 97.5% and
96.4%, respectively.

[114]

Morphine
derivates (H2SO4,
HCl and base)

DSC-DTG/
HCA

Differentiation the origin of the
samples. Classification model was
built from structural fingerprints.

[115]

Sildenafil
citrate And
Tadalafil

ATR-MIR/
PCA

Distinction between authentic and
counterfeit samples in forensic
routine. Grouped samples according
to their chemical profiles,
distinguishing successfully between
authentic and counterfeits.

[107]

Sildenafil
citrate, Tadalafil
and placebo

ATR-MIR/
PCA,
k-NN,
CART,
SIMCA

Intended for customs, to obtain a
first evaluation of suspected
samples. SIMCA gave the best
model, with a 100% correct
discrimination between genuine and
counterfeit drugs. k-NN was less
satisfactory, being unable to make
the desired discrimination.

[108]

proved statistical analysis, allowing to better ascertain both, the statis-
tical significance and the clinical relevance of the results; hence, sup-
porting regulatory decisions in a more objective form [131].

In the same way, Maggio et al. developed PCA-CR, a method-
ology based on PCA and Hotelling tests for the establishment of a
confidence region [132], as a new approach to assess the dissolu-
tion similarity of a drug product, employing furosemide and aceta-
minophen tablets as models. Reference and test data from multiple
pre-specified time points dissolution measurements were simultane-
ously subjected to PCA and pairwise comparisons, which involved

plotting the weighed scores of the first two principal components of
reference and test lots. The decision about “similarity” was taken by
checking the inclusion of more than 80% of the test lot units in the
95% confidence ellipse of the reference samples.

Unlike the f2 criterion, the proposed method reflects variability
within the individual dissolution curves, being also highly sensitive
to their shape and size variations (profile). Comparison between the
area enclosed by the confidence ellipses and the region obtained from
the bootstrap-calculated acceptable values of the corresponding f2 tests
suggested that PCA-CR represents, in general, a more discriminating
standard.

This approach was also applied to differentiate among the three
polymorphic forms of furosemide in a capsule formulation. In this ap-
proach, the calibration space was created from the different pure poly-
morphs of furosemide (I–III), formulated as the commercial product.
The commercial samples were displayed into a two-dimensional PC
space and the Hotelling test was carried on the entire group. Then, the
polymorphic identity of the unknowns was assigned by using simple
pre-established PCA-CR rules [133].

In another case, the preparation parameters of a dried meloxi-
cam nanosuspension were studied with the aim to improve its dis-
solution. For improving the dissolution rate, the drug was formu-
lated as a nanosuspension using different methods like emulsion diffu-
sion, high-pressure homogenization, and sonication. A self-modeling
curve resolution (SMCR) study on the XRPD patterns of the nanosus-
pensions revealed the strong interaction between the stabilizer and
meloxicam and the crystalline form of the drug. This provided a better
understanding of the formulation [134], which enabled to increase the
rate of dissolution of the dried meloxicam nanosuspension.

Raman spectroscopy was used as a PAT tool for in-line mea-
surement of API content during continuous manufacturing of strip
films containing nanoparticles of fenofibrate and naproxen as model
of poorly water-soluble APIs [135]. Their concentrations ranged from
3% to 26% w/w in the calibration model. PLS was employed for
in-line and off-line measurements, yielding r2 values > 0.9946 and
RMSEC = 0.44%. Prediction errors were 1.3% and method robustness
was established by considering sensing location, substrate speed and
film thickness. PCA was used to explain the relations between pro-
cessing variables and calibration models, suggesting that film thick-
ness could also be monitored using Raman spectroscopy.

Theophylline crystal forms are AH and MH, the former displaying
the higher dissolution rate. THz spectra of theophylline tablets con-
taining AH, MH, microcrystalline cellulose and magnesium stearate
exhibited a specific absorption peak at 0.96 THz, related to AH. PLS
analyses were performed to correlate the tablet spectra with both, their
content of AH (RMSECV = 2.89%; r2 = 0.9927) and their dissolution
rate, which was gradually delayed as the proportion of AH decreased
(RMSECV = 3.29%; r2 = 0.9423). No significant differences between
predicted and measured amounts of dissolved drug in tablets stored for
12 or 36 h at 25 °C and 84% RH [136].

The amounts of riboflavin sodium phosphate and excipients were
predicted from ATR-FTIR spectra using PARAFAC and N-PLS as
multi-way modelling techniques. Data matrices consisted of dissolved
and undissolved parallel samples with different drug content (2–16%)
and spectra, collected at axially cut surface of the flat-faced matrix
tablets. The N-PLS method was more robust for accurate quantifi-
cation of the amounts of the components in the sample whereas the
PARAFAC model gave approximate relative amounts of components
[137].

With the aim to improve the rate of dissolution of the poorly sol-
uble meloxicam in capsule form, mannitol was used as a carrier in
different ratios, in physical mixtures and melted forms. MCR was
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Fig. 6. Dissolution profiles of three lots of the hydrochlorothiazide-carvedilol association. Lots A1 and A2 are similar with regard to both APIs; however, lot B does not comply with
the f2 similarity factor criterion for hydrochlorothiazide. Taken from Ref. [126].

used as a chemometric method to interpret X-ray diffractograms of
their binary mixtures, revealing that the amount of mannitol and the
particle size of ME were important factors in the rate of dissolution
[138]. A short summary of selected achievements is displayed in Table
7.

8. Stability testing

Stability studies designed to ensure the maintenance of product
quality, safety and efficacy throughout the shelf life, are currently con-
sidered a pre-requisite for the acceptance and approval of any pharma-
ceutical product.

The purpose of stability testing is to provide evidence on how the
quality of a drug substance or drug product changes with time under
the influence of a variety of environmental factors such as tempera-
ture, oxygen, humidity and light. The tests allow the rational estab-
lishment of recommended storage conditions, re-test periods and shelf
lives [144].

These studies are required to be conducted under the guidelines is-
sued by the International Conference on Harmonization (ICH), WHO
and or other agencies, which established different test conditions and
requirements for active pharmaceutical ingredients and their drug
products. The codes and subjects covered by the ICH guides are out-
lined in Table 8.

Chemometrics strategies have been employed in order to predict
the stability of pharmaceutically relevant systems in the solid state.
It has been shown that electron paramagnetic resonance (EPR) spec-
troscopy can be used to monitor the extent of oxidative degradation in
solid-state samples of an active pharmaceutical ingredient. Moreover,
compared to the traditional methods of peak height (PH) and dou-
ble-integral (DI) measurements, the quantitation of the EPR response
can be improved by the use of PLS. Q-band EPR and X-band Electron
nuclear double resonance (ENDOR) spectroscopy also gave additional
information to differentiate the organic radical species involved in the
oxidation process [154].

The stability of a pharmaceutical product may also be altered by in-
compatibility with some excipients of the formulation. The studies of
binary physical mixtures of atenolol and selected excipients by MIR
spectroscopy under chemometrics assistance by PCA and CA have
shown that β-cyclodextrin is incompatible with the drug. This find-
ing was confirmed by complementary methods, such as DSC, thermo-
gravimetry and XRPD [149]. Other applications of MIR spectroscopy
to the characterization of pharmaceutical systems have been reviewed
[145].

Amorphization is one of the techniques to enhance the dissolu-
tion rate and/or bioavailability of sparingly soluble drug substances.
Generally, however, amorphized drug substances recrystallize easily,
since they have a higher energy state and are physically more unstable.
Therefore, in order to improve the physical stability of the amorphous
drug substances, they are prepared as solid dispersions with a polymer.
13C ssNMR has been coupled to chemometrics (PLS) in order to suc-
cessfully predict the recrystallization behaviour of troglitazone during
storage, in its solid dispersion with polyvinylpyrrolidone [146]. Inter-
estingly, this strategy proved better than examination of XRPD, which
exhibited no changes.

The decomposition of lisinopril dihydrate upon submission to heat
(24–170 °C) was studied employing a MIR/MCR-ALS monitoring ap-
proach. The drug decomposes to the monohydrate, the anhydrate and
the diketopiperazine. The pure spectra and the relative thermal-de-
pendent contributions of each component were obtained, as well as
the critical temperature for each transformation [147]. Table 9 pro-
vides some examples on the use of chemometrics methods in this field,
whereas the chemical structures of the studied APIs are depicted in
Fig. 7.

One of the causes of instability of multicomponent amorphous sys-
tems is their tendency to phase separate during storage. The charac-
terization of amorphous–amorphous systems is often harder than in
amorphous–crystalline ones, because it requires detection of phase
separation. The PCA multivariate data analysis for X-ray powder dif-
fraction-pair-wise distribution function (XRPD-PDF) data was em
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Table 7
Selected examples of chemometrics-assisted studies of drug solubility and pharmaceu-
tical dissolution, and their applications.

Target Drug

Coupled
method or data
input

Scope, Predicted
parameters and
Observations Refs.

Acetaminophen NIR/PCA
Dissolution/
PCA
NIR/PCR

Display data dispersion and
predict dissolution based
on level and shape
modeling or a Weibull
curve. Calibration data
constructed by a 34−1

factorial design.

[125]

Acetaminophen NIR/PCA
NIR/PLS

Exploratory data analysis
with PCA employed to
study the spectral changes
arising from the shear
differences. PLS-2 used to
develop a calibration
model for% drug released
vs. applied strain and
predict tablet dissolution
profiles.

[139]

API for asthma and
COPD (chronic
obstructive-pulmonary-
disease)

PCA
PLS

PCA was used to assess
differences in powder
properties and in vitro
performance of batches of
the drug. Variable
importance in projection
(VIP) was used in order to
assess the most influential
variables for powder
characterization. Particle
size, density and rate of
flowability are significant
for modeling the
Delivered Dose of the API
and the total quantity of
powder related to each
dose.

[140]

Carbamazepine–cinnamic
acid co-crystal

UV/NAS-SAM Standard addition method
and net analyte signal
(NAS-SAM) used for
prediction of product
solubility and its
dissolution.

[141]

Fenofibrate and naproxen Raman/PCA
Raman/PLS

PCA was used to analyze
the impact of process
parameters on Raman
spectra. PLS was used for
in-line and off-line
quantification of these
poorly soluble drugs in
strip films.

[135]

Furosemide Forms I, II
and III)

PCA-CR Assignment of
polymorphic identity to an
unknown in a capsules
dosage form based on a
principal component
representation of its
dissolution profile and its
associated confidence
region.

[133]

Furosemide,
Acetaminophen

PCA-CR Test dissolution profile
similarity based on a
principal component
representation of its
dissolution profile and its
associated confidence
region (CR).

[132]

Table 7 (Continued)

Target Drug

Coupled
method or data
input

Scope, Predicted parameters
and Observations Refs.

Griseofulvin blends PLS Correlation between
selected descriptors
(lipophilicity, size,
cohesive energy density,
hydrogen bonding
capacity) and dissolution
efficiency (DE) was
established by PLS (log
DEblend/DEpure). It may be
used to semi-quantitatively
predict the dissolution
behaviour of drug blends.

[142]

Hydrochlorothiazide and
Bisoprolol

UV/MCR-ALS Monitoring of the
dissolution profile.
Simultaneous construction
of two dissolution profiles
of concomitantly
dissolving drugs from the
drug association.

[127]

Hydrochlorothiazide and
Carvedilol

UV/MCR-ALS Monitoring of the
dissolution profile.
Simultaneous construction
of two dissolution profiles
of concomitantly
dissolving drugs from.

[126]

Theophylline THz/PLS Prediction of the level of the
anhydrous form and the
dissolution profile of the
product.

[136]

Undisclosed API O2PLS The influence of granule
and compression
variability (introduced by a
DOE) on the entire
dissolution profile was
studied with bi-directional
projection to orthogonal
structures (O2PLS) as the
chemometric tool. It was
shown that the
disintegration phase
(10–15 min) was
controlled by granule
attributes and tablet
hardness, while the later
phase (15–30 min) was
solely controlled by
granule attributes.

[143]

Table 8
ICH Guidelines referred to stability.

Code Document Title

Q1A Stability Testing of New Drug Substances and Products
Q1B Stability Testing: Photostability Testing of New Drug Substances and

Products
Q1C Stability Testing for New Dosage Forms
Q1D Bracketing and Matrixing Designs for Stability Testing of New Drug

Substances and Products
Q1E Evaluation of Stability Data
Q1F Stability Data Package for Registration Applications in Climatic Zones III

and IV

ployed to detect phase separation in freeze-dried binary amorphous
polymer-sugar mixtures. The analysis provided a more clear ‘misci-
ble’ or ‘phase separated’ interpretation through the distribution pattern
of samples on a score plot presentation compared to the residual plot
method, being in agreement with DSC results.
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Table 9
Examples of chemometrics-assisted stability studies of selected drugs.

Drug Scope Method Observations Refs.

Acetaminophen, Azithromycin,
Lidocaine, Epinephrine

Quantitative analysis of known primary
degradation products.

Raman/CLS Average LOD = 3.9%, based on y-intercepts for the four analytes.
Need a significant percentage of API by mass.

[148]

Atenolol Incompatibility with excipients. MIR/PCA
MIR/CA

Incompatibilities only with β-cyclodextrin. Method reliability
confirmed by DSC and XRPD.

[149]

Captopril Evaluation of the sample degradation in
relation to the date of manufacture.

NIR-CI/MCR-
ALS

Enables visualization of the degradation process in different layers,
especially top and bottom surfaces of the tablet. More informative
than bulk analysis.

[150]

Cimetidine, Ranitidine.HCl,
Famotidine

Photostability NIR/SIMCA Differences detected between the irradiated, zero and dark samples
of ranitidine.

[151]

Ezetimibe Hydration kinetics (23 °C/75% RH) Raman/MCR-
ALS

Hydration almost complete within 30 min. [152]

Ezetimibe To quantify drug hydration due to
excipients humidity.

Raman/PLS Cross validation errors ∼0.6% (w/w), for both crystalline forms, and
r2 > 0.96.

[152]

Risperidone Drug-excipient compatibility MIR/PCA Incompatibility with Mg stearate, lactose and microcrystalline
cellulose. Verified using a stability-indicating LC method

[153]

Undisclosed API Study of oxidative degradation, after 12
months of exposure to 25 °C/60% RH
and 40 °C/75% RH.

EPR/PLS Method was compared with HPLC (r2 = 0.966) and with traditional
options based on peak high and peak area.

[154]

Vaccine freeze-dried with attenuated
virus

Normal and accelerated stability studied
(4 weeks at 4 °C and 37 °C)

NIR/PCA
MIR/PCA

Titer decreased at 37 °C. NIR found changes in hydrogen bond
strength between the stabilizer and the virus proteins. MIR
revealed decrease of β turn and increase of α helix.

[155]

Fig. 7. Chemical structures of some of the compounds employed for the development of chemometrics-assisted analytical methods for stability studies.

This chemometrics-assisted approach improves the clarity of the
PXRD-PDF results and was suggested as an alternative explorative
data analytical tool in detecting phase separation in freeze-dried binary
amorphous systems [156].

9. Thermal transformations

Solid-state transformations may take place during any stage of
pharmaceutical processing and upon storage of a solid dosage form.
Early detection and quantification of these transformations during
the manufacture of solid dosage forms is important, since the physi-
cal form of an active pharmaceutical ingredient can significantly in-
fluence its processing behaviour, including powder flow and com-
pressibility, as well as the biopharmaceutical properties of the final
product such as solubility, dissolution rate and bioavailability. Poly-
morphic transformations under thermal stimuli, including generation

of an alternate form, desolvation, crystallization and changes in crys-
tallinity, have been detailed in a companion review [157].

Hot melt extrusion (HME) is a continuous process that can give
rise to solid state transformations. The application of this method
within the pharmaceutical industry is steadily increasing, considering
that it can improve the solubility and bioavailability of poorly soluble
drugs by encompassing them in a polymeric carrier and by forming
solid dispersions. In HME, the use of high shearing forces, increase
the blending rate and thus ensure the homogeneity and uniformity of
the melt; In addition, high temperatures are used to produce and keep
the melted intermediate. However, these forces may cause the poly-
mer as well as the API to suffer changes, including degradation.

Different methods have been developed to study this process. For
example, the solid state of celecoxib formulations prepared by HME
was examined by PCA of the DSC thermograms of a single heating
cycle. A narrow range of temperatures (100–190 °C) was used, be
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cause it was sufficient to capture the information related to the melting
peak of the drug. The PC1 (r2 = 0.93) versus PC2 (r2 = 0.06) scores
plot was able to cluster the end products in an identical manner as their
XRPD analysis [158].

However, the off-line analysis with DSC and XRPD appeared not
to be sensitive enough to detect small fractions of crystalline celecoxib
that later on induced recrystallization of the drug in the extrudates dur-
ing storage. This small fraction was noticed by an analogous on-line
Raman/PCA approach, which allowed the differentiation of celecoxib
as glassy solid solutions and crystalline dispersions, but also provided
information on the stability of the extrudates.

The thermal decomposition of magnesium salts of organic acids
used in pharmacy, such as valproic, lactic, citric and aspartic was
studied by chemometric analysis of calorimetric and thermoanalyti-
cal methods [159]. The chemometric evaluation of the thermoanalyt-
ical results was performed by PCA. The PC1 versus PC2 plots of the
thermal decomposition data suggested structural similarity among the
magnesium salts of the organic acids.

Partial transformation (∼70%) of cimetidine takes place above
the melting point of the drug, upon heating between 160 and 180 °C.
A multispectroscopic-chemometrics
(UV-ATR-MIR-1H NMR-13CNMR/MCR-ALS) strategy enabled the
characterization of the product as the stable N3-enamino tautomer of
the drug (Fig. 8).

This methodology also revealed that the transformation follows
first order kinetics and provided parameters of its formation [160]. In
this case, the use of a single spectroscopy was unable to provide the
detailed quali- and quantitative information required to characterize
the process and its final product.

A transflectance NIR spectroscopy approach was used to simul-
taneously measure in real time the drug and plasticizer content of
polymer melts with varying opacity, during the HME process of car-
bamazepine in a polyvinyl pyrrolidone-vinyl acetate co-polymer
(PVP-VA) matrix, employing polyethylene glycol (PEG) as plasti-
cizer [161]. Calibration and validation of PLS models for the analytes
were performed using a wide range of drug and plasticizer loadings.
Once calibrated and validated (RMSEC = 0.79%; RMSEP = 0.67%),
the technique was used to simultaneously quantitate (r2 > 0.99) both
widely different analytes.

10. Co-crystals, co-amorphous and salts

Pharmaceutical co-crystallization is a promising alternative to im-
prove the solubility and dissolution rate of APIs, and to modulate other
key physical properties based on crystal engineering approaches. The
co-crystallization process involves the interaction among several mol-
ecular species and its control requires precise knowledge of the differ-
ent phases that might appear during their production and the ability to
monitor their abundance.

On the other hand, salts are usually prepared as a means to obtain
highly crystalline, easily purifiable compounds, and used as such for
the preparation of drug products. Their interaction with the excipients
matrix may cause instability, chemical reactions and even dispropor-
tionation.

Raman spectroscopy has been associated with chemometrics
means (PCA and PLS) to quali- and quantitatively study the dis-
proportionation of pioglitazone hydrochloride in low loading (5%
w/w) tablets [162]. A two-step Raman mapping approach
(1500–1800 cm−1) with suitable sensitivity was developed. The first
stage was to locate the area of interest where the drug particles re-
side throughout the tablet surface employing a deliberate sub-sam-
pling strategy. The second stage was a step by step mapping of the se-
lected area to examine more in detail the degree disproportionation of
the salt. This may help formulation scientists to better understand in
situ drug-excipients compatibility. Table 10 provides some examples
on the use of chemometrics methods in this field.

11. Chemical imaging

Hyperspectral chemical imaging is the analytical capability to cre-
ate a visual image of the components distribution in a sample by inte-
gration of imaging and spectroscopy through the simultaneous acqui-
sition of spectral and spatial/time information.

In recent times, this technique has acquired great importance in
pharmaceutical analysis because it offers the possibility of access-
ing to visual representations of the spatial distribution of the analytes
and enables their simultaneous identification and quantitation. Cur-
rently, chemical imaging is mostly based on vibrational spectroscopies
[173], but other technologies are emerging at a fast pace. Due to the

Fig. 8. Multispectroscopic/chemometrics (UV-ATR-MIR-1H NMR-13C NMR/MCR-ALS) approach toward the characterization of the stable N3-enamino tautomer of the drug as the
main product formed upon heating cimetidine above its melting point. Taken from Ref. [160].
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Table 10
Characterization of co-amorphous and co-crystals. Use of chemometrics methods.

Co-crystal
Coupled
method Observations Refs.

Carbamazepine:saccharin (1:1 co-crystal) MIR/PCA
MIR/PLS

System suitability examined, for the quantification of the co-crystals with carbamazepine form
I in mixtures with forms I and III and saccharin. PCA used for phase classification; PLS for
their quantification. Pre-processing with the SNIP (sensitive nonlinear iterative peak) clipping
algorithm was effective for background removal, enhancing the informative peaks [163].

[164]

Diclofenac:ranitidine (2:1 co-crystal) UV/MCR-
ALS

Functional characterization of the co-crystal with an on-line UV/MCR-ALS approach to
dissolution monitoring. It was demonstrated that co-crystallization enhances the solubility of
diclofenac.

[165]

Furosemide:nicotinamide (1:1 co-crystal) NIR/PCA Batch statistical process monitoring was used to create control charts to perceive the process
trajectory and define control limits.

[166]

Ibuprofen:nicotinamide (1:1 co-crystal) Raman/PLS For co-crystal yield and purity after synthesis. Raman/PLS (mean errors < 5% for all
components) was superior to ATR-MIR, DSC and XRPD. MIR and DSC were unsuitable for
solving the ternary mixture; XRPD only quantified satisfactorily the co-formers.

[167]

Ibuprofen:nicotinamide carbamazepine:nicotinamide
(1:1 co-crystals)

NIR/PLS Prediction of co-crystal concentration in powder mixtures of the co-crystals and the
corresponding APIs.

[168]

Indomethacin:tryptophan Furosemide:tryptophan (co-
amorphous)

ssNMR/PCA Study of ease of amorphization under ball-milling and mechanism of co-amorphization. The
degree of amorphization was quantified from the PCA scores of the normalized [169] mean
centered 13C ssNMR spectra.

[170]

Indomethacin:saccharin Indomethacin:aspartic acid (1:1
co-crystals)

NIR/PCA Successful use of NIR/PCA was possible through the inclusion of a set of reference mixtures
of parent and guest molecules, representing possible solid-state outcomes from the co-crystal
screening. Pre-treatment: SNV baseline correction and scaling.

[171]

Naproxen:indomethacin (co-amorphous) XRPD/PLS Simultaneous determination of up to four solid state fractions. RMSEP = 5.57% for the co-
amorphous molar fraction. Co-amorphization is employed to stabilize amorphous phases.

[172]

complexity of the data, the most successful applications of vibrational
spectroscopic imaging require the combination of spectral, chemomet-
rics, and digital image analysis.

The data structure of these techniques is three dimensional, with
two spatial and one wavelength dimension. Behind each image pixel,
which exhibits the spatial information, there is spectral information,
where the scanned wavelengths can be used as variables and their in-
tensity as responses.

Not all techniques are equally suitable for solving a given prob-
lem. For example, the theoretical spatial resolution, which is diffrac-
tion-limited, is a weakness of THz spectroscopy, varying with the
wavelength in the case of MIR, whereas it depends on the laser used
in the case of Raman chemical imaging.

After an appropriate chemometrics treatment (MCR-ALS, PLS,
etc.) the image display is changed and new colors are assigned, to
exhibit the relative distribution of the components in the sample.
This information can be used for component identity assignment and
for quantification purposes, according to the intensity of such col-
ors [174]. Recently, time series hyperspectral chemical imaging has
surged as a sophisticated evolution that offers the possibility of more
comprehensively understanding complicated systems or their process
dynamics, by adding the temporal dimension and generating a hy-
per-cube of data [175].

The main advantages of these techniques, when used for the char-
acterization of pharmaceutical solids, are that they require minimal
sample preparation and do not use contaminating solvents, being
non-destructive and also non-invasive. However, they usually lack
sensitivity and the acquired data are still complex to analyze for the
purpose of extracting numerical information with high degree of accu-
racy and precision. Therefore, they may be time consuming and also
may face problems of reproducibility. Typical sources of error in the
quantitative analysis by vibrational spectroscopies-mediated mapping
include sample packing and its positioning.

The amount and complexity of the data generated by such tech-
niques turn their association with chemometrics methods almost nat-
ural [176]. Hence, univariate analyses in this area became currently
rather infrequent [177] and the advances regarding the development
of methods for fast analysis of multivariate data are becoming rapid

and widely adopted within the pharmaceutical field. In order to further
develop chemical imaging into a fully applicable PAT, there is a need
to increase the data processing speed for enhanced process controlla-
bility.

Besides increasing computer velocities, minimizing the number of
data processing steps is a much-sought alternative. The repertory of
the most relevant chemometrics tools for image analysis [178,179]
and the impact of coupling chemical imaging and chemometrics on
PAT [180,181] have been reviewed.

11.1. Raman-mapping

Raman spectroscopy may be implemented through a microscope;
this technique yields fine scale axial and lateral chemical maps. Both
univariate and multivariate methods, applied to Raman spectral data,
can be used to obtain the Raman distribution maps. Originally, spa-
tially resolved Raman data were analyzed with univariate techniques,
which require the analysis of a constituent-specific spectral band, free
of interference from other constituents in the system; however, in-
creasing sample complexity has moved attention toward multivariate
approaches [182].

The molecular structure of many drugs turns Raman spectroscopy
into a fit for the purpose approach to interrogate pharmaceutical sys-
tems, especially tablets and solid dispersions. Hence, during the last
decade, Raman imaging has evolved to become a highly useful tool
for the analysis of pharmaceutical relevant samples [9,183] enabling
the assessment of the quantitative distribution and solid state charac-
teristics of APIs in pharmaceutical formulations [184,185], and even
to detect low doses [186] and counterfeit medicines [187].

The combination of Raman chemical imaging and chemometrics
strategies to solve pharmaceutically relevant problems has been re-
viewed [9,188]. Some pharmaceutical applications of chemomet-
rics-assisted Raman-Mapping are found in Table 11.

11.2. NIR-mapping

NIR-Mapping is a powerful technique, which is widely used in
the pharmaceutical industry for detecting counterfeit products, quan
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Table 11
Selected pharmaceutical applications of chemometrics-assisted Raman-Mapping.

Drug Chemometrics Algorithm Observations Refs.

Acetaminophen (Forms
I, II, III)

PCA
MCR-ALS

The crystallization of
the amorphous drug
in both covered and
uncovered
geometries was
studied. Surface
crystallization
prevails in
uncovered samples,
leading to forms I
and II, whereas in
covered samples
bulk crystallization
dominates and leads
to form III.

[190]

Carbamazepine MCR-ALS Used to describe
polymorphic
transformations.
Multiset MCR-ALS
analysis provided
global (image) and
local (pixel) process
profiles. Spatial
image information
discriminates
compounds with
identical process
profiles.

[191]

Drug-Cyclodextrin MCR-ALS Analysis of API-
cyclodextrin
interactions in
formulations and
sample heterogeneity
were studied.

[192]

Indomethacin (α, γ and
AM)

PLS The distribution of
the different solid
forms loaded into
porous silica
particles to enhance
drug dissolution, and
analysis of the
heterogeneity of
recrystallized drug
samples were
investigated. PCA
revealed the
presence of non-
modelled forms.
Fluorescence and
sample burning are
drawbacks of the
method.

[193]

Piracetam PLS Proline used as
excipient. A five-
steps robust and
accurate
methodology for
low-content (<0.1%)
quantification of the
drug was developed.
The method has
LOD comparable to
HPLC and its
prediction accuracy
is ∼2.4% for a
0.05−1.0%
concentration range.

[194]

Table 11 (Continued)

Drug Chemometrics Algorithm Observations Refs.

Verapamil.HCl MCR-ALS The spatial distribution
of the drug in
extruded tablets was
examined. The spatial
homogeneity of two
formulations was
compared and
differences assignable
to the manufacturing
process were
identified.

[195]

tifying polymorphs, and examining the components distribution in
complex matrices, such as pharmaceutical dosage forms. Although
the NIR-mapping technology cannot overcome all the drawbacks of
chemical imaging, it can achieve their reduction and get high S/N ra-
tios by spectral averaging at the expense of loss of spatial information.
Signals are usually pre-processed in order to enable the most efficient
extraction of the relevant information [189]. Examples of NIR-Map-
ping cases under chemometrics-assistance are found in Table 12. The
chemical structures of the active pharmaceutical ingredients examined
in these studies are shown in Fig. 9.

11.3. Terahertz spectroscopy-mapping

Terahertz time-domain spectroscopy is a non-destructive spec-
troscopy, useful for imaging, operating in the 0.1–10 THz range. Cou-
pled to chemometrics, the method can detect structural defects in com-
ponent distribution such as pharmaceutical products’ coatings. It pro-
vides broadband spectral signatures for dielectric materials and fine
time resolution [196].

Terahertz pulsed imaging (TPI) technology is gaining acceptance
in 3D chemical imaging and tablet coating thickness measurement.
However, 3D terahertz chemical imaging is still in its infancy and
needs much further development. The technique has many potential
advantages over NIR-CI; especially, spectral data can be acquired
from within the sample without destroying it [197,198]. In principle,
with the aid of suitable chemometric models it would allow visual-
izing the distribution of the API within the matrix before dissolution
testing.

Analogously, it could provide information regarding the degrada-
tion rate and spatial distribution of the degradants during stability test-
ing and help solving pharmaceutical solid state characterization prob-
lems [210]. Despite the power it has gained thanks to its coupling to
computational techniques, the technique is still maturing and has great
potential for solving pharmaceutical solid state problems.

11.4. Mass spectrometry chemical imaging

ToF-SIMS is a powerful characterization technique. When used as
a spectroscopy, its high surface sensitivity enables identification of a
specific molecule’s orientation at individual crystal faces, whereas its
surface chemical imaging capabilities may provide insights into drug
distribution within solid dosage forms, being complementary with ex-
isting technologies, and offering significant improvements in spatial
and elemental resolution.

A significant advantage of ToF-SIMS imaging is the acquisition of
full mass spectra, which enables the study of any fragment within the
mass spectrum, or the extraction of a spectrum from any region of in-
terest from an image.
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Table 12
Selected pharmaceutical applications of chemometrics-assisted NIR-Mapping.

Drug Chemometrics Algorithm Observations Ref.

Acetaminophen PLS, PCA Component distribution in blends with microcrystalline cellulose and lactose MH. [199]
Carbamazepine (Forms I, III) MCR-ALS

PARAFAC
Time-dependent changes in the distribution of carbamazepine forms on the tablet surface upon
transformation of form III to form I, by heating the samples was studied. by NIR-CI coupled to multi-
way methods (MCR or PARAFAC). PARAFAC furnished global system information being unable to
resolve the spectral components, because lack or trilinearity. MCR provided information about the
dynamic process, generating distribution maps for each acquisition time.

[200]

Diclofenac Na CLS For a dissolution release study of pellets. Revealed distribution of the formulation components in the
coating and inner layers. Complementary to SEM, which furnishes morphological and physical
information.

[201]

Fexofenadine.HCl (Forms I, II) PLS
MCR-ALS

Analysis of polymorphic distribution on a tablet surface and their quantification. MCR-ALS quantified
the forms (RMSEP < 6% w/w) efficiently and generated distribution maps. The PLS model exhibited
better recovery of the concentrations. Pre-process: SNV.

[202]

Furosemide (Forms I, II, III) PLS Results of solid form quantification in ternary powder mixtures were compared with PLS coupled to
NIR, Raman and ATR-MIR spectroscopy. NIR-CI, NIR, and Raman are suited for the purpose;
however, ATR-MIR is less appropriate for an accurate quantification because of the pressure-dependent
conversion of Form II to Form I.

[203]

Indomethacin (AM → crystalline) MCR-ALS Monitoring of the crystallization of the amorphous in dispersion of PVP, by imaging system. PARAFAC
and PARAFAC2 were unable to solve the system due to the lack of strict trilinearity.

[204]

Nimodipine (Forms I and II) PLS The drug crystallized in formulations stored at 15 °C and 25 °C, contained significant proportion of form
I. Formulations stored at 25 °C/60% RH were primarily modification II. Water content of the
formulations is implied.

[205]

Nimodipine PLS, PCR Model performed form discrimination. Corroborated predictions made by other chemometric methods on
form distribution in different binary mixtures resulting from recrystallization from co-solvent
formulations.

[206]

Piroxicam (MH → AH) PARAFAC2 Monitoring of the dehydration of the monohydrate in the surface if tablets with lactose, by imaging
system. MCR-ALS and PARAFAC were unable to solve the system due to the lack of strict trilinearity
of the pixels among the unfolded series NIR-images and due to rotational ambiguity, respectively,

[204]

Piroxicam (Forms I, II) PLS Form distribution in pharmaceutical formulations. RMSEP < 4% w/w for both entities. [207]
Piroxicam MH MCR-ALS The dynamics of the heat-mediated (23–120 °C) solid-state transformations were studied in tablets

containing PVP and lactose (MH or AH). The dehydration of piroxicam and lactose could be mapped
separately despite being transformed simultaneously (80–120 °C). Results well correlated with
thermogravimetric analysis. Lack of chemical selectivity in the pixels made PCA unreliable; the
obtained PCs describe a mixed combination of effects in the sample, hindering the pure chemical
interpretation of the images.

[208]

Tacrolimus (AM and crystalline) PLS2 Pre-process: Transformation of reflectance to absorbance, which was masked, truncated, and normalized
by mean centering and scaling to unit variance by spectrum. Libraries were built for each set of binary
samples. PLS2 fitting was employed to obtain the PLS concentration scores and images.

[209]

Fig. 9. Chemical structures of some of the compounds employed in the development of NIR-mapping studies.

Calcium carbonate is a commonly used excipient, also useful as
a biomaterial with potential in biomineralization. The solid has three
polymorphs, the surfaces of which were differentiated by

time-of-flight secondary ion mass spectroscopy (ToF-SIMS) coupled
to PCA [211]. For analysis, the intensity of each selected peak was
normalized to the total intensity of all the selected peaks to eliminate
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systematic differences between the spectra and spectra were
mean-centered to reduce data scatter. The polymorphs could be clus-
tered into three different groups by PCA scores.

Since ToF-SIMS is still under vigorous development, it is likely
that future improvements will make possible to achieve image res-
olution of a few nanometers, enabling to visualize drug distribution
within pharmaceutical nanoparticles. Likewise, the association with
PCA will further enhance the understanding of the relationship be-
tween spectral intensities and molecular orientation of macromolecu-
lar drugs.

In the MALDI-MSI technique, the image is based on the charac-
teristic m/z ratios of the detected molecules. Its main advantages are
mass accuracy, mass resolution and spatial resolution. The method is
capable of imaging small and large molecules, making it a very ver-
satile technique for pharmaceutical drugs. Chemometric methods turn
easier the management of the high volume of data generated.

Hence, MALDI–MSI was coupled to PCA, ICA, MCR–ALS and
NMF (non-negative matrix factorization) in order to extract spatial
and spectral information about perindopril tablets [212]. The statisti-
cal analysis comprised three steps. The first one was pre-processing;
this was followed by estimation of the number of statistical compo-
nents, where PCA gave the best performance and a final stage of mul-
tivariate statistical analysis. In this case, ICA was able to extract the
appropriate contributions of the components in homogeneous and het-
erogeneous datasets. On the contrary, NMF and MCR–ALS were less
accurate in obtaining the right contribution in a homogeneous sample,
but they were better at distinguishing the semi-quantitative informa-
tion in a heterogeneous MALDI dataset.

11.5. X-ray image analysis

The dissolution behaviour of drugs from capsules depends on a
number of factors, including the distribution of the powder within
the capsules. The group of Gosselin investigated how to distinguish
un-agglomerated from agglomerated powders in capsules by X-ray
image analysis. Capsules were identified a priori based on human
opinion and expertise before being used to train SIMCA models. The
chemometric models were based on the notion that X-ray images of
agglomerated and un-agglomerated capsules produce different, and
characteristic, grayscale intensity histograms. The results showed that
X-ray imaging can automatically detect and classify powder agglom-
erates within pharmaceutical capsules, thus reducing reliance on oper-
ator depending inspection while increasing the online potential of cap-
sule imaging [213].

12. Process analytical technology

PAT is one of the cornerstones of the Quality by design (QbD) par-
adigm. These are based on the concept that the thorough understand-
ing of a process minimizes the risk of delivering a poor-quality prod-
uct [214]. A process is considered well understood when it is designed
to consistently meet product critical quality attributes, when its critical
sources of variation are identified and controlled, and when it is con-
tinually monitored and updated to allow for uniform quality. On-line
analytics aims to ensure consistent product quality along the manufac-
turing process and decrease the burden of finished product testing. It
also may reduce or eliminate the need of batch reworking, saving time
and increasing manufacturing efficiency.

PAT has been emphasized as one of key elements for the full im-
plementation of the quality by design paradigm in the pharmaceuti-
cal area. Among the different spectroscopies, NIR [215] and Raman
are particularly suited for PAT applications. These methods can be im

plemented in-line, are non-destructive, have short measurement times
and proceed without the need for sample preparation. Especially when
combined with traditional and less frequently used chemometric tools
[216], they also have the ability to differentiate among polymorphs
and pseudo-polymorphs, being amenable for qualitative and quanti-
tative analysis of their mixtures. The increased emphasis on process
monitoring, will inevitably mean that quantitative analysis in the solid
state by these spectroscopies will increase.

The use of PAT strategies, including the aspects related to the as-
sociation of chemometrics methods to aid process interpretation has
been recently reviewed [217]. A few examples on the application of
chemometrics tools to PAT are mentioned below.

The crystallization of etoricoxib was optimized and controlled by
seeding with the desired polymorph at a moderate supersaturation con-
dition. To enhance the process robustness, a NIR/PCA approach was
used to obtain a discriminant method able to detect the presence of
solids produced by premature crystallization [218]. Once a spectrum
was qualified as that of a clear solution, the concentration of the drug
was calculated by a NIR/PLS model. The method was applied at a pi-
lot plant level, demonstrating its capability of detecting the presence
of solids produced by premature crystallization before seeding.

In another example, the crystallization process of indomethacin
following solvent to anti-solvent and anti-solvent to solvent schemes
was monitored using an in-line NIR/PCA method [219]. Integration of
the PCA results with off-line characterization (SEM, XRD, DSC) en-
abled the elucidation of the crystallization process under each scheme
as composed by three distinct consecutive steps. The high repro-
ducibility of the PCA plots ensured proper and real time process con-
trol.

An in-line NIR/PCA strategy was employed to monitor the phase
transformations of erythromycin DH in pellets during a miniaturized
fluid bed drying process. Transformation to erythromycin DH was ob-
served at 45 and 60 °C, at a moisture content 1.4% w/w [220].

A Raman/PLS calibration strategy was developed for the continu-
ous monitoring of solvent-mediated phase transition of citric acid, es-
timating in-line the overall solid concentration in suspension, the com-
position of the solid phase and supersaturation [221].

NIR/PCA was employed to monitor the freeze-drying process of
a multicomponent formulation [222]. On the other hand, improved
process understanding of fluid bed granulation was achieved by per-
forming multivariate (PCA and PLS) analysis of data [223] provided
by an in-line particle size analyzer [224] based on a spatial filtering
technique, that converts light obscuration signals from individual par-
ticles into size information [225].

The polymer–drug solid-state behaviour and molecular interac-
tions during hot-melt extrusion of metoprolol tartrate were evaluated
by a NIR/PLS assembly for an in-line polymer–drug solid-state char-
acterization system. The NIR spectra indicated the presence in the ex-
trudates of amorphous drug and hydrogen bonds between the drug and
polymeric matrix. The amount of the amorphous phase increased with
the extrudate temperature, and at room temperature loss of hydrogen
bond interactions between the drug and the polymer take place, with
separation of polymer and drug phases, while metoprolol recrystal-
lizes [226].

Heat and mass transfer during fluidization creates the risk for
solid-state changes, which may impact on the therapeutic and man-
ufacturing behaviour of pharmaceutically relevant materials. In-line
NIR and Raman spectroscopies were coupled to PLS regression and
used to monitor and quantify the solid-state form of theophylline, as a
model substance, in granules [227]. The conversion of the drug from
the MH to the AH form was assessed in real time at 328 and 333 °K,



UN
CO

RR
EC

TE
D

PR
OOF

22 Journal of Pharmaceutical and Biomedical Analysis xxx (2017) xxx-xxx

and absolute humidity and pressure measurements indicated that de-
hydration had occurred.

A specially designed probe tip was designed to allow for robust
in-situ spectral acquisition, and an in-line NIR/PLS approaches were
described for monitoring of pharmaceutical powder moisture in flu-
idized-bed dryers [228,229]. The method proved to be as efficient as
traditional off-line analyses; however, since the moisture content of
the powder is known in real-time, the risk of over-drying the product
is reduced.

NIR and Raman spectroscopies, were also coupled to PCR and
PLS to allow the rapid and accurate determination of polymorphic
changes in extended release formulations of theophylline. Data
pre-processing included MSC, SNV and second derivative (D”) [230].

NIR spectroscopy also proved able to differentiate anhydrous theo-
phylline from its hydrate [231]. A NIR/PLS approach enabled to mea-
sure in-line and in situ the exact composition of mixtures of the dif-
ferent forms of theophylline with water during the process of dry-
ing theophylline monohydrate in a stirred bed vacuum contact drying
[232]. This approach allowed studying the influence of operating pa-
rameters (temperature and water activity) on the kinetics of solid state
transformations. It was shown that the dehydration proceeded by for-
mation of a metastable anhydrate, yielding later the stable form [233].

The mechanism of the solvent (ACN-H2O)-mediated transforma-
tion of sulfamerazine Form I into its enantiotropic Form II was studied
by an in-line NIR-chemometrics approach. PCA was employed to de-
tect the presence of solids due to premature crystallization, whereas a
PLS calibration was applied to quantify in real time the form transfor-
mation; the end-point was determined by clear differentiation between
crystal forms based on PLS analysis [234].

Acoustic chemometrics is an emerging method for on-line process
monitoring, which is rapidly evolving into a proven PAT technology
[235]. It is based on the analysis of system vibrations, usually gener-
ated by manufacturing processes or transportation flows. It can be ap-
plied for the quantitative analysis of constituents during process mon-
itoring (composition, mixing fractions, mixing progress) and for the
physical characterization of the state of the process (moisture, density,
particle size, temperature, flow) and equipment.

Sound in the ultrasonic range (20–1000 kHz) emitted during
high-shear granulation was analyzed using multivariate techniques
[236] and correlated with variations in the physical properties of the
obtained granules and the evolution of acoustic emissions taking place
during their formation. The multivariate model was capable of pre-
dicting the particle size distribution of the granules with prediction er-
ror <2%; it also proved useful to predict their moisture content (RM-
SEP = 1.9%) [237]. On the other hand, process monitoring and the
end-point of the heated fluidized bed drying of silica gel was inves-
tigated by PLS analysis of acoustic data [238]. Further examples are
summarized in Table 13.

13. Conclusions and perspectives

The main objective of this review was to examine the application
of chemometrics methods to solve different aspects of the most rele-
vant quali- and quantitative issues of pharmaceutical interest, which
involve bulk drugs and excipients as well as their drug products, at
the solid state. Because of its importance and special significance
to the pharmaceutical industry, the topic of structural polymorphism
was specifically excluded to enable its more in-depth discussion in a
separate companion review. Without being fully comprehensive, em

Table 13
Examples on the association of vibrational spectroscopies and chemometrics to solve
pharmaceutically relevant problems, complying with the PAT initiative.

Drug Method Scope and observations Ref.

Acetaminophen NIR/PLS Monitoring of the powder density. Pre-
process: SNV, D’, D”.

[239]

Acetaminophen NIR-CI/PLS Macropixel (pixel cluster) analysis
used as a measure of image
heterogeneity within the chemical
images. Provides quantitative
information about the heterogeneity of
pharmaceutical products.

[240]

Cetrimonium
bromide

Process
variables/
DOE
PCA
PLS

DOE was used to evaluate the
interactions and effects of design
factors (water amount, wet massing
time and lubrication time), on
response variables (blend flow,
compressibility and tablet dissolution).
PCA was employed to examine both
batch/sample and variable
relationships. PLS was used to predict
dissolution profile using 70 process
variables (granulation, blending,
compression, particle size/distribution,
bulk/tapped density, hardness,
dissolution and others).

[241]

Cyclosporine A NIR/PLS Assessment of the concentration of a
phospholipid within the product
during liposome formation. Diffuse
reflectance mode and spectral imaging
techniques were employed.

[242]

Diltiazem.HCl Raman/SIMCA Monitoring of blend homogeneity and
in . A fiber optical immersion probe
was used.

[243]

Excipients NIR/PLS Monitoring of powder bulk density and
drug concentration at a pilot plant
level.

[244]

Ibuprofen NIR/PLS,
PCR, MLR

Monitoring the contents of all
components, including the API during
the mixing process. Content.
Transflectance mode was used. Pre-
process: Savitsky-Golay, D’. PLS
exhibited the best performance.

[245]

Indomethacin NIR/PCA
NIR/PLS

Diffuse reflectance and transmission
modes used during HME to monitor
drug transformation of the solid
solution (PCA) and API concentration
(PLS). Pre-process: SNV.

[246]

Itraconazole Raman/PLS Determine API concentration during an
HME process. Pre-process: Baseline
correction, Whittaker filter and MC.

[247]

Metoprolol
tartrate

NIR/PLS
NIR/PCA

Drug quantification during HME. [226]

Mosapride
citrate·2H2O

NIR/PLS Monitoring drug content, moisture,
compression force, mean particle size
and tablet hardness during tablet
production. Diffuse reflectance mode
was used. Pre-process: MSC, D’;
SNV, D’, normalization, D”.

[248]

Multi-APIs NIR/PLS Monitoring of water content range
(2–13% w/w) during the entire
process. Diffuse reflectance mode was
used. Pre-process: Savitzky-Golay
smoothing, D’, D”.

[249]

Phenylpropa-
nolamine.HCl

Process DOE Studies related to HME process of the
drug. Examination of die temperature,
shear rate, die length, drug particle
size and drug release profile. Dull-
factorial and central composite
designs were employed, together with
response surface methodology.

[250]
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Table 13 (Continued)

Drug Method Scope and observations Ref.

Spironolactone Process DOE Statistical tools and a factorial
experimental design employed to
optimize HME parameters.

[251]

Sucrose NIR/PLS Monitoring of the moisture content
during freeze-drying. A fiber optics
probe was employed. Pre-process: D’
and SNV

[252]

Tablets NIR/PLS Monitoring of content uniformity of the
product. Transmission mode was
employed.

[253]

Theophylline NIR/PLS Monitoring of water content upon
drying. Diffuse reflectance mode was
used. The API has polymorphism. Pre-
process: MC and D”.

[233]

Theophylline NIR/PCA
NIR/PLS

Monitoring of moisture content, tapped
and bulk density. A fiber optic diffuse
reflectance probe was used.

[254]

Theophylline NIR-CI/PCA
NIR-CI/PLS

Monitoring of drug flowability. Several
PCA and PLS models were developed
using a multivariate data analysis
software package. Noncontact Raman
fiber optics.

[254]

Tolmetin and
acetaminophen

Process/PLS Determination of roller compaction
process, ribbon porosity, post-milled
particle size and tablet tensile strength.
Pre-process: SNV.

[255]

Undisclosed
API

NIR/PLS API content in non-coated tablets.
Transmission and reflection modes
were used.

[256]

Undisclosed
API

DOE
NIR/PCA
Raman/PCA

Mixture design for optimization of a
pharmaceutical tablet formulation.
Spectroscopy/PCA employed for
determination of particle size
distribution.

[256]

Warfarin Raman/PLS Monitoring of content uniformity. Pre-
process: SNV.

[257]

phasis has been placed in compiling mainly the most significant ad-
vances of the last decade.

Chemometrics attempts to ascertain information by the interpreta-
tion of data originated in chemical systems. Chemometric methodolo-
gies are currently used in all branches of Chemistry, where they have
proved very useful, and sometimes even necessary to provide amaz-
ingly simple solutions to otherwise difficult analytical problems, bor-
dering impossibility. In recent times, the arsenal of multivariate meth-
ods has evolved into a powerful toolbox of alternatives for separating
the signals of individual components in complex pharmaceutical mix-
tures and for extracting useful information that resides within the data
generated by different analytical methodologies, enabling the analysis
of these systems for understanding the systems and their evolution or
just for quality control purposes.

Different multivariate exploration/classification, regression and
resolution methods have been applied to various challenging chemi-
cal problems of pharmaceutical interest, including the identification of
specific components in mixtures containing many ingredients, which
sometimes comprise unknown chemicals, such in cases of adulter-
ation.

Other problems were those associated with the quantification of
a specific chemical entity often widely interfered by the many other
constituents of its matrix, without physical separation of the analytes
from the matrix and essentially without sample pre-treatment, and
the comprehension of evolutive phenomena, including drug crystal-
lization to obtain the correct solid form and particle size, pharma-
ceutical (un)stability and drug degradation under different stimuli,

pharmaceutical dissolution and drug-drug or drug-excipient interac-
tions, among others.

Established algorithms, such as PCA, PLS and multivariate curve
resolution with alternating least squares (MCR-ALS), have become
three of the most popular chemometrics methodologies of choice to
solve the ample variety of analytical problems associated to the solid
state of pharmaceutical principles.

Many significant advances have taken place during the last two
decades. Some of them comprised significant improvements in analyt-
ical instrumentation, especially in terms of equipment costs and new
technologies, as well as better sensitivity and signal to noise ratio of
the determinations; also, the advent of faster and more powerful com-
puters, the availability of suitable software. No less important was the
popularization of chemometrics as a still young discipline and a better
understanding of the inner-works of the multivariate black box tools,
which helped to bridge the gap between chemical analysts and chemo-
metricians.

The numerous examples discussed in this review summarized the
state of the art, and made clear that chemometrics became and will
keep being a critical aid for the quali- and quantitative characterization
of static and dynamic pharmaceutical systems at the solid state. Hence,
the marriage between chemometrics and analytical chemistry, espe-
cially vibrational, X-ray and solid state nuclear magnetic resonance
spectroscopies, may serve as a scaffold to undertake more daring prob-
lems and to advance our understanding of relevant pharmaceutical ma-
terials, systems and processes. After witnessing the current impact of
these advances, the future looks very exciting; it can be envisioned
that the next decade will bring a more generalized use of chemomet-
rics methods by the academic and industrial community of analytical
chemists and they will provide novel and imaginative ways of their
application to more demanding pharmaceutical problems.
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