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1.  Introduction

Mechanical spectroscopy (MS), referred to as the internal 
friction method in the early literature, involves the simulta-
neous measurement of damping and the elastic modulus as a 
function of temperature, strain or frequency. This technique is 

very sensitive to the microstructural state of the sample and it 
has been widely applied for the characterization of materials. 
In fact, MS offers unique opportunities for studying interac-
tion processes between defects in materials [1].

Amongst all the experimental techniques used for meas-
uring MS, the piezoelectric method stands out, and is widely 
applied in physical acoustic and higher-order phase transition 
studies [1–3].
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Abstract
A novel piezoelectric device for measuring mechanical spectroscopy as a function of 
temperature and strain has been developed. The new equipment involves five oscillating 
elements, a crystal driver, two spacer bars, the sample and the crystal gauge. The spacer 
bars and the sample do not match in frequency. The device developed here results in an 
important solution for measuring mechanical spectroscopy in small samples, where the 
condition of match in frequency cannot be satisfied. Mechanical spectroscopy measurements 
were performed in free decay with the equipment working in an out of tune condition. The 
associated mathematical equations required for the measurement process have also been 
developed. In addition, the new equipment was successfully used for the measurement of 
different types of materials: metals, polymers and ferromagnetic shape memory alloys.
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In the piezoelectric method, first introduced by Quimby 
[4], the specimen is cemented to a quartz crystal, and the 
application of a potential difference across the quartz crystal 
causes the two to vibrate as a single resonant body. The 
method was improved by Balamuth [5], who matched the fun-
damental frequency of the quartz to that of the specimen. In 
addition, Cooke [6] and Michener and Handloser [7] have dis-
cussed methods of evaluating data and experimental setups, 
respectively. A three-component piezoelectric resonator was 
introduced by Marx [8]. In this method, an additional quartz 
crystal (the gauge), which is also matched in frequency, is 
attached to the free end of the first crystal. This gives a signal 
that measures the vibrational strain amplitude of the specimen. 
The ratio of the driving e.m.f. to the gauge signal resonance 
is proportional to the damping value [9]. Robinson and Edgar 
[10] carried out a detailed study of a three-element piezo
electric oscillator by considering its equivalent electrical cir-
cuit. A different arrangement of crystals and sample was used 
by Harmouche and Wolfenden [11] and Povolo et al [12], who 
cemented the gauge between the driver and the sample. They 
included also a fourth element, the so-called spacer or dummy 
bar. The furnace and the sample were placed at the bottom of 
the experimental device, while the crystals were at the top. 
This configuration is the opposite to the one used by Marx 
and Sivertsen [13] for performing piezoelectric measurements 
as a function of temperature, in which crystals were placed at 
the bottom.

Devine et al [14], Robinson et al [15] and Devine and 
Robinson [16] introduced a specimen sandwiched between 
two fused quartz rods in order to form a new one-half wave-
length component. In fact, this configuration involves a driver, 
a gauge, and a third component that consists of a sample 
sandwiched between fused quartz rods. The whole sandwich 
exhibits a multiple of a half wavelength. Thus, samples that 
do not fit into multiples of half wavelength can be measured at 
room temperature in a resonant tuned device.

In the present work, a novel piezoelectric equipment, and 
its related mathematical equations, for measuring MS in small 
samples that do not match in frequency are shown. The new 
device is a five-component oscillator, where three of the comp
onents are unmatched in frequency. The equipment allows us 

to perform measurements as a function of temperature and 
strain for low and high damping materials. In addition, the 
device does not measure during the tuning in frequency, but in 
free decaying oscillations.

It should be noted that the equipment developed here is an 
important solution for measuring small samples, often involved 
in the pilot development of new alloys, that cannot be matched 
in frequency. However, it is not restricted to this case only. In 
addition, the new device could also be an important solution 
for measuring mechanical spectroscopy in brittle samples.

MS measurements as a function of temperature and strain 
were performed using the new equipment in polycrystalline 
niobium to check that the equipment functioned well. In addi-
tion, the device was successfully used to determine the mar-
tensitic transition temperature in small and brittle samples of 
Ni–Mn–Sn ferromagnetic shape memory alloys [17–20].

2. Theoretical background

The Marx three-component piezoelectric resonator, figure 1, 
requires that the lengths of the components are frequency-
matched to their half wavelengths. In this way, both the dis-
placement and the strain waves exhibit continuous behaviour 
through the composite oscillator. The condition of zero strain 
and maximum displacement is satisfied at the end of each ele-
ment. The half wavelength of the displacement wave matches 
exactly to the length of each element and then the strain wave, 
which is obtained from the derivative of the displacement, is 
shifted in π/2 [1, 2, 8]. In addition, from the equivalent elec-
trical circuit of the Marx three-component oscillator, the well-
known equations for frequency, f, and damping, Q−1, can be 
obtained [1, 10, 21]

f m f m f m f mT
2

T 1
2

1 2
2

2 3
2

3= + +� (1)

Q m Q m Q m Q mT
1

T 1
1

1 2
1

2 3
1

3= + +− − − −� (2)

where, mT, fT and QT
1−  are the total mass (Σmi), the oscil-

lating frequency (resonant) and the damping of the whole 
oscillator, respectively. mi, fi and Qi

1−  are the mass, frequency 
and damping corresponding to the element ‘i’, respectively. 

Figure 1.  Arrangement for the Marx three-component oscillator. All elements are matched in frequency, and displacement is at a maximum 
at the interface and the strain is continuous.
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i  =  1–3, correspond to crystal gauge, crystal driver and 
sample, respectively (see figure 1). As can be easily inferred 
from equations (1) and (2) the squared frequency and damping 
of the whole oscillator are averaged values weighted by the 
total mass of their components [1, 2, 8, 10].

Let us now consider an oscillator configuration involving 
two cemented elements, 1 and 2, whose lengths (l1 and l2) are 
unmatched in half wavelength, as shown in figure 2. Both ele-
ments are excited by an external sinusoidal force, giving rise 
to oscillatory behaviour. Nevertheless, as a consequence of the 
non-match in half wavelength, the displacement is continuous 
due to the boundary condition of the cemented area between 
elements 1 and 2, but it does not exhibit single sinusoidal 
behaviour at the cemented area (the interface between ele-
ments 1 and 2). Thus, the strain wavelength is not continuous 
through the composite oscillator. In addition, each element 
of the oscillator does not have the same resonance frequency. 
Therefore, the frequency and damping of the composite oscil-
lator cannot be directly related to those of each element with 
equations (1) and (2).

In order to find the relationships in frequency and damping 
between the composite oscillator from figure  2 and each 
component element, the following analysis must be carried 
out. Firstly, let us establish the equations for the frequency and 
subsequently the corresponding ones for the damping.

Obtaining a displacement with a period of π requires that 
the number of wavelengths must be an integer number of half 
wavelengths, then for the arrangement shown in figure 2 the 
following equation can be written [14]

l l
n

/2 /2
1

1

2

2λ λ
+ =� (3)

where l1, λ1 and l2, λ2 are the length and wavelength of ele-
ments 1 and 2, respectively, and n is an integer number that, 
for this case, equals 1. Thus, by setting the frequency of the 
driver to the resonance, and knowing the speed of sound in 
one of the components, the wavelength of the other can be 
obtained.

On the other hand, the damping relationships for the oscil-
lator arrangement shown in figure 2 can be obtained from the 
definition of damping as the ratio between the energy loss by 
irreversibility and the stored energy, that is [1, 16, 22]

Q
W

W

W W

W W

Q W Q W

W W

1

2

1

2T
1 T

T

1 2

1 2

1
1

1 2
1

2

1 2π π
=

∆
=

∆ +∆
+

=
+
+

−
− −

� (4)
and then

Q W Q W Q WT
1

T 1
1

1 2
1

2= +− − −� (5)

where WT∆ , W1∆ , and W2∆  are the loss energy by irrevers-
ibility for the whole oscillator, and the elements 1 and 2, 
respectively. WT, W1, and W2 are the stored energy in the cycle 
(at the peak of the cycle) for the whole oscillator, and the ele-
ments 1 and 2, respectively [1, 9, 22, 23].

Obtaining the storage energies involves the product 
between the stress and strain, so, the following paragraphs are 
devoted to determining the spatial dependence of the oscil-
lating strain in each element. The strain at any point in each 
element, εi(x), with i  =  1, 2 takes the form

x x csin
2

i mi
i

i( )
⎛
⎝
⎜

⎞
⎠
⎟ε ε

π
λ

= −� (6)

where x is the position of the element from the origin, and εmi, 
λi and ci are the maximum oscillating strain, the wavelength 
and the phase angle, respectively, for the component element 
‘i’, with i  =  1, 2. Then, for the two-element composite oscil-
lator from figure 2, the stored energies can be written as (with 
i  =  1, 2)

W A E x c x
1

2
sin

2
di i i mi

l

l l

i
i

2 2

i

i i

1

1 ⎛
⎝
⎜

⎞
⎠
⎟∫ε

π
λ

= −
+

−

−

� (7)

where Ai and Ei are the area and the elastic modulus for the 
element ‘i’, respectively. l0   =   0, which results for the case 
where ‘i’  =  1 is used for the integration of the first interval.

For element number 1 in figure 2 c1  =  0, then we can write

W A E
l

l
1
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4
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while, for element number 2 in figure 2, we have
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� (9)
where c2 can be obtained from the boundary condition at the 
point x l l1 2= + . In fact, considering that c2 is the initial out of 
phase in the element #2, it can be easily obtained that

Figure 2.  Arrangement for the two-component oscillator (1 and 2) with 
their lengths non-matched in frequency. The displacement (ξ) exhibits a 
peak shape at the interface and the strain (ε) is not continuous.
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c l l
2

.2
2

1 2( )π
λ

π= + −� (10)

Finally, in order to calculate equations (8) and (9), the values 
of strains εm1 and εm2 should be obtained. From the boundary 
condition of equilibrium of forces at the interface between 

elements number 1 and number 2, a relation between the max-
imum strains of each element can be derived, such that

E A l

E A l

sin

sin
m m1 2

2 2
2

2

1 1
2

1

2

1

( )
( )ε ε=

π
λ

π
λ

� (11)

and from there, one of them can be easily obtained as a func-
tion of the other one.

3.  Mathematical expressions governing the novel 
five-element composite oscillator with three 
unmatched components

Let us consider in this section a composite oscillator involving 
a thin-flat driver, two spacer bars, a sample and crystal gauge 
assembled as shown in figure 3. The spacer bars and sample 
are non-matched in half wavelength. The driver is a thin-flat 
piezoelectric quartz crystal. By contrast, the gauge is a typical 
quartz crystal cut at half wavelength. The length and mass of 
the driver are not significant in comparison to the other ele-
ments so they can be neglected. Therefore, the driver will be 
assumed to be an elastic membrane that generates a plane 
wave front. This assumption allows us to consider the dis-
placement and strain, maximum and nil, respectively, at the 
interface.

As previously noted, the displacement, at the interface 
between elements in a composite oscillator involving fre-
quency unmatched components, does not exhibit single sinu-
soidal behaviour, see figure  2. Thus, the strain wavelength 
will not be continuous throughout the composite oscillator. In 
addition, each element of the oscillator does not have the same 
resonance frequency. Nevertheless, the resonance frequency 
is given by equation (12). From a straightforward analysis, the 
modified form of equation (3) for the five-element composite 
oscillator can be written as

l l l l
n

/2 /2 /2 /2
sb1

sb1

S

s

sb2

sb2

CG

CGλ λ λ λ
+ + + =� (12)

where the sub-indexes sbi (with i  =  1, 2) are related to the 
spacer bars, S corresponds to the sample, CG is for the crystal 
gauge and n is an integer, which for this case equals 7 (see 

Figure 3.  A novel five-component oscillator. The driver is a thin-flat power quartz crystal. The two spacer bars and the sample do not match 
in frequency. The crystal gauge is cut to match in frequency. The displacement wave, even when continuous, exhibits peak shape behaviour 
at the interface and the strain is not continuous.

Figure 4.  A schematic representation of the new piezoelectric 
device for measuring mechanical spectroscopy as a function of 
temperature and strain. See labels in the text.
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figure 3). Spacer bars 1 and 2 will be labelled, hereafter, to 
denote left and right in figure 3.

Thus, by assuming that the speed of sound in the spacer 
bars (for instance quartz or Pyrex) and the crystal gauge are 
known, the wavelength corresponding to the sample can be 
easily determined.

Regarding the calculus of the stored energy in the spacer 
bars and in the sample (see figure 3), we can obtain firstly the 
phase-constants, ci, and subsequently εmi.

However, for clarity, for the five-component composite 
oscillator, the phase constants will be obtained from the dis-
placements expressions. Strain expressions can be deduced 
easily from the derivative of the corresponding displacement. 
Thus, by considering the origin of the coordinates system at 
the left end of the composite oscillator, the expressions for the 
displacement in each spacer bar and in the sample result in

x xcos
2

sb1 sb1Max
sb1

( )
⎛
⎝
⎜

⎞
⎠
⎟ξ ξ

π
λ

=� (13)

x x ccos
2

S SMax
s

2( )
⎛
⎝
⎜

⎞
⎠
⎟ξ ξ

π
λ

= −� (14)

x x ccos
2

.sb2 sb2Max
sb1

3( )
⎛
⎝
⎜

⎞
⎠
⎟ξ ξ

π
λ

= −� (15)

To obtain c3, we consider that the displacement at the 
interface between spacer bar 2 and the crystal gauge is at a 
maximum. Then, from equation (15) evaluated at the interface 
with the crystal gauge, we can write

l l l l l l ccos
2

sb2 sb1 S sb2 sb2Max
sb

sb1 S sb2 3

sb2Max

( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟ξ ξ

π
λ

ξ

+ + = + + −

=
�

(16)

and c3 is given by

c l l l
2

.3
sb

sb1 S sb2( )π
λ

= + +� (17)

To obtain c2, the boundary conditions for the displacement 
and the force at the interface between spacer bar 1 and the 
sample are considered. Indeed, both the displacement and the 
force, perpendicular to the cross section, must be the same 
in each element (see figure 3). Then, for the displacement it 
holds that

l lsb1 sb1 S sb1( ) ( )ξ ξ=� (18)

thus

l l ccos
2

cos
2

sb1Max
sb

sb1 SMax
S

sb1 2
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⎜

⎞
⎠
⎟
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⎠
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π
λ

ξ
π
λ

= −� (19)

while for the force, 

F Fsb1 S=� (20)

and

E A l E A lsb sb sb1 sb1 S S S sb1( ) ( )ε ε=� (21)
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By working mathematically we obtain

E A tg l E A tg l c
2 2 2 2

sb sb
sb sb

sb1 S S
S S

sb1 2
⎛
⎝
⎜

⎞
⎠
⎟
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⎜
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π
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π
λ
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from which c2 takes the form,

c l tg
E A

E A
tg l

2 2
.2

S
sb1

1 sb sb S

S S sb sb
sb1

⎛

⎝
⎜

⎛
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⎜

⎞
⎠
⎟
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λ
λ

π
λ

= − −� (24)

Let us now obtain the εmi terms. As noted above, the displace-
ment at the interface of the two adjacent elements of the com-
posite oscillator must be the same. Then, we can write for 
spacer bar 1 and the sample

l l .sb1 sb1 S sb1( ) ( )ξ ξ=� (25)

By taking the derivative, we can write

l l c
2

cos
2

2
cos

2
.sb1Max

sb

sb
sb1 SMax

S

S
sb1 2

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ε

λ
π

π
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ε
λ
π

π
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A rearrangement of equation (26) leads to

l c

l

cos

cos
.sb1Max

SMax

S

sb

2
sb1 2

2
sb1

S

sb

( )
( )

ε
ε

λ
λ

=
−π

λ

π
λ

� (27)

Similarly, for the interface between spacer bar 2 and the 
sample, we can obtain

l l c

l l c

cos

cos
.sb2Max

SMax

S

sb

2
sb1 S 2

2
sb1 S 3

S

sb

( )
( )

( )

( )

ε
ε

λ
λ

=
+ −

+ −

π
λ

π
λ

� (28)

Finally, the maximum strain in spacer bar 2 can be obtained 
from the continuity condition of the strains between the crystal 
gauge (CG) and the bar, that is

.sb2Max CGMax
CG

sb2
ε ε

λ
λ

=� (29)

The maximum strain in the crystal gauge εCG Max is given by 
the well-known expression [8]

V
f l m f RF

V
1 1

2
CGMax e

c c c c c
gε β= =� (30)

where Ve is the excitation voltage, fc is the resonant frequency, 
Fc is the damping of the oscillator and lc, mc and R are the 
length and mass of the crystal and the resistance of the equiv-
alent circuit, respectively. However, the expression for the 
maximum strain reported in [10] can also be used, that is

l
C V

28.1
mCGMax

CG CG
gε

λ
=� (31)
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where Cm is an additional capacitance placed across the crystal 
gauge. By using equation (30) or (31) in the calculations, clear 
differences could not be found. Therefore, as equation (30) is 
widely known, it will be used in the present work.

By knowing CGMaxε , the strain values of sb2Maxε , SMaxε  and 
sb1Maxε  can be obtained through equations (27)–(29). In addi-

tion, if the cross section, the modulus and the length of each 
component of the oscillator are known, the storage energies 
for the spacer bars (W W,sb1 sb2), the sample (WS) and the crystal 
gauge (WCG) can be calculated from analogous integrals to 
equation (7).

Consequently, all the expressions needed to obtain the 
damping response of the sample from the general equation (5) 
have been developed. By working analogously to equation (5) 
we can write

Q W Q W Q W Q W Q WT
1

T sb1
1

sb1 S
1

S sb2
1

sb2 CG
1

CG= + + +− − − − −� (32)

where WT is the storage energy of the whole oscillator, and 
QS

1− , QCG
1− , Qsb1

1− , Qsb2
1−  and QT

1−  are the loss factors of the sample, 
the crystal gauge, the spacer bars (sb1 and sb2) and the total 
for the whole oscillator, respectively. The method for obtaining 
Q−1 for each component of the oscillator is described in sec-
tion  5.1. Therefore, if the damping of each component is 
known, the damping of the sample from equation (32) can be 
calculated.

4.  Experimental

4.1.  Five-element composite oscillator device

Figure 4 shows the schematic representation of the exper
imental setup of the novel device. The oscillator hangs from 
the driver, d, which is supported (not clamped) by a rubber 
cantilever fixed to a beam, A, which is housed in a tower, B. 
The tower is fixed to a fused lead base, C, which is mechani-
cally isolated by means of an air camera, D. The electrical fur-
nace, E, and thermocouple of K-type, F, are fixed to the tower 
B, by means of variable screws, G, running inside guides, H. 

The surface, top and bottom of the furnace are thermally iso-
lated by means of a ceramic blanket, EE, of 20 mm thickness. 
The thermocouple is positioned 1 mm from the sample and it 
has, at the hot juncture, a cup of copper, J, in order to mea-
sure the real temperature of the sample without distortion by 
the vacuum as was suggested in previous works [8, 11, 12]. 
The influence of the heat flow from the furnace to the crystal 
driver and gauge was carefully checked in order to obtain 
non-significant effects on their frequencies and voltages. The 
maximum admissible temperature of operation of the equip-
ment is 800 K.

For low temperature measurements the electrical furnace is 
replaced by a copper rectangular parallelepiped cooler device, 
CD, which has cemented to it four Peltier plates, CDP. This 
cooler device allows us to perform measurements from 230 K 
up to room temperature (RT). Heating and cooling runs are 
controlled by means of a PID (Novus N480D) temperature 
controller.

The chamber, K, allows the equipment to work under a 
protective atmosphere.

An ultrasonic wave is generated by a thin-flat power com-
mercial piezoelectric quartz driver, produced by Apple Vista 
Technology Ltd (d in figure 4). It is excited by a synthesized 
waveform generator, Rigol DG 1022, plus a power amplifier 
of plane response with low harmonic distortion. The diam-
eter, thickness and weight of the driver are 25 mm, 1 mm and 
4.55 g, respectively.

The frequency response of the driver is shown in figure 5(a). 
The almost flat zone around 50 kHz is used to drive the system, 
so the driver is exciting the oscillator working outside of its 
resonance frequency. The frequency response of the driver 
was measured according to the circuit shown in the inset in 
figure 5(a).

The crystal gauge (CG in figure  4) is made of a quartz 
piezoelectric crystal of high quality factor with a parallel-
epiped shape of 5.00  ×  5.00  ×  56.10 mm and a weight of 
4.10 g, with gold deposited faces and with a characteristic 
frequency of around 50 kHz. This crystal was provided by 

Figure 5.  (a) Response in frequency for the flat power quartz driver. Inset: circuit used for the driver response measurement. (b). Response 
in frequency for the crystal gauge. Inset: left, free decay of the gauge; right, circuit used for the measurement.
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Bliley Electric Company. Once the mechanical excitation is 
switched off, the free decaying of oscillations from the gauge 
can be recorded. The behaviour of the frequency of the gauge 
is shown in figure 5(b). A typical decaying oscillation for the 
gauge is included in the inset.

In order to assess whether mechanical excitation can be 
produced by this kind of piezoelectric driver, working out of 
the resonance condition, the driver was cemented to a Bliley’s 
quartz crystal. A clear mechanical oscillation was corrobo-
rated by the gauge in the frequency range 40–60 kHz.

The crystal gauge signal was amplified by a 150 kHz ampli-
fier with variable output, see the appendix. The decay was 
recorded by a high-speed digital storage oscilloscope, Rigol 
DS 1052 E. For data analysis the oscilloscope was connected 
to a personal computer.

4.2.  Samples, cement and spacer bars

Samples used in this work were pure niobium and ferromagn
etic shape memory alloys (FSMA).

The high-purity polycrystalline niobium samples were two 
rods of 2 mm diameter and lengths 48.84 mm and 5.1 mm, 
called Nb1 and Nb2 samples, respectively. Niobium samples 
were stress-relieved and their oxygen content was around 550 
atppm [24–26].

FSMA alloys of composition Ni50Mn37Sn13, and 
Ni50Mn37Sn11Ti2, called hereafter Ti  =  0 and Ti  =  2 sam-
ples, respectively, were in parallelepiped shape. The dimen-
sions for Ti  =  0 and Ti  =  2 were 6.82  ×  8.12  ×  5.34 and 
4.82  ×  5.74  ×  1.5 mm, respectively. It should be noted that 
the size of the samples is far from a match in frequency.

Polycrystalline FSMA ingots were prepared from high 
purity elements by arc melting under protective Ar atmos
phere. The ingots were homogenized in vacuum quartz 
ampoules at 1273 K for 2 h. After homogenization, samples 
were annealed at 1173 K in ampoules under Ar for 30 min, 
followed by quenching in iced water.

Samples were cemented to the oscillator components by 
using a mixture of sodium silicate and high alumina cement in 
a proportion of 25/75 in volume. After the cementing process, 
the entire composite oscillator was placed into the vacuum 
chamber in order to dry the cemented parts. The system was 
evacuated in a vacuum better than 90 mTorr for 72 h at RT. 
Otherwise, some contribution of the curing process can be 
recorded during the tests, which masks the true dynamical 
response of the material under study.

The spacer bars were cylinders of fused quartz of 6 mm 
diameter and 157 mm and 132 mm length for sb1 and sb2, 
respectively. Pyrex bars were also used.

During the cooling and heating runs, the driver frequency 
at each temperature was changed until the system vibrated 
at maximum amplitude (highest voltage at crystal gauge). 
Subsequently, after the system was at maximum strain, the 
voltage of the driver was changed at will in order to obtain 
a voltage in the gauge that corresponded to the oscillating 
strain chosen for the sample during the measurement. As 
was shown in section 3, this was done using coupling equa-
tions  (28)–(30). Then, at each temperature, when the driver 

was switched-off, the free decaying oscillation as a function 
of time was recorded by means of the digital oscilloscope.

The frequency during the free decay of oscillations of the 
composite oscillator, is calculated from the recorded decaying 
oscillation. In addition, the frequency f and wavelength λ for 
each one of the components satisfy the well-known relationship, 
fλ  =  v, v being the speed of sound in each component. Thus, as 
was shown in section 3.2, by knowing the speed of sound in the 
spacer bars and crystal gauge, the change in the wavelength for 
the sample can be obtained from equation (12). Subsequently, 
the elastic modulus, E, can be calculated for a sample from the 
usual equation involving the density, ρ: ρv2  =  E.

For the damping measurement the usual expression for cal-
culating the damping from the slope of the straight line that 
results from the least squares fitting of the natural logarithm of 
the decaying areas versus time is used [1, 23]

A A Q mln ( )   ln ( ) m 0 T
1 π= − −� (33)

where Am is the area of the mth decaying oscillation, A0 is the 
initial area of the starting decay oscillation and m is the period 
number. For damping measurements the same initial and end 
values of the decay areas were used for eliminating some pos-
sible distortion due to the appearance of amplitude dependent 
damping effects [23]. Once QT

1−  was measured, by coupling 
equations (13)–(32), the damping of the sample could be calcu-
lated. In addition, as a consequence of measuring in free decay 
mode, the amplitude dependent damping (ADD) behaviour 
promoted by the appearance of non-linear effects (the doubling 
of stress does not lead to the doubling of strain) can be easily 
measured. The damping as a function of the maximum strain on 
the sample, ε0, was calculated from equation (34) [23, 27–29]

(ε
π

= −−Q
A

m
)

1 d(ln( ) )

d
.m

T
1

0� (34)

The decay of the oscillations was carried out at constant 
temperature (T  ±  0.5 K). Polynomials were fitted to the 
curve of the decaying areas of the longitudinal vibrations as 
a function of the period number by means of chi-square fit-
ting. Subsequently equation  (34) was applied. Polynomials 
of degree higher than 1 indicate that QT

1−  is a function of ε0, 
leading to the appearance of ADD effects, as can be inferred 
easily. This procedure allows us to obtain the damping as a 
function of the maximum strain (ε0) from free decaying oscil-
lations [23, 27–29]. By coupling equations  (13)–(32), the 
damping of the sample can be obtained at each maximum 
strain for the whole temperature range of the test. In addition, 
the strength of ADD effects can be measured through the S 
parameter, such that [23, 27–29]

S
Q

.S
1

0ε
=
∆
∆

−

� (35)

5.  Experimental results

5.1.  Reference relaxation process

In order to check both the behaviour of the equipment and 
the mathematical work developed above, measurements using 
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the new equipment were performed using a widely explored 
relaxation process. Figure  6 shows the Snoek relaxation of 
oxygen in niobium measured in the kilohertz range using the 
new device, with fused quartz spacer bars, during heating at 
1 K min−1, for the Nb1 and Nb2 samples. Tests were per-
formed in a pure argon protective atmosphere at normal pres
sure. The Snoek relaxation of oxygen in niobium is related to 
the stress-induced ordering phenomenon of interstitial atoms 
in the octahedral sites in the bcc lattice [1, 24–26].

The directly measured data, QT
1− , and the resulting spec-

trum after mathematical treatment of the Nb1 sample, QNb1
1− , 

are plotted using full circles and full triangles, respectively. 
In addition, the resulting spectrum for the Nb2 sample after 
mathematical treatment, QNb2

1− , is also plotted using inverted 
full triangles. The inset in figure 6 shows the directly meas-
ured data, QT

1− , for both Nb1 and Nb2 samples. Plotted values 
for damping after mathematical treatment were obtained by 
applying equation (32).

Also shown in figure  6 is the behaviour of the Young 
modulus for the Nb1 sample. The error in the Young modulus 
was estimated to be around 4%, where the main contribution 
comes from uncertainties both in the length and the weight of 
the components of the oscillator.

The damping, QT
1− , and storage energy, WT, for the whole 

oscillator, and the values of damping, storage energy and 
elastic modulus for the spacer bars, crystal gauge and niobium 
samples, evaluated at RT and 650 K (peak temperature, see 
figure  6) are shown in table  1. The values of damping and 
elastic modulus for the crystal gauge were measured using the 
configuration shown in the inset in figure 5(b). In addition, the 
damping and elastic modulus for the spacer bars were meas-
ured using the configuration of a matched three-component 
oscillator, i.e. driver, spacer bar and crystal gauge.

As can be seen from figure  6, the peak heights are in  
reasonable agreement with the solute content of the samples 

(550 atppm) [24, 30, 31]. In addition, the peak temperature and  
the frequency at the peak temperature, for the spectra QNb1

1−  
and QNb2

1− , are in good agreement with an Arrhenius plot for 
the Snoek relaxation of oxygen in niobium (activation energy, 
H  =  1.1 eV, pre-exponential factor, τ0  =  6  ×  10−15 s [24–26]).

The comparison of the spectra for the Nb1 and Nb2 samples 
allows us to determine qualitatively the error bandwidth of 
the experimental procedure both as a function of the length of 
the sample and the damping value. For small damping values, 
close to 5  ×  10−4, the error bandwidth is around 40%, see 
figure 6. By contrast, for damping values close to 2  ×  10−3, 
the error is decreased to around 15%. The main contribution 
to the error bandwidth is related to uncertainties in the phase 
angle (ci) and, consequently, in the strains in each component 
of the oscillator (see equations (27) and (28)). Nevertheless, it 
should be stressed that the scatter of the calculated data during 
heating and cooling runs is around 2%.

In addition, as can be seen from figure  6, the shape of 
the spectra QNb1

1−  and QNb2
1−  do not differ appreciably from the 

directly measured ones. In addition, the peak temperature is 
the same for the directly measured curve and the spectrum for 
the Nb sample, QNb1

1− .
By contrast, if Pyrex spacer bars are used, the real and raw 

spectra can differ appreciably above 373 K, due to the Pyrex 
bars making an appreciable contribution to the total damping 
of the equipment [13]. The directly measured damping values 
with Pyrex bars are around 1  ×  10−3.

On the other hand, the measured damping values in the 
whole temperature range resulted in amplitude independence, 
i.e. the value of the strength of the amplitude dependent effect, 
S, was nil within the whole temperature range, in agreement 
with the literature on Nb-O Snoek relaxation [1, 2, 24–27].

5.2.  Determination of the martensitic transition in FSMA 
samples

Figure 7 shows the temperature dependence of the damping 
and frequency for a ferromagnetic shape memory alloy 
(NiMnSn), Ti  =  0, around the martensitic transformation 
(MT). The damping peak and the square-frequency (propor-
tional to elastic modulus) drop show that the MT is around 
340 K. Another relaxation process seems to appear at around 
365 K just above the MT. It is appropriate to mention here that 
the frequency shows only a trend, and not the real magnitude 
of frequency change related to the physical effect. In fact, in 
pilot alloys the speed of sound cannot be easily found as a 
function of temperature, so an estimation of the elastic mod-
ulus cannot be made. However, when the modulus changes as 
a consequence of the temperature increase, the speed of sound 
in the sample will change. Therefore, it is necessary to modify 
the frequency of excitation in order to keep the system oscil-
lating to maximum amplitude. The frequency measurement 
of the composite oscillator, during heating or cooling, then 
allows us to describe the changes in the modulus related to the 
relaxation processes under study.

A similar sample but with a much smaller grain size has 
been obtained by adding 2 at.% Ti to the NiMnSn alloy 

Figure 6.  Snoek Nb–O peak measured during heating for the Nb1 
and Nb2 samples. The modulus relaxation for the Nb1 sample is also 
shown. −QNb1

1 : damping for the Nb1 sample after mathematical treatment. 
−QNb2

1 : damping for the Nb2 sample after mathematical treatment. Inset: 
damping directly measured for the Nb1 and Nb2 samples.
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(Ti  =  2 sample). Figure 8 shows the corresponding behaviour 
of damping and frequency. Again, the change in the damping 
peak and the square-frequency reveals that the martensitic 
transition is now around 345 K. In addition, different relaxa-
tion processes around the MT were also detected as a hump 

in the low temperature tail of the martensitic peak or by the 
two-stage modulus change. In both cases, the temperature of 
the martensitic transition agrees with differential scanning 
calorimetry (DSC) measurements.

It is convenient to mention here that the error in damping 
values measured for FSMA samples (10−2), even when their 
lengths are similar to Nb2, is smaller than 15%. Indeed, the 
storage energy in weighted equation (32) for FSMA samples, 
is one order of magnitude larger than for Nb2 sample, due to 
their larger sections.

6.  Conclusions

A novel piezoelectric device for measuring mechanical 
spectroscopy as a function of temperature and strain in small 
samples with lengths that do no match in half wavelength has 
been demonstrated. It is composed of a thin-flat plate quartz 
crystal driver, two spacer bars, the sample and the quartz 
crystal gauge. The driver is working outside of its resonance 
frequency, the spacer bars and sample do not match in fre-
quency, and the crystal gauge is cut in half wavelength. The 
equipment operates outside of the tuning condition and in free 
decaying oscillations.

The mathematical equations related to the new equipment 
and the procedure for measuring mechanical spectroscopy 
have been given.

Measurements were performed successfully in polycrys-
talline niobium, to check the good functioning of the equip-
ment, and also in small and brittle samples of Ni–Mn–Sn 
ferromagnetic shape memory alloys in order to determine 
the martensitic transition temperature. Indeed, it should be 
emphasized that this equipment is an important solution for 
measuring small and brittle samples that cannot be matched 
in frequency.
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Figure 7.  Damping and resonant frequency as a function of 
temperature for a ferromagnetic shape memory alloy (Ni–Mn–Sn), 
Ti  =  0, around the martensitic transformation (MT).

Figure 8.  Damping and resonant frequency as a function of 
temperature for a ferromagnetic shape memory alloy (Ni–Mn–Sn), 
Ti  =  2, around the martensitic transformation (MT). The dashed 
line is a guide for the eye.

Table 1.  Values of relevant parameters involved in the measurement procedure of the new device for the case of niobium samples at the 
Snoek peak temperature (Tpeak) and RT.

Nb  
sample Temperature −QT

1  ×  105WT (μJ)

−Qsb
1 

(×105)
Wsb1 
(μJ)

Wsb2 
(μJ)

Esb 
(GPa)

−QCG
1  

(×105)
WCG 
(μJ) ECG (GPa)

−QNb
1 

(×104)
WNb 
(μJ)

ENb 
(GPa)

Nb1 RT 8.12 38.84 7.7 17.23 17.89 71.7 5.5 2.01 84.0 1.98 1.71 103.3
Tpeak 18.70 38.84 7.8 17.23 17.89 73.4 5.5 2.01 84.0 (RT) 25.8 1.71 102.6

Nb2 RT 7.84 49.01 7.7 22.48 24.09 71.7 5.5 1.99 84.0 3.25 0.45 103.6
Tpeak 9.66 49.01 7.8 22.48 24.09 73.4 5.5 1.99 84.0 (RT) 22.1 0.45 102.7

Note: Q−1: damping; W: storage energy; E: the Young modulus. The sub-indexes sb1, sb2, CG, Nb1 and Nb2 correspond to spacer bar 1, spacer bar 2, crystal 
gauge, niobium sample 1 and niobium sample 2, respectively.
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Appendix  

The amplifier is composed of a buffer, a second stage involving 
three operational amplifiers  ×2, ×5 and  ×10, a third stage 
with an output  ×10 and a final stage being an active low pass 
filter with cut frequency at 50 Hz. Figure A1 shows the elec-
trical circuit for the high frequency amplifier.
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