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• Nonconservative dynamics included in DLG model leads to Ising-like phase transitions.
• Short-time dynamics allows us to determine the order of the phase transitions.
• A crossover between a DLG and Ising-like behaviors is observed.
• Damage always spreads, and reaches a saturation value.
• Damage spreading is sensitive to phase transitions in the present model.
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a b s t r a c t

Phase transitions and damage spreading for a lattice gas model with mixed driven lattice
gas (DLG)–Glauber dynamics are studied by means of Monte Carlo simulations. In order to
control the number of sites updated according to the nonconservative Glauber dynamics,
a parameter pϵ[0, 1] is defined. In this way, for p = 0 the system corresponds to the DLG
model with biased Kawasaki conservative dynamics, while for p = 1 it corresponds to
the Ising model with Glauber dynamics. The results obtained show that the introduction
of nonconservative dynamics dramatically affects the behavior of the DLG model, leading
to the existence of Ising-like phase transitions from fully occupied to disordered states.
The short-time dynamics results suggest that this transition is second order for values of
p = 0.1 and p > 0.6 and first order for 0.1 < p ≤ 0.6. On the other hand, damage always
spreads within the investigated temperature range and reaches a saturation value Dsat that
depends on the system size, the temperature, and p. The value ofDsat in the thermodynamic
limit is estimatedbyperforming a finite-size analysis. For p < 0.6 the results showa change
in the behavior of Dsat with temperature, similar to those reported for the pure (p = 0)
DLG model. However, for p ≥ 0.6 the data remind us of the Ising (p = 1) curves. In each
case, a damage temperature TD(p) can be defined as the value where either Dsat reaches
a maximum or it becomes nonzero. This temperature is, within error bars, similar to the
reported values of the temperatures that characterize the mentioned phase transitions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In nature, most phenomena take place under far-from-equilibrium conditions where an open system is coupled to
external reservoirs and fields, in such away that they can exchange energy, particles or other quantitieswith it, by generating
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net currents of energy, particles, etc. through the system that govern its dynamic evolution. In contrast with equilibrium
systems where a complete theoretical description is well-established [1,2], nonequilibrium systems do not have an overall
theoretical background yet [3,4]. However, many attempts have been made, such as the formulation and study of models
that are capable of capturing the essential nonequilibrium behavior. These models can be classified into two categories:
(i) dynamic extensions of static universality classes and (ii) intrinsically out-of-equilibrium models defined without a
Hermitian Hamiltonian with transition rates that violate the principle of detailed balance. The latter category includes
modelswith competing dynamics or external currents. Paradigmatic examples of both categories are thewell-knownkinetic
Ising and the driven lattice gas (DLG) models [5], respectively.

The DLG model consists of a set of particles located in a two-dimensional square lattice in contact with a thermal
reservoir. Particles can exchange places with nearest-neighbor empty sites according to conserved spin exchange, i.e., the
Kawasaki dynamics. Also, an external drive E is applied, causing the system to exhibit nonequilibrium stationary states
(NESS) in the limit of large evolution times. For low enough temperatures, the DLG model develops an ordered phase
characterized by stripes of high particle density running along the driving direction. However, by increasing the temperature
a nonequilibrium phase transition into a disordered (gas-like) phase takes place (see Ref. [6] and references therein). For all
values of the density first-order phase transition are observed, except in the case of half-filled lattices where it is of second-
order. The critical behavior of the DLG model has been studied by using many different techniques, such as field theoretical
calculations [3], Monte Carlo simulations [3,7], finite-size scaling methods [8,9], and short-time dynamic scaling [10–12],
but the complete understanding of this model is still open and has originated a long-standing controversy (for more details
see Ref. [6] and references therein).

In particular, the short-time dynamics (STD) used in this work allows us to characterize the phase transitions present
in the system. This method is based on the fact that the spatial correlation length is smaller than the system lattice size at
the early stages of its evolution [12,13]. In order to implement it, the early-time evolutions of one or several observables,
e.g., the order parameter, its cumulants, etc., are monitored when the system is started from two specifically selected initial
configurations. Then, two possible scenarios are present. On the one hand, if the evolution of the observables exhibits power-
law behaviors at two different values of the system control parameter X , let us say X1 for the first initial condition and X2
for the second one, with X1 ≠ X2, a first-order phase transition takes place in the system. These X1 and X2 values have been
identified as metastability limits for several equilibrium and nonequilibrium models [12,14], and are called pseudocritical
points because the order parameter fluctuations diverge. For the STD method [12,14,15], the ‘‘strength’’ of the transition is
defined as the difference1X = |X2 −X1|. On the other hand, if the observables show power-law behaviors at X∗

= X1 = X2,
the phase transition is of second-order [12,13], and X∗ is identified as the critical point of the transition. Furthermore,
the STD exponents of the power laws are linear combinations of the equilibrium or steady-state critical exponents of
the transition [12,13], so they can be combined to estimate the latter. In both cases, second- and first-order transitions,
deviations from the power-law behavior can be observed when the system is not tuned at the critical or pseudocritical
points, respectively. These deviations are important, since they can be compared in order to find the time evolution that
shows the best power-law behavior of the observables (for more details about this technique, see the review [12] and
references therein).

From the theoretical point of view, it is interesting and challenging to study the effects of a very small perturbation on the
dynamics of a nonequilibrium system. One way to do this is to apply the concept of damage spreading (DS). Basically, the DS
method consists in a point-to-point comparison between two initially identical copies of a given system, each one running
with the same dynamic rules and the same thermal noise, after the insertion of a small perturbation (called damage) in one
of them. Originally, this technique was introduced to study biological systems [16], but DS has also been extensively applied
to understand the dynamic properties of several statistical models, such as the Ising, Potts, XY and Heisenberg magnetic
models; two-dimensional trivalent cellular structures; biological evolution; opinion dynamics; the ZGBmodel; small world
and scale-free networks, and recently to the DLGmodel (see e.g., Ref. [17] and references therein, and formore recent results
see Refs. [12,18–27]).

In this work, phase transitions and damage spreading are investigated in a nonequilibrium model based on the DLG
model, where its evolution is governed by a mixture of nonconservative (Glauber) and conservative DLG (biased Kawasaki)
dynamics. In this sense, a parameter p is introduced in order to determine the fixed fraction of sites that do not take part in
the DLG dynamics, but their states are updated by following Glauber dynamics at each time step. Wang et al. [28] studied
the same mixed model for the cases p = 0.1 and p = 0.5 by means of Monte Carlo simulations, aiming to determine
its critical behavior. They analyzed the magnetization, susceptibility, and correlation functions of the system. Unlike this
previous work, in the present case the effects on the particle density produced by the introduction of the Glauber dynamics
are considered, i.e., the shift of the particle density from ρ = 0.5 where the second-order phase transition takes place
[29,15]. This fact allowed us to obtain a rich phase diagram as a function of p for the mixed DLG model, where both first-
and second-order phase transitions, and a new Ising-like ordered phase are present.

Finally, it is important to remark that further studies of DS have been performed on mixed dynamic models [30–32], but
all of them were based on the Ising model. To the best of our knowledge, this is the first time that DS has been studied in a
mixed-dynamic nonequilibrium model based on the DLG model.

The manuscript is organized as follows: in 2 we introduce the main ideas of the mixed DLG-Ising model, 3 describes the
damage spreading technique, 4 gives simulation details and a summary of the STD technique, the results are presented in
5. Finally, the conclusions are reported in 6.
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2. Mixed DLG model

In the past decades, the study of mixed conservative–nonconservative dynamics has been carried on different systems,
e.g., the Ising [30,33,34] and DLG models [28,35], also including damage spreading [30–32].

As was mentioned in the Introduction, a mixed DLG-Ising model was studied, where a fraction p of randomly selected
sites are updated by nonconservative Glauber dynamics at each time step, while the remaining fraction (1 − p) is updated
with the conservative DLG dynamics. It is important to remark that the number of sites updated by nonconservative rules
(i.e., p ·N , where N is the size of the lattice) is fixed, but the sites are randomly selected at each time step, so it is not always
the same set of sites that are updated. With this definition, the case p = 0 corresponds to the DLG model, while for p = 1
becomes the kinetic Ising model with Glauber dynamics in the absence of an external magnetic field. For this reason, in
the present section both archetypical models are briefly described, and the main characteristics of the mixed system are
included at the end.

The Ising model [36] is a very well-known and studied model that describes the main characteristics of a system of
interacting spins with high anisotropy. The Hamiltonian of this system can be written as

H = −J


⟨ij;i′j′⟩

ηijηi′j′ − H

⟨ij⟩

ηij, (1)

where ηij is the spin variable that can assume two different values ηij = ±1; the indexes 1 ≤ i, j ≤ N are used to label
the sites, N = Lx × Ly being the size of the sample. Also, J > 0 is the ferromagnetic coupling constant, H is the external
magnetic field and ⟨·⟩ means that the summation is made over nearest-neighbor sites only. In the absence of an exter-
nal magnetic field (H = 0) and at low temperature, the system is, for more than one dimension, in the ferromagnetic
phase and on average, most spins are pointing in the same direction. In contrast, at high temperature the systemmaximizes
the entropy, thermal fluctuations break the order, and the system is in the paramagnetic phase. In this way, a second-
order ferromagnetic–paramagnetic phase transition takes place, with the magnetization M (defined as M =

1
N

N
ij=1 ηij)

as the order parameter, and it occurs at a well-defined critical temperature. In the two-dimensional case, one has exactly
kBT

Ising
c /J = 2/ln(1 +

√
(2)) = 2.269 . . . , where kB is the Boltzmann constant. In the kinetic Ising model with Glauber

dynamics, a randomly selected spin is flipped with probabilityWG given by

WG
=

e−1H/kBT

1 + e−1H/kBT
, (2)

where T is given in units of J/kB and 1H is the energy difference between the would-be new and the initial configurations.
On the other hand, the DLG model [5] is defined as a lattice gas on a two-dimensional square lattice of size Lx × Ly with

periodic boundary conditions applied along both directions. The external driving field E is applied along the Lx-direction.
Each lattice site label (i, j) has two possible states, empty or occupied by a particle, where the occupation variable takes
values σi,j = 0 or 1, respectively. By assuming that particles have an attractive interaction (J > 0) between first nearest-
neighbors and in the absence of an external field, the Hamiltonian H of the system is given by

H = −4J


⟨ij;i′j′⟩

σijσi′j′ , (3)

where ⟨.⟩means that the summation ismade over nearest-neighbor sites only. It is worthmentioning that the Hamiltonians
given by Eq. (1) (for H = 0) and (3) are equivalent under the transformation ηij = (2σij − 1). The transition probability
of a randomly selected particle to jump into one of its four possible empty near-neighbors, WDLG, corresponds to Kawasaki
dynamics with Metropolis rates [37] modified by the presence of the external field E

WDLG
= min[1, e−[1H−ε·E]/kBT ], (4)

where 1H is the energy change after the particle–hole exchange, and ε = (1, 0, −1) assumes these values when the
jump direction of the particle is against, orthogonal or along the driving field E, respectively. Also, the magnitude E of the
external field E is measured in units of J and the temperature T is given in units of J/kB. The dynamics imposed on the system
does not allow the removal of particles, so that the amount of particles – and therefore the particle density (analog to the
magnetization in the Ising model) – is a conserved quantity. As was mentioned above, for a half-filled two-dimensional
system, i.e., initial density ρ0 = 0.5, the DLG model exhibits second-order nonequilibrium phase transition between an
ordered phase (characterized by stripes of high particle density running along the driving direction) and a disordered (gas-
like) phase [5,29,6]. The critical temperature (TDLG

c ) depends on the value of the driving field and it increases monotonically
with E. In the limit of E → ∞, one has TDLG

c (E = ∞) ≃ 1.414 T Ising
c ≃ 3.20 in J/kB units [29].

Finally, the mixed model dynamicsWmix is defined by the addition of a parameter p, in the following way:

Wmix
= pWG

+ (1 − p)WDLG, (5)

where WG and WDLG are given by Eqs. (2) and (4), respectively. Of course, the changes introduced in Eq. (5) mean that the
mixed DLG model does not conserve the number of particles (and therefore the magnetization).
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3. The damage spreading method

The DSmethod was initially introduced [16,38–40] to investigate the effects of tiny perturbations in the initial condition
of physical systems on their final stationary or equilibrium states. In order to implement the DS method in computational
simulations [41,42], two configurations or samples S and S ′ of a given model are allowed to evolve simultaneously. Initially,
both samples differ only in the state of a small number of sites. Then, the difference between S and S ′ can be considered
as a small initial perturbation. In order to give a quantitative measure of the evolution of the perturbation, the ‘‘Hamming’’
distance or damage D(t) is defined as

D(t) =
1
N

N
i,j

1 − δηij(t),η′
ij(t)

, (6)

where N = Lx × Ly is the total number of sites in the lattices, η′

ij(t) (ηij(t)) is the occupation number of site (i, j) in the
sample S ′(S), and δηij(t),η′

ij(t)
is the Kronecker delta function. The sum runs over all sites, so 0 ≤ D(t) ≤ 1. The main question

is whether the damage D(t = 0) ∼ O(1/N) in a given model survives or vanishes after some time t → ∞ in the thermody-
namic limit. In several cases, there is a transition between a state where damage heals and a state where the perturbation
propagates throughout the system. Often, this is an irreversible critical transition that is named the DS transition (for a de-
tailed discussion of the DS method, see the review [17] and references therein). The universality class of the DS transition
is still an open question and in some cases it has been demonstrated numerically that the DS transition can be related to
the directed percolation class [43,44]. Moreover, the DS transition depends on the dynamic rules used to implement Monte
Carlo simulations [44–46] even if the damaged system verifies the principle of detailed balance. It is necessary to remark
that this principle only assures that the systemwill arrive at an equilibrium state, but it does not establish a unique dynamic
evolution [42,44]. For example, for the kinetic Ising model with Glauber dynamics, the initial damage goes to zero below
a damage temperature TDS . T Ising

c [17,45], and it spreads above TDS , while the opposite scenario (D > 0 for T < TDS , and
D = 0 for T > TDS) is observed when using the heat-bath dynamics [40,17,46]. On the other hand, in the case of the kinetic
Ising model with Kawasaki dynamics the results indicate that damage always spreads [47,48].

Recently, the damage spreading behavior has been studied in the DLG model [27] as a function of the temperature T ,
the magnitude of the external driving field E, and the lattice size. The authors found that damage always spreads for all the
investigated temperatures and it reaches a saturation valueDsat that depends only on T .Dsat increases for T < TDLG(E = ∞),
decreases for T > TDLG(E = ∞), and it is free of finite-size effects. This behavior is explained as a consequence of the
existence of interfaces between the high-density stripes and the lattice-gas-like phase whose roughness depends on T .

4. Simulation details

Monte Carlo simulations were performed in lattices of size Lx × Ly, where Ly = 2Lx, and Lx = 120 → 480, with periodic
boundary conditions in all directions. The external field Ewas applied along the horizontal direction, i.e., along Lx, therefore,
it can be written as E = (E, 0), and the magnitude of the vector was fixed at E = 50 (notice that according to the transition
rule given by Eq. (4), E = 50 is in practice equivalent to E ≡ ∞). The temperatures of the thermal bath were taken in the
range T = 2.0 → 4.0, given in units of J/kB, and pwas varied within the range 0 < p < 1. The timewasmeasured inMonte
Carlo time steps (MCS), where one time unit corresponds to (1− p)(Lx × Ly) attempts of particle jumps to empty neighbors
with WDLG transition rates and p(Lx × Ly) attempts at removing or placing a particle in that site with WG transition rates.
The physical observables were averaged over 103 different realizations of the thermal noise.

In order to show the results clearly, the next section was divided into two parts: (i) the short-time Dynamics study; and
(ii) the damage spreading analysis. In the first part, STD was used to determine the phase transitions as a function of p.
For reasons that will be clarified below, the control and order parameters were identified as the temperature X = T and
the magnetization M , respectively. By performing the linear transformation ηij = (2σij − 1) the magnetization M and its
secondmomentM2 were evaluated from ordered (T = 0) and disordered (T = ∞) initial configurations. On the other hand,
the second part was dedicated to studying the damage spreading behavior in the mixed DLG model. In this case, the initial
configuration was the disordered one described above.

5. Results and discussion

5.1. Short-time dynamics study of the mixed DLG model

In order to understand the behavior of the proposed model, the NESS configurations were obtained for different values
of the parameter p and temperature T . As a consequence of the nonconservative dynamics, the configurations at low
temperatures correspond to almost full occupancy of the lattice siteswhen pbelongs to the interval [0.1, 0.9] (ordered state).
On the other hand, at high temperatures a random occupation is obtained with density ρ = 0.5 (disordered state). This
happens for all values of p in the interval [0.1, 0.9]. Fig. 1 shows theNESS configurations for longitudinal lattice size Lx = 120
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Fig. 1. NESS configurations of the mixed DLG model obtained after 4 × 106 MCS for a system of size Lx = 120, and at different values of temperature T
and parameter p (as indicated).

at different temperatures for two selected values: p = 0.1 close to DLG dynamics, and p = 0.5, where both conservative and
nonconservative dynamics are appliedwith the same probability. As can be observed, the NESS configurations are consistent
with a transition from ordered to disordered states similar to those observed in the ferromagnetic–paramagnetic phase
transition of the Ising model. For p = 0.1 a subtle influence of the DLG conservative dynamics can be inferred from the
speckle-like bands along the external field direction, so the appearance of the system is more DLG-like, than Ising-like.
These bands disappear at higher values of p, as is shown for the case of p = 0.5 in Fig. 1.

The described results allow us to define the order parameter as the magnetization M(t) and to use the STD method to
study the nonequilibriumorder–disorder phase transition. Fig. 2(a) shows the time evolution ofM(t) from the fully occupied
ordered state (M(0) = 1 corresponding to T = 0), for p = 0.2 and different annealing temperatures. The temperature T ∗

corresponds to the best power law obtained and the error bars were estimated by using the closest temperatures that show
small but noticeable departures from it. The temperature T ∗∗ was obtained in the same way from the time evolution of the
second moment of the magnetizationM2(t) when the initial configuration is the disordered state (M(0) = 0 at T = ∞), as
is shown in Fig. 2(b). It is worthmentioning that for the determination of T ∗∗ it is useful to study the time evolution ofM2(t)
instead of M(t). This is due to the fact that the average of the magnetization over different realizations is zero. However if
M(t) were employed to study the phase transition, the simulations must be performed by imposing a very small, positive
initial magnetization m0 as an initial configuration, in order to have all the time series with the same magnetization sign.
In this way, the dynamical behavior of the magnetization should be obtained as the limitm0 → 0 (for a detailed discussion
see Refs. [12,13]).

Fig. 3 exhibits the temperatures T ∗ and T ∗∗ that were determined for different values of p by following the procedure
described above. As was already mentioned in Section 1, the correlation length remains smaller than the system size, so the
STD method will allow us to obtain the critical and pseudocritical temperatures of the model in the thermodynamic limit.
Consequently, the results are free of finite-size effects within its validity range.

Due to the fact that T ∗
= T ∗∗, within error bars, at p = 0.1 and p > 0.6, our results suggest the existence of Ising-like

second-order phase transitions at these values of p. The critical temperatures for p > 0.6 are close to those corresponding
to the Ising model, within error bars. In the interval 0.1 < p ≤ 0.6, the difference between T ∗ and T ∗∗ becomes clear and
it would be a signature of a first-order phase transition whose maximum strength occurs at p ≃ 0.45. This assumption is
also supported by the behavior observed in Fig. 4, for representative values of the parameter p (p = 0.1 and 0.5). Fig. 4(a)
shows the time evolution of the squared-density fluctuations for p = 0.1 corresponding to three temperatures near the
reported transition temperature T ∗

= 2.643 (see Table 1). As can be observed, the fluctuations exhibit two clear regimes: a
first growing one, followed by a second regimewhere they tend to saturate. In this last regime the fluctuations depend on T ,
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Fig. 2. (Color online) Log–log plots of the time evolution of (a) magnetization M(t) from the initial ordered state corresponding to T = 0, and (b) second
moment of magnetizationM2(t) from initial disordered states corresponding to T = ∞, for p = 0.2 and Lx = 120 at the indicated temperatures. The data
were averaged over 103 realizations. The best fitted power laws are also indicated with a solid line. More details in the text.

Fig. 3. (Color online) Temperatures T ∗ and T ∗∗ obtained from the best power-law behavior of the time evolution ofM(t) andM2(t) as a function of p, when
the system was started from ordered and disordered initial configurations, respectively. Temperatures TD(p) were obtained from the damage spreading,
as will be described in the following section. The critical temperatures of the DLG and Ising models are also indicated with dashed lines. More details in
the text.

Table 1
Temperatures T ∗(p) and T ∗∗(p) determined by applying STD to the mixed DLG model
and temperature TD(p) obtained from the behavior of the saturation damage (Dsat ), in the
thermodynamic limit, as a function of temperature.

p T ∗(p) T ∗∗(p) TD(p)

0.1 2.643(2) 2.630(15) 2.636(14)
0.2 2.54(1) 2.50(1) 2.52(2)
0.3 2.465(5) 2.350(35) 2.46(1)
0.4 2.41(1) 2.27(3) 2.41(2)
0.5 2.375(5) 2.27(3) 2.375(25)
0.6 2.33(1) 2.27(3) 2.33(3)
0.7 2.31(1) 2.27(3) 2.32(2)
0.8 2.29(1) 2.27(3) 2.300(12)
0.9 2.277(5) 2.27(3) 2.285(15)

and become less important when T moves away from the transition temperature into the disordered phase, as the evolution
for T = 2.680 shows. This is consistent with the fact that in both DLG and Ising models keep ρ(t) = 0.5 or an average zero
magnetization in the disordered or paramagnetic phases, respectively. Fig. 4(b) exhibits the same observable for p = 0.5, at
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Fig. 4. (Color online) Time evolution of the density fluctuations for different values of T (as indicated), and (a) p = 0.1 and (b) p = 0.5. The data correspond
to a system size of Lx = 120 and initial disordered configurations. More details in the text.

temperatures that are in the coexistence zone (see Fig. 3 and Table 1). Qualitatively, the same behavior occurs, but the values
of the fluctuations are about one order of magnitude higher than those found for p = 0.1. This difference suggests that the
density fluctuations are enough to produce ρ(t) ≠ 0.5 for each realization and to induce a first-order phase transition in
the mixed model.

In this way, the introduction of mixed dynamics on the one hand shifts the density to values where the DLG model
exhibits first-order phase transitions [15] and on the other hand, it leads to phase transition temperatures higher than
the Ising critical temperature for p < 0.9. This can be explained by the fact that the conservative dynamics keeps a
nonzero magnetization at temperatures where the Ising model is in the paramagnetic phase. Similar results were reported
by Acharyya et al. [35] for a DLG model where the nonconservative dynamics was introduced by means of a parameter that
is proportional to H2 (the external magnetic field in the Ising Hamiltonian, see Eq. (1)) and taking the limit H → 0. More
careful studies should be performed in order to understand the mechanism of the phase transitions, so this open subject
will be left for future work.

5.2. Damage spreading study in mixed DLG model

Fig. 5 shows the time evolution of damage D(t) Eq. (6) measured at different temperatures and values of the parameter
p, for the lattice size Lx = 480. As can be observed, damage increases and reaches a saturation value Dsat(Lx = 480) that
depends on both the temperature and p. At low temperatures, as is shown in Fig. 5(a), for T = 2, Dsat(Lx = 480) decreases
with increasing p. This result is consistent with the fact that the temperature of the system is lower than the temperature
of the DS transition in the Ising model with Glauber dynamics, TDS , below which Dsat = 0 in the thermodynamic limit.
Furthermore, Fig. 5(b) shows that at T = 2.30 the dependence of saturation damage on p becomes weaker than in the
previous cases. For T = TDLG

c = 3.20, see Fig. 5(c), the saturation values are the same, within error bars, for all investigated
p values. As was previously mentioned for both extreme cases, i.e., p = 0 and p = 1, the damage spreads at T = 3.2.
Moreover, the present results indicate that the system is in the disordered phase, which favors the spreading of damage.

In order to determine whether the mixed DLG model exhibits a DS transition, finite-size effects were studied by
measuring the damage D(t) for different lattice sizes (Lx). The results obtained for p = 0.1 and T = 2.3 (see Fig. 6(a)) show
that D(t) presents a maximum followed by a dip of the damage before reaching a saturation value, Dsat(Lx). This maximum
shifts to larger times and the dip flattens with the increase in the lattice size, which indicates that the dip is a finite-size
effect. On the other hand, the dip disappears at higher temperatures T ≥ 2.6 and with increasing p, as can be observed in
Fig. 6(c) and (d).

Fig. 7 shows the saturation damage Dsat(Lx) as a function of 1/Lx for different temperatures in the interval [2.00, 4.00]. In
contrast with the DLG model where finite-size effects were practically not present [27], Dsat(Lx) decreases with increasing
Lx until it reaches a lower bound, which occurs at low temperatures. This bound can be defined as the value of Dsat in
the thermodynamic limit. For T ≥ 2.60, the data indicate that Dsat(Lx) is independent of Lx. In these cases, the limit
Dsat(Lx → ∞) ≡ Dsat was determined by means of a linear fit. Similar results were obtained for the other values of p
(not shown here for the sake of space) and the temperatures where Dsat(Lx) is independent of the lattice size were found to
be closer to the pseudocritical point T ∗(p).

Fig. 8 shows Dsat versus T for the studied values of p. For p < 0.6, damage always spreads, which may suggest that the
damage spreading transition occurs at zero temperature (TDS = 0). Also, two regimes can be clearly distinguished, i.e., Dsat
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Fig. 5. (Color online) Log–log plot of damage D(t) obtained for a system of size Lx = 480 and for all investigated values of p, as indicated in the legend: (a)
T = 2.0, (b) T = 2.3, and (c) T = 3.2.

Fig. 6. (Color online) D(t) obtained for the indicated system sizes and for different temperatures and values of parameter p: (a) p = 0.1, T = 2.3; (b)
p = 0.1, T = 2.6; (c) p = 0.5, T = 2.0; and (d) p = 0.5, T = 2.3.

grows up to a given value Dmax
sat , and after that it presents a tiny decrease (see Fig. 8(a)). Since in this regime of p there is a

majority of (nonequilibrium) conservative DLG dynamics, it is not surprising that the shape of the curves becomes similar
to that reported for the pure DLG model [27], where Dmax

sat is a relevant point whose temperature matches TDLG
c . Here, the

temperature corresponding toDmax
sat , referred to as TD(p), decreases as long as p increaseswhenmore nonconservative events
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Fig. 7. (Color online) Dsat (Lx) as a function of 1/Lx for p = 0.1 and the indicated temperatures. Dashed lines corresponds to the linear extrapolation to
1/Lx → 0, and the solid lines are only for guiding the eye. More details in the text.

Fig. 8. (Color online) Saturation value of damage (Dsat ) in the thermodynamic limit as a function of temperature for (a) 0.1 ≤ p ≤ 0.5 and (b) p ≥ 0.6. The
dashed lines correspond to linear fits. The inset presents the temperature TD(p) versus p obtained from the intersection between the linear fits performed
for T < TD(p) and T > TD(p), respectively. More details in the text.

are included in the dynamics. As happens in the pure (i.e., p = 0) DLG model, this behavior can also be associated with the
existence of high density regions where the damage can spreadmostly through its interfaces, as it is shown in the snapshots
of the system configurations and damaged sites in Fig. 9(a). At p ≥ 0.6 (see Fig. 8(b)) the plot resembles the diagram Dsat
versus T for the Ising model with Glauber dynamics [17,45].

The temperature TD(p) was estimated by means of the intersection between the two linear fits indicated with dashed
lines in Fig. 8(a) and (b). It is important to remind that TD(p), defined above, is different from the damage spreading critical
temperature TDS , defined in Section 3. The inset of Fig. 8(b) shows a decreasing behavior of TD(p) with p between both
boundary values, TD(p = 0) = 3.20 and TD(p = 1) ≃ 2.269, corresponding to the DLG [27] and Ising model critical
temperatures, respectively. Furthermore, the results indicate that TD(p) ≈ T ∗(p), within error bars, (see Table 1 and Fig. 3).
This behavior is not strange, since damage is sensitive to the presence of phase transitions [17] in both models. In this way,
TD(p) could be associated with a change in the system configuration related to the existence of a phase transition.

Fig. 9 shows typical snapshot configurations of the system (left panel) and the damaged sites (right panel) during the
evolution to the NESS for the lattice size Lx = 120. Fig. 9(a) presents the configurations corresponding to p = 0.1, T = 2.30
at the time when the system reaches the maximum value of damage, t = 484MCS (see Fig. 6(a)). As can be observed, the
damage spreads close to the rough interfaces of high density regions. A similar situation is observed at T = 2.60 (Fig. 9(b)),
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Fig. 9. (Color online) Snapshots of the spin configurations (left panel) and the damaged sites (right panel) for a lattice of size Lx = 120 and different values
of p and T : (a) p = 0.1, T = 2.30; (b) p = 0.1, T = 2.60; (c) p = 0.5, T = 2.00 and (d) p = 0.5, T = 2.3. The data correspond to times of t = 484 and
1444MCS for p = 0.1 and p = 0.5, respectively.

near TD(p = 0.1) = T ∗(p = 0.1) where the order–disorder phase transition occurs. In this case the increase of the interface
density enhances damage spreading. The increment of the sites updated by Glauber dynamics causes the damage to spread
also to the high density regions, as Fig. 9(c) and (d) shows for p = 0.5. At low temperatures when the system has reached
damage saturation, high density regions are more compact and the interface density becomes smaller than in the previous
case. This fact hinders damage spreading as can be inferred from Fig. 9(c) for T = 2.00 and t = 1444MCS. If the temperature
is raised to reach the phase coexistence, T = 2.30 (see Fig. 9(d)), the damage can spread to high density regions as well
as in the disordered phase. This behavior has been observed in both Ising [17] and DLG [27] models, and can be explained
in terms of the magnetization or density fluctuations in the region near the interfaces, respectively. In fact, around these
regions one has the largest fluctuations that enhance the propagation of the perturbation, i.e. the damage. In contrast, within
a high density region, the propagation of damage is energetically unfavorable because the short-range interactions promote
that all the nearest-neighbors of a given particle to be of the same kind.

6. Conclusions

In thiswork the effects of introducingGlauber dynamics in theDLGmodelwere investigated.With this aim the parameter
p, which regulates the fraction of particles that are updated with Glauber or DLG dynamics, respectively, was defined. The
influence of Glauber dynamics becomes fundamental for the behavior of the mixed DLG model, since it breaks the density
conservation rule. In this way, the existence of a phase transition from a configuration with full occupation at low T ′s to
a random one at higher temperatures was demonstrated by studying the NESS configurations and using the STD method.
Moreover, STD results indicated that the transition would be of second order at p = 0.1 and p ≥ 0.7. For the rest of the
interval 0.1 < p ≤ 0.6, the difference between the temperatures T ∗ and T ∗∗ becomes relevant, T ∗ and T ∗∗ being the
points where the dynamic observables present power-law behavior. This is the signaling of a first-order phase transition.
Furthermore, both T ∗ and T ∗∗ decrease with p, and (T ∗, T ∗∗) → T Ising

c , which is consistent with the fact that the mixed
DLG model becomes the Ising model in the limit p → 1. In this way, the presence of the DLG dynamics keeps a nonzero
magnetization at a temperature at which the pure Ising model is on the disordered phase. This fact allows us to explain the
shift in the described phase transition temperatures.

On the other hand, in order to study the damage transition, the saturation damage in the thermodynamic limit was
obtained in the temperature range [2.00, 4.00] from studies of damage spreading and finite-size effects. The temperature
TD(p) that characterizes the point where the behavior of the damage changes for each p was obtained. The fact that
TD(p) ≈ T ∗(p) indicates that TD(p) is related to the phase transition, in analogy with previous works that reported the
same behavior for DLG and Ising models.
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In summary, a nonequilibriummodel with mixed conservative and nonconservative biased dynamics was studied and a
novel and rich behavior related to the existence of phase transitions of first and second order was obtained.
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