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ABSTRACT 

An electro-rheological model based in Voigt units which takes into consideration the 
variation in volume promoted by electrostriction is developed. The model was based on 
a mean field approximation as an averaging of the mechanical and electrical 
properties. The electro-rheological coupling which describes the effects of the electrical 
excitation on the mechanical response and the effects of the mechanical excitation on 
the electrical response of the dielectric is studied.  
In the case of an alternating electrical excitation the model reveals the appearance of 
harmonics in the current through the dielectric promoted by the electrostriction 
phenomenon. In contrast, for the case of an oscillating mechanical excitation, a current 
which overtakes the driving mechanical oscillation was resolved to appear.  
The correlation of the new model with experimental results, obtained from dynamic 
mechanical analysis tests conducted under high electric field, in polyamide, was found 
out.   

   Index Terms - Electro-rheology, engineering modeling, dielectric materials, 
electrostriction, DMA. 

 
1   INTRODUCTION 

THE relation between the strain and the square of the electric 
field strength in a dielectric material is called electrostriction [1, 
2]. From an appropriate reciprocity relation, it follows that the 
application of a mechanical stress may produce a change in the 
dielectric properties [1, 3]. In a recent work, the electrostriction 
effect was studied by means of the theory of inclusions. The 
internal stresses promoted by the electrostriction phenomenon 
were monitored by studying the behavior of the misfit coefficient 
and the transfer of elastic energy process [4-6]. In fact, the model 
in [4] considers that applying an electric field to a dielectric 

material leads to the stretching of dipoles giving rise to the 
appearance of inclusions. They promote the development of 
internal stresses in the dielectric material; whose 
electromechanical equilibrium condition was determined from 
the inclusion formalism [5, 6]. 

A general and formal treatment of the coupling of the 
mechanical and electrical properties in materials can be done 
by resolving the stress state from a general thermodynamic 
potential equation involving both contributions [1, 3, 4]. 
However, the mathematical handling of the resulting 
equations applied to engineering calculations in technological 
materials is always complicated. 

Electro-rheological studies facilitate predictive analysis in 
the field of engineering of materials under coupled mechanical 
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and electrical stresses [7, 8]. A detailed electro-rheological model 
of the electrical and mechanical response of dielectric materials 
was reported in [7]. The model is based on a Voigt-type 
rheological representation either with two or three parameters. 
The model allows the description of the viscoelastic response of 
a dielectric material when it is subjected to an electrical 
excitation. It should be mentioned that for the model developed 
in [7], the volume of the dipole element was considered as a 
constant. In addition, the study was developed only by 
considering the effect of a variable electrical field applied to the 
dielectric material. Regarding the work in [8], the study was 
developed for two-phase dielectric materials with the aim of 
obtaining the dielectric response in frequency from dynamic 
mechanical analysis measurements. In addition, the work was 
carried out considering a constant volume of the dipole 
element.  

In the present work, an electro-rheological model based on 
Voigt units which takes into consideration the variation in 
volume promoted by electrostriction is developed. The electro-
rheological coupling which describes the effects of the electrical 
excitation on the mechanical response and the effects of the 
mechanical excitation on the electrical response of the dielectric 
is studied. The model is able to predict both, the appearance of 
harmonics in dielectric materials excited by an alternating electric 
field and the appearance of an alternating current in a dielectric 
material subjected to an oscillating mechanical field. In addition, 
the model was experimentally verified by means of dynamic 
mechanical analysis (DMA) measurements conducted under high 
electric fields. 

2  THEORETICAL BACKGROUND 

2.1 CONTINOUS ELECTRODYNAMICS 
Figure 1 shows a flow diagram of the interrelation between 

electrical and mechanical excitations and their responses. In 
technological applications it is often of interest the modelling 
of the energy flows from the electrical excitation (Wc) and the 
mechanical excitation (Ws) to the electrical response (Wa) 
and the mechanical response (Wm), including the electro-
mechanical coupling.  

Following the nomenclature used in Figure 1, the energy of 
the electric field can be written as [3],  

 

1
. (1)

2 V

W dvc  D E  

 

where D and E are the displacement and electric field vectors, 
respectively, satisfying the condition,  

 

(2)o D E P 

 

In equation (2) P is the polarization vector and ε0 the vacuum 
permittivity. For one-dimensional geometry, i.e. plane parallel 
plates, equation (1) can be written as, 
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where d is the gap between the plates and A is the area of each 
plate. Considering that the material is isotropic, equation (3) 
may be written as, 
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or as, 
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Corresponding to the schematic representation given in 
Figure 1, Wc satisfy the following condition of thermodynamic 
equilibrium, 

 

 
Figure 1. Flow diagram of the interrelation between electrical and mechanical excitations and responses. Dashed arrows indicate the flow for an electrical 

excitation. Alt-dashed arrows indicate the flow for a mechanical excitation under constant electric field. See explanation in the text. Adapted from [7]. 
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(6)C a mW W W   

 

The induced polarization charge, i = qi / A, in the interface 
of a dielectric material, which is exposed to a constant electric 
field, E0, can be calculated from the Gauss theorem, as it was 
already shown in [7], 

 

1
1 (7)i o o

r

E 


 
  

 
 

 

The stress px acting at a surface A in a dielectric material of 
constant r, which is displaced by a distance x, due to the 
polarization produced by an electric field between the plates 
separated by a gap, d, can be written as follows [9-11],  
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where Fx  is the corresponding force.  

Combining equations (7) and (8) we can write, 

 

1
(9)

2x i op E  

 

The surface polarization charge density is represented by 
the projection of the polarization vector over the surface of the 
dielectric, and therefore equation (5) can be written as, 
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It must be mentioned that in the second integral in equation 
(10), the induced charge qi resides on the surface of the 
dielectric. Considering a constant electric field in the dielectric 
is between the two parallel plates, the first integral results in, 
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while the second one can be written as, 
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Consequently, the energy transferred to the dielectric 
material is 

21 1
(13)

2C o x
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W E V F dx

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This expression represents the energy transfer to an electro-
mechanical system. 

2.2 ELECTRO-RHEOLOGICAL DESCRIPTION 

We have described in previous works the dielectric material 
as an assembly of discrete dipoles and inter-dipole elements 
linked between them [7, 8]. A dipole together with an inter-
dipole element was defined as the so called elementary unit 
[7]. Dipoles and inter-dipoles were described by means of 
Voigt rheological models either with two or three parameters. 
In the case of two parameter Voigt units, the dipole is 
composed by: (a) a capacitor of plane charged plates which 
promote the separation of the plates under the application of 
the electric field E, (b) a spring, kD, which represents the 
elastic constraints of the matrix and (c) a dashpot, bD which 
represents the energy loss by irreversibility, see Figure 2. The 
inter-dipole element is composed by a spring kid  and a 
dashpot bid.  

In addition, a two dimensional representation of a dielectric 
material was made considering a dielectric solid material 
having an internal structural arrangement which allows the 
orientation of dipoles by applying an external electric field 
[7]. It is assumed that the randomly oriented dipoles already 
exist in the dielectric material matrix, giving rise to a null 
polarization vector, Figure 3. The dipole itself, during the 
rotation, was assumed to not change its length, i. e. it is under 
pure rotation. This rotation promotes on the inter-dipole space, 
through a mean field approximation, compression and tensile 
effects as shown in Figure 3 [7].  

3 EXPERIMENTAL 

3.1 SAMPLES 
As matrix materials a polyethylene (PE) grade Moplen EP F 

31 H (Basell B.V., Klundert, The Netherlands) and polyamide 
(PA) grade Ultramid B3 (BASF, Mannheim, Germany) with 
crystalline melting temperatures of TM = 350 K and 493 K, 
respectively; were chosen. Polymer samples were prepared 
from pellets, using an injection moulding machine (Allrounder 
320C 600-250, Arburg, Germany). Samples of parallelepiped 
form of 10 mm width, 1.4 mm thick and 48 mm length were 
cut from the raw polymer sample with a low speed saw. 
Subsequently the final size of the sample was adjusted by 
mechanical polishing in distilled water.  
 

3.2 MEASUREMENTS 

DMA test, loss tangent (damping or internal friction), 
tan(), and dynamic shear modulus, G’, were measured as a 
function of the applied electrical field, E, in a mechanical 
spectrometer working in torsion at temperature of  318 K (± 
0.25 K), in air [4]. The resonance frequency was around 1.5 
Hz. Damping was determined by measuring the relative half 
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width of the squared resonance peak for a specimen driven 
into forced vibration using equation (14) [4]: 

2 1

0

 - 
tan( )  (14)

 



  

where ω0 is the resonance frequency, and ω1 and ω2 are the 
frequencies at which the amplitude of oscillation has fallen to 
1/√2 of the maximum value. The errors of tan() and G’, 
being proportional to the squared oscillating frequency, are 
less than 1%. The maximum oscillating strain on the surface 
of the sample was 1x10-4.  

 

The electric field was produced by two electrodes placed at 
the sample position, lying in parallel direction to the torsion 
axis of the spectrometer, i.e. the resulting electric field is 
perpendicular to the torsion axis, Figure 4 [4]. Electrodes were 
connected to a variable DC high voltage power supply, giving 
rise to E values up to 1300 kV/m, at the sample location. The 
high voltage power supply was connected to a transformer 

220/220 V, 5 A, to isolating the high voltage source from the 
line noise. In the shielded cable connected to the negative 
plate, a 9.1 MΩ (1%) resistance was inserted. The resistance 
was also under a grounded electromagnetic shield, see Figure 
4. The voltage drop at the resistance due to the current 
changes in the power supply, caused by changes in the 
electrostriction of the oscillating dielectric sample material, 
was recorded by a digital storage high speed oscilloscope 
RIGOL 1052E. The oscilloscope is energized also by the 
transformer 220/220 V, 5 A. In order to improve the variation 
in the current the plates were placed with a gap of 1mm to the 
sample. It gives rise to an electric field at least twice higher 
than the one which was reported in [4]. The used electric field 
in the present work was 1300 kV/m. 

4 THE MODEL. ELECTRO-RHEOLOGICAL 
DESCRIPTION OF DIELECTRIC 

MATERIALS EXHIBITING 
ELECTROSTRICTION 

4.1 THE EXCITATION FROM AN ALTERNATING 
ELECTRIC FIELD 

4.1.1 THE ONE DIMENSIONAL CASE 
In this section the electrical response of a dielectric material 

with electrostriction subjected to an alternating electric field is 
studied. Regarding the flow diagram shown in Figure 1 here 
the sequence described by the line-dashed-arrows, is studied.  

The dielectric material is described on the basis of an 
electro-rheological representation as shown in section 2.2. 
However, by considering a mean field approximation, the 
assembly of the dipole and inter-dipole elements for 
describing the dielectric material (Figure 2) will be averaged 
in the whole material through a unique Voigt unit, called 
hereafter equivalent dipole. Indeed, the whole material 
containing dipoles and inter-dipole spaces will be considered 
as a single dipole, see Figure 5. 

In a solid subjected to an external electric field a strain by 
the electrostriction in the direction of the electric field is 
generated, which leads to a change in its volume that is,  
 

( ) (15)oV V A x t   
where A is the area of the electrically solicited zone, e.g. the 
area of the capacitor plate in Figure 5, and x(t) is the 
displacement in the direction of the applied electric field. In fact, 
it is well known that electrostrictive effects in solids can lead to 
an increase or decrease in the volume, depending of the sign of 
the electrostriction [1-3, 9-11]. The case of an electrostrictive 
effect leading to the increase in volume will be developed in this 
paper. However, the case of an electrostrictive effect leading to 
a contraction of the solid implies only a change in the sign for 
the electrostrictive term, as it is easy to be inferred.  

Differentiating equation (11), which equals the first term in 
equation (13), with respect to the time, we can obtain the 
instantaneous power related to the electrical field (see Figure 1) 
such that, 

 
Figure 3. Two-dimensional Representation of a Solid Material Showing the 
Orientation Process due to the Application of the Electric Field. Taken from [7]. 

 
Figure 2. Elementary Unit Described Using the 2-parameter Voigt Model. 
Sub index D and id correspond to the dipole and inter-dipole element, 
respectively. F is the mechanical force. Taken from [7]. 
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Then, relating equations (15) and (16) we obtain, 
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Adding the term of the transferred power related to the 

electro-rheological description for the equivalent dipole, 
Figure 5, we can write, 
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It should be stressed that equation (18) contains two more 
terms than the previously derived equation where the change 
in volume was neglected [7]. The new terms are related to the 
electrostrictive effect. 

Taking the Laplace transform to the Voigt representation 
for the equivalent dipole in Figure 5 and anti-transforming it

, 

the displacement x(t) in sustained oscillations takes the form

 

[7], 
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where ω = 2πf, f being the frequency of the applied electric 
field and τDe = bDe/kDe is the relaxation time corresponding to 
the Voigt representation [12, 13]. Besides, the corresponding 
displacement rate is given by, 
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By replacing equations (9), (19) and (20) in equation (18) 

and considering a sinusoidal behavior for the electric field, we 
can write, 
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and working mathematically it results in 
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Figure 4. Experimental setup used for measuring electrostive effects from DMA tests conducted under high electric field. Zone inside the dashed line shows 
a schematic representation of the positioning of electrodes in the DMA equipment. 
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In fact, equation (22) represents the power transferred from 

the electric field to the whole dielectric material. Then, the 
electric current through the dielectric material calculated from 
equation (22) results in 
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It should be emphasized that, the terms related to the 

harmonic contribution in equation (23) involve a dependence 
on the intensity of the electric field. Besides, it deserves of 
being mentioned that the second term, in equation (23), is 
related to the energy loss by irreversibility and not to the 
conductive current. 

In the limit for low frequencies,  
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equation (23) takes the form, 
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On the other side, for frequency values corresponding to the 

maximum of the relaxation peak 
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equation (23) results in 
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 The behavior of equation (27) as a function of time for an 
alternating electric field at 50 Hz is shown in Figure 6a. In 
addition, the response of equation (27) in the frequency 
domain is plotted in Figure 6b.  

The prediction of this one-dimensional model regarding the 
appearance of harmonics in the capacitive current in dielectric 
materials subjected to an alternating electric field is in 
agreement with previous reported works [14-16]. For instance, 
the appearance of harmonics in the capacitive current of 
polymers excited by an alternating electric field has been 
reported in [15]. Moreover the compensation technique of the 
2nd harmonic has been used widely for the molecular study of 
lipid membranes [16]. Indeed, a capacitor of variable gap 
between plates which are subjected to mechanical forces has 
been used to describe the lipid bilayer membranes [16-18]. 
Nevertheless, the elastic properties of a real lipid bilayer are 
inhomogeneous and the charges are really discrete. The 
bilayer elasticity is higher close to the polar groups than in the 
central area. The assumption of homogeneity both of the 
elasticity and the distribution of charges gave rise to 
discrepancies between experimental data and theoretical 
results [14, 16-19]. Regarding to our model here described, it 
is not targeted to the study of lipids membranes. However, as 

 
Figure 5. Equivalent dipole based on a Voigt unit. See explanation in the text.
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the present model is developed in the frame of a mean field 
approximation its applicability to lipid membranes could be 
possible, after experimental check. 

 

 
4.1.2 THE THREE DIMENSIONAL CASE 

The arrangement of dipoles and inter-dipole elements 

shown in Figure 3 represents the two dimensional case. If a 
similar arrangements of dipoles is randomly located within a 
volume Vo = lx·ly·lz, then, the volume of the dielectric material 
changes as a function of time, invoking changes in the three 
dimensional coordinate axis (x,y,z). Then equation (15) 
transforms in 
 

       ( ) (28)o o x y zV t V V t V V t V t V t            

 
The volume changes in each coordinate axis, ΔVi(t) 

(i=x,y,z), can be deduced from Figure 7. The initial, 
undistorted volume, Vo = lx·ly·lz, suffers stretching sequentially 
in each axis x, y and z, labeled as x(t), y(t) and z(t); 
respectively. This procedure is not unique and other sequences 

of stretching can be chosen in order to describe the volume 
change. 

 
Then each ΔVi(t) can be written as 

 

    (29)x y zV t l l x t   

      (30)y x zV t l x t y t l      

        (31)z x yV t l x t l y t z t          

 
In the analysis developed below, the direction x will be 

chosen as the direction where the electric field is applied, so, 
we will reduce the stretching y(t) and z(t) (see Figure 7) as a 
function of stretching x(t) through appropriate constants Cy 
and Cz in such a way that 

 
( ) ( ) (32)yy t C x t  

( ) ( ) (33)zz t C x t  

 
Cy and Cz are proportionality constants related to the 
reorganization of dipoles which exhibit some misalignment 
with the direction of the field. Indeed, the electric field 
promotes both a rotation and a stretching of the dipoles 
randomly embedded into Vo, giving rise to an mean 
contribution for strain on the x-direction. By replacing 
equations (29) to (33) in equation (28) and working 
mathematically we can obtain 
 

   2 3( ) ( ) (34)oV t V A x t B x t C x t     

 
wherein 
 

(35)y z y x z x y zA l l C l l l l C    

(36)y z y z x y zB C l l C l C C    

 
Figure 7. Initial volume Vo = lxlylz containing the random distribution of 
dipoles (full lines). Dashed lines indicate the volume increase promoted by 
the application of an electric field.  

 

 
Figure 6b. Frequency spectra for the oscillating current from equation (27). 

 
 Electric field (full line) and current from equation (27) (broken 

line) as a function of time. 
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Figure 6a.



 
 

 
 

(37)y zC C C 

 
 As it was described for the one-dimensional case, Section 
4.1.1, the instantaneous power related to the electric field is 
given by equation (16). Then, by replacing in the terms 
∂V(t)/∂t in equation (16), the derivative of equation (28) with 
respect to the time and by considering an alternating electric 
field in the form  ( ) ( )E t E sin t , it results in 
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Let´s now study the transferred power towards the 

rheological structure of the dielectric material. As it was 
shown in previous Sections, the transferred power to the 
rheological components equals [7]  

 

  ( )
(39)m

x

W x t
F t

t t

 
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

 
wherein Fx(t) is the average force on the x-direction, which 
gives rise to the displacement x(t). 

Similarly to the reduction of variables made above for 
writing the volume, equations (17) to (22), let us assume that 
energies for y- and z- directions could be reduced to the 
energy in the x-direction through appropriate Dy and Dz 
constants, such that 
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 By defining D = 1 + Dy + Dz, equation (41) results 
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It is convenient to be mentioned here that all constants Ci, 

(equations 32 and 33) and Di (equation 41), i = y, z; were 
defined in order to represent the electrostrictive contribution 
on the three coordinate axes; reduced to the x-axis. Indeed, it 
allows the mathematical handling of a quasi one-dimensional 
case, which involves the contribution from the other 
directions, instead of the heavy mathematical treatment of the 
formal three-dimensional case. 

 Following a straightforward analysis according to the one-
dimensional case, the whole dielectric material will be 
averaged through a mean field approximation as an equivalent 
dipole, Figure 5. 
 Considering the mechanical force, promoted by the electric 
field, as a function of time in the x-direction with the form 
 

( ) ( ) (43)x xF t F sin t  

 

with
1

(44)
2x iF q E  

 
and replacing equations (43) and (44) in equation(42), the 
transferred total power, p=∂WT/∂t, equals  
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As it has been solved earlier in [7], the displacement 

promoted by the electric dipole in sustained oscillations in the 
x- direction can be written as 
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Consequently, its displacement rate results 
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By replacing equations (46) and (47) in equation (45), and 

working mathematically, the total power transferred to the 
dielectric material can be described by 
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wherein   
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 In the limit of low frequencies, the following conditions are 
satisfied  
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where m and n are integers ≥1. In addition, by using 
trigonometric relationships for sin(2ωt), cos(2ωt), sin(3ωt), 
cos(3ωt), sin(4ωt) and cos(4ωt) [20], then equation (48) 
simplifies to 
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with 
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Taking in consideration an alternating voltage in the form, 
( ) ( )U t U sin t , equation (54) can be written as 
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wherein d is the gap between the plates of the effective dipole 
(Figure 5) at potential U(t), caused by the electric field E(t). 
 So, the electric current, i(t), through the dielectric material 
equals 
 

    

   

  

( ) 1 cos

3 2
2 cos 3

4 3
5

4 ( ) (57)
8

o

A B

C

i t C U Q t

Q sin t Q t

Q sin t R t

 

 

 

  

  

 

 

 
with C0= ε0 A0/d. As it can be inferred from equation (57), the 
volume change promoted by electrostriction gives rise to 
harmonics terms.  

For frequency values corresponding to the maximum of the 
relaxation peak, the conditions gave in equations (26) are 
satisfied, then the current obtained from equation (57) results 
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where R(ω,t) includes again the terms with some power in sin

 or cos, that is 
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The behavior of equation (58) as a function of time for an 

alternating electric field at 50 Hz is shown in Figure 8a. In 
addition, the response in frequency domain of equation (58) is 
plotted in Figure 8b. As it can be seen either from equation 
(58) and Figure 8, higher harmonics are predicted by the new 
model when the change in volume is taken into consideration. 
These results are also in agreement with previously reported 
works [14-16]. Therefore, the coupling of more 
electrostrictive effects lying in different solicitation directions, 
give rise to the development of higher harmonics in the 
capacitive current when the material is subjected to an 
alternating electric field. 

4.2 THE EXCITATION FROM AN OSCILLATING 
MECHANICAL FIELD 

In this section, the electrical response of a dielectric 
electrostrictive material subjected to an oscillating mechanical 
force, F(t), in combination with a constant electric field, E, 
(electromechanical coupling) will be studied. In fact, as is 
indicated by the alt-dashed arrows in Figure 1, it can be 
strongly suggested that the electrical response i(t) involves the 
contribution of both the electrical and mechanical fields. Thus 
the present study will be focused only on the one-dimensional 
case. This consideration does not diminish the results of the 
present Section, due to the three-dimensional case study is 
targeted to the appearance of more harmonics in the electrical 
current, as it was already shown. 

The whole dielectric material is considered again as an 
effective dipole based on a Voigt unit, as shown in Figure 5. 
Figure 9 shows the non-perturbed (upper) and the solicited 

(lower) states, respectively. The perturbed state due to the 
superposition of the constant electric and the oscillatory 
mechanical fields, corresponds to the maximum stretching of 
the equivalent dipole. 

 

 Considering a dielectric material subjected both to a 
constant electric field, E, and to a mechanical excitation in the 
form  ( )F t F sin t , the instant power transferred to the 

electro-rheological coupling results, 
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In contrast to the case developed in the previous section, the 

energy provided from the mechanical system, Wm, is 
transferred to the electrical system through the electro-

 
Figure 8a. Electric field (full line) and current from equation (58) (broken 
line) as a function of time. 

 
Figure 8b. Frequency spectra for the oscillating current from equation (58).
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rheological coupling. In fact, the electrical system only 
receives the contribution from the electromechanical coupling, 
i.e. Wa. Therefore, the oscillatory mechanical field generates a 
current through the dielectric material of the same frequency. 
The expression for Wa in the present case, takes the form 
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wherein the electric field is independent on time in the present 
case. In addition, the volume change due to a mechanical 
excitation is given by the equation (15). Taking the derivative 
of equation (61) with respect to the time we can write 
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Using the displacement rate of the dielectric material as an 

effective dipole based in a Voigt unit given by equation (20), 
the expression for the instant power equals 
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Consequently, after mathematical work, the current takes 

the form 
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It should be emphasized that the resulting current through 

the dielectric is proportional to the intensity of the electric 
field and also to the mechanical strain. In fact, equation (64) 
clearly reveals the electrostriction effect, since a current 
appears in the dielectric as a consequence of the oscillatory 
mechanical field. 

5 COMPARISON OF MODEL RESULTS 
WITH EXPERIMENTAL DATA FROM DMA 

TESTS CONDUCTED UNDER HIGH 
ELECTRICAL FIELD. 

The experimental verification of the capability of describing 
the electrostriction phenomenon from the electro-rheological 
representation shown in the present work was made through 
DMA tests conducted under high electric field on polyamide 
and polyethylene samples. DMA test involves an oscillating 
stress as a probe [21], so by superposing a direct electric field, 
the theoretical results from Section 4.2 can be verified. 
Indeed, from Section 4.2, it is proposed that an alternating 
current appears in the dielectric material as a consequence of 
the oscillating force due to the electrostrictive effect. 

Figure 10 shows the behavior of damping and dynamic 
modulus as a function of the applied electric field for the PA 
sample. As it can be seen from the Figure, damping (circles) 
decreases and dynamic modulus (triangles) increases as the 
strength in the electric field increases. After reaching the 
maximum value of electric field strength the field strength was 
again reduced. Damping and modulus measurement values in 
both cases, increasing and decreasing field strength, were 
identical within the measurement error. That means, no 
hysteretic effect was found.  

In contrast, damping and modulus measurement values of 
PE samples do not show any dependence on the strength of 
the electric field. Thus, damping and modulus behavior is not 
a function of the applied electric field, E. The damping and 
modulus values measured at nil electric field for PE and PA 
are shown in Table 1.  

 
The behavior for PA as a function of the field strength is in 

agreement with previously reported data on styrene butadiene 
rubber which were explained by means of the inclusion model 
for dielectric materials [4-6]. In fact, the applied electric field 

Table 1. tan() and G’ measured at nil electric field in PE and PA (at Room 

Temperature). 

 PE PA 

tan() 0.10 0.11 

G’ (MPa) 70 250 

 
Figure 9. Equivalent dipole based on a Voigt unit. Upper plot: undistorted 
state. Lower plot: distorted material after the application of the electric and 
mechanical fields. 
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promotes the stretching and/or rotation of electric dipoles 
which increase the internal stresses of the matrix. It leads to a 
decrease in the chains mobility of the polymer, giving rise to 
the decrease and increase of damping and modulus, 
respectively.  

 
As it can be seen from Figure 4, the experimental setup is 

slightly different from the one reported in [4]. The negative 
electrode is in series with the resistance R (see Figure 4). R 
measures the voltage drop due to the oscillating current 
promoted by the electrostrictive effect. Electrical work must 
be done by the power supply in order to compensate the 
modification of the polarization vector, due to the change in 
the dipoles arrangement, promoted by the oscillating stress 
due to the electrostrictive effect.  

In order to assess that the alternating current is promoted 
only by changes in the polarization state of the sample, a PE 
sample with equal size and shape as the PA sample was 
measured. Moreover, the maximum oscillating strain was also 
identical for both PA and PE samples. No alternate current in 
PE samples was detected. Therefore, some contribution from 
the slight twist of sample between the plates can be neglected. 
Consequently, a contribution to the current promoted by a 
change in capacity, due to the modification in the geometrical 
arrangement of the sample at the spectrometer, can be 
neglected. 

The alternating current recorded by the oscilloscope at the 
A point, see Figure 4, and the oscillating strain, during DMA 
measurements performed under 1300 kV/m are shown in 
Figure 11. The recorded voltage from R was in the order of 
some mV. 

The alternating current and oscillating strain were 
subsequently mathematically handled by means of Fourier 
transform [22]. In order to obtain the phase difference 
between the mechanical oscillation, ε(t), and the current, i(t) 
(equation 64), and also avoid the electrical noise; the complex 
coefficients of the Fourier discrete series of ε(t), and i(t) were 
calculated, see Appendix for details. Figure 12 shows the 

behavior of the mechanical oscillation and the alternating 
current measured at point A after the Fourier transform. Both 
signals were recorded by a high speed oscilloscope (see 
Section 3.2) simultaneously, so the mismatch in time for both 
recorded waves is completely negligible.  

 
As it can be seen from the Figure, the current curve 

overtakes the strain one in a slightly higher value than π/2, 
which is in a good agreement with the theoretical predictions 
of the model developed in Section 4.2. The obtained shift 
from the Fourier analysis between the strain and current is 95° 
/ 0.528 , which emphasizes that the rheological contribution 
of the measured current is promoted by the electrostrictive 
coupling from the oscillating strain. Indeed, equation (64) 
predicts an overtakes of around π/2 far of the maximum of the 
relaxation peak. Taking in consideration that for PA at 318 K 
there is not reported dielectric relaxation processes [11, 23], a 
shift of around π/2 between the strain and current is 
reasonable. Moreover, in a dynamic mechanical analysis test 
for a given material, the strain lags to the stress by a  angle. 
Thus, considering a damping of 0.11 (see Table 1), it leads to 
a lag angle close to five degrees. So, as in Figure 12 we are 
plotting strain instead stress; the overtake of current regarding 
strain in 5 degrees higher is in very good agreement. 

6 SUMMARY 
An electro-rheological model, based on a Voigt equivalent 

dipole which involves the electrostriction phenomenon, was 
developed. The model was based on a mean field 
approximation as an averaging of the mechanical and 
electrical properties.  

The response of the model was studied considering both, 
electrical and mechanical excitations. The one- and three-
dimensional cases were studied.  

In the case of an alternating electrical excitation the model 
reveals the appearance of harmonics in the current through the 
dielectric material promoted by the electrostriction 

 
Figure 11. Current promoted from the electrostriction phenomenon due to 
the oscillating mechanical field and oscillating strain, for PA sample. 

Figure 10. tan(Φ) (circles) and G’ (triangles) as a function of the electric 
field strength for a PA sample.  
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phenomenon. The one-dimensional case can resolve the 
appearance of the second harmonic, while the three-
dimensional case resolves the appearance of higher 
harmonics. In contrast, for the case of an oscillating 
mechanical excitation, the model predicts a current which 
overtakes the driving mechanical oscillation. Moreover, in this 
last case an excellent correlation between the model and 
experimental results was obtained from dynamic mechanical 
analysis tests conducted under high electric field.  

 

APPENDIX 
In order to calculate the phase difference between the 

mechanical oscillation, ε(t),  and the current, IC(t), and also to 
avoid the electrical noise, we get the complex coefficients of 
the Fourier discrete series of the mechanical and electrical 
waves. For this purpose, we use the well known expression, 
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where X[n] is the vector containing the values of the wave for 
points equally spaced in time, N  the total number of points in 
a period and Ω=2π/N. The Fourier discrete series is, 
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Due to the random nature of the electrical noise, we use 31 

periods instead of one to calculate the complex coefficients, 
ck. Thus, the 31st harmonic corresponds to the fundamental 
frequency, which is the one of our interest. From the spectra 
obtained for each wave, the modulus of the complex 
coefficients corresponding to the homonymous harmonics, the 
31st harmonics are used. 

In this way, the signals of the mechanical and the electrical 
oscillations (without electrical noise) result, 

 

31 31, 31,( ) cos( ) (67)mec mect t      

 

31 31, 31,( ) cos( ) (68)elec elecIc t Ic t    

 
Equations (67) and (68) were used for the plotted curves in 

Figure 11. In addition, the shift between both waves is 
obtained from 

 

   31, 31,

31, 31,

1 1
31 31, 31, (69)mec elec

mec elec

b b
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where a and b are the binomial coefficients of the Fourier 
series related to the cosine and sine, respectively; such that a = 
2 Re (ck) and b = - 2 Im (ck) 
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