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Abstract

A Borromean nucleus is a bound three-body system which is pairwise unbound
because none of the two-body subsystem interactions are strong enough to bind
them in pairs. As a consequence, the single-particle spectrum of a neutron in the
core of a Borromean nucleus is purely continuum, similarly to the spectrum of a free
neutron, but two valence neutrons are bound up in such a core. Most of the usual
approaches do not use the true continuum to solve the three-body problem but
use a discrete basis, like for example, wave functions in a finite box. In this paper
the proper continuum is used to solve the pairing Hamiltonian in the continuum
spectrum of energy by using the single particle level density devoid of the free
gas. It is shown that the density defined in this way modulates the pairing in the
continuum. The partial-wave occupation probabilities for the Borromean nuclei 6He
and 11Li are calculated as a function of the pairing strength. While at the threshold
strength the (s1/2)

2 and (p3/2)
2 configurations are equally important in 6He, the

(s1/2)
2 configuration is the main one in 11Li. For very small strength the (s1/2)

2

configuration becomes the dominant in both Borromean nuclei. At the physical
strength, the calculated wave function amplitudes show a good agreement with other
methods and experimental data which indicates that this simple model grasps the
essence of the pairing in the continuum.
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1 Introduction

A Borromean nucleus [1,2] is a bound three-body system in which any pair
subsystems are unbound. This is so because neither, the bare neutron-neutron
interaction nor the core-neutron interaction are strong enough to keep any
pair subsystem together. As a consequence, the single-particle spectrum is
exclusively continuum. The 6He and 11Li have these characteristics, hence
they are both Borromean nuclei, formed by a core plus two neutrons [3,4]. The
properties of these nuclei have been studied in the two-body framework [5] as
well as using the three-body framework [6–10] with effective interaction. More
elaborate formalisms as the Faddeev equations [1,11] and ad initio calculations
[12–14] has also been used to scrutinize the properties of these exotic nuclei.

The pairing is a fundamental part of the residual interaction [15,5,16]. It is
particulary important in Borromean nuclei, since the core-neutron system is
unbound while the same core wiht two neutrons is bound. Even when the
origin of the pairing is unknown, at least two different models provide possible
mechanisms for the enhancement of the pairing in the 11Li nucleus. The first
one is through the interplay between the pairing and collective vibration [17].
This interpretation is consistent [18] with the experimental cross section of
Ref. [19]. The second mechanism is provided by the tensor force [20], which
explains the observed Coulomb breakup strength and the charge radius of Ref.
[21]. The simplest pairing interaction is given by the constant pairing [15]. It
will be shown that this effective interaction, even simple, in conjunction with
the single particle density, captures the essence of the correlations of the two
neutrons in the Borromean nuclei 6He and 11Li.

This paper studies the neutron-neutron pairing correlations in the core of the
Borromean nuclei 6He and 11Li. Due to the Borromean character of these two
nuclei, the correlations between continuum states are the only one present.
Usually these correlations are incorporated through quasibound states ob-
tained by putting the system in a large spherical box. In Refs. [8,10] the
scattering wave functions are used in order to consider explicitly the contin-
uum; in this work instead, the continuum spectrum of energy is handled using
the continuum single particle level density (CSPLD). This density is defined
as the difference between the mean-field and the free densities [22–24]. The
used of the CSPLD was implemented earlier in many-body calculations in the
Bardeen-Cooper-Schrieffer and Richardson solutions of the pairing interaction
in Refs. [25,26].

The paper is organized as follows. In section 2 the partial wave probability
amplitudes in terms of the CSPLD is derived. In section 3.1 the single particle
representation is defined, while the binding energy and partial wave amplitudes
as a function of the strength are calculated in section 3.2. The conclusions are
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given in section 4. The paper contains an appendix (Appendix A) which gives
some details about the CSPLD which modulates the pairing interaction in the
continuum.

2 Formalism

The goal of this section is to give the partial wave probability in terms of the
partial wave single particle level density. We found it is clearer formulating
the problem by starting with continuum discretized wave functions by putting
the system in a spherical box (what we call box representation) [27]. After
the equations have been obtained we make the formal limit of the size of the
spherical box to infinity. We get a dispersion equation similar to that of Eq. (4)
in the two-electrons system [28] which includes the continuum single particle
level density.

Let us consider the Borromean nucleus as a three-body system formed by
an inert core plus two valence neutrons. The Hamiltonian which governs the
system reads,

H = h(1) + h(2) + V (1)

where h is the single-particle Hamiltonian (see Eq. (17) in sect. 3.1) and V
is the residual interaction between the two valence neutrons. The discrete
eigenvalues of h are labeled by {a,ma} = {na, la, ja, ma} [29]

h(r̄)ψama(r̄) = εaψama(r̄) , (2)

with εa > 0 for all a.

The eigenfunctions of h are used as the single particle representation to build
the antisymmetrized and normalized two-neutron bases |a, b; JM〉. This bases
is used two expand the normalized two-neutron wave function |Ψ〉JM in term
of the unknown amplitudes XJ

ab [29]

|Ψ〉JM =
∑

b≤a

XJ
ab|a, b; JM〉 (3)

with

∑

b≤a

(XJ
ab)

2 = 1 (4)

3



From the Schrödinger equation H|Ψ〉JM = EJ |Ψ〉JM we get the following
eigenvalue equation for the three-body problem in the shell model framework

(EJ − εa − εb)X
J
ab =

∑

d≤c

〈c, d; JM |V |a, b; JM〉XJ
cd (5)

We are going to consider as particle-particle effective interaction the constant
pairing with matrix elements (m.e.) given by [15]

〈c, d; JM |V |a, b; JM〉 = −G
2

√

(2jc + 1)(2ja + 1)δJ0δcdδab (6)

complemented with a partial wave cutoff lmax and an energy cutoff εmax which
will be specified in Section 3.1.

From the secular equation (5) and the interaction m.e. (6) we get the dispersion
relation

1 =
∑

nlj

(2j + 1)

2

G

2εnlj −E0
(7)

which gives the J = 0 correlated two-neutron energies. This expression shows
that every state in the discretized continuum, no matter if it represents a res-
onant or a continuum state [30], contributes with the same strength to the
particle-particle correlation. This is a nonphysical feature since the expecta-
tion is that states in resonant configurations will have greater probability to
interact with each other and with greater strength that states in continuum
configurations. We will see below how this attribute of the constant pairing in
the discretized continuum is modified in the continuum representation using
single particle level density.

From the secular equation (5) and the normalization condition Eq. (4) we get
the two-particle wave function amplitudes

XJ
ab = Nδab

√
2ja + 1

2εa − E0
(8)

withN the normalization coefficient. Then, the two-particle ground state reads
|Ψ〉 = ∑

nlj Xnlj|nlj, nlj; 00〉 with

Xnlj = N

√
2j + 1

2εnlj −E0
. (9)

We define the partial wave amplitude by summing up the contribution of all
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positive energy states for each partial wave (l, j)

Xlj = N
∑

n

√
2j + 1

2εnlj − E0

, (10)

where the coefficient N is fixed by the normalization condition
∑

lj X
2
lj = 1,

and E0 is obtained by solving the dispersion relation (7).

In the Appendix A we show that what makes sense in the limit R → ∞ of
the size of the box, is not limR→∞ f(kn) but limR→∞[f(kn)− f(k(0)n )], i.e, the
difference between the correlated and the uncorrelated magnitudes [22,24].
This is a practical way to get rid of the density due to the free nucleons. A
subtraction prescription like this one was proposed by Bonche et al. [31,23,24]
for the calculation of the contribution of unbound states in nuclear Hartree-
Fock framework of finite temperature. The probability amplitude Xlj in the
continuum representation reads,

Xlj =
√

2j + 1N

εmax
∫

0

glj(ε)

(2ε− E0)
dε (11)

with

glj(ε) =
1

π

dδlj
dε

(12)

and δlj(ε) the partial wave phase shift (Appendix A).

The probability amplitude Xlj might be negative for some partial wave if glj(ε)
takes negative values, but the partial probability X2

lj = (Xlj)
2,

X2
lj = (2j + 1)N2





εmax
∫

0

glj(ε)

(2ε−E0)
dε





2

, (13)

is a positive magnitude. The value of N is defined such that the normalization
∑lmax

lj X2
lj = 1 is fulfilled.

Notice that if we had defined instead, the partial wave probability as X2
lj =

∑

n(Xnlj)
2, when the limit of the size of the box is taking to infinity, it could

happen that X2
lj ∝

∫ glj(ε)

(2ε−E0)2
dε might be negative if glj(ε) takes mainly nega-

tive values in the interval (0, εmax).

By taking the box limit of the Eq. (7) we get the following dispersion relation
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1=
lmax
∑

lj

(2j + 1)

2

εmax
∫

0

Gglj(ε)

2ε− E0
dε (14)

This expression physically differs with (7) not only because the limit of an
infinite box has been taken, but mainly because the density without the free
fermion gas is used (see Appendix and Ref. [22]). Now it is clear that resonant
and non-resonant continuum states will not make the same contribution. In
the applications it will be shown how the density affects the partial wave
occupation probability. We will find that glj(ε) is intense around a resonance
and small everywhere else. Then, the above expression could be interpreted in
the way that the CSPLD modulates the pairing interaction in the continuum.

In terms of the CSPLD g(ε) we get a dispersion equation similar to that of
Eq. (4) in the Cooper’s system [28],

2

G
=

εmax
∫

0

g(ε)

2ε− E0
dε . (15)

with (Appendix A).

g(ε) =
lmax
∑

lj

(2j + 1)glj(ε) . (16)

Equations (15) and (13) give the energy and the probability occupation, re-
spectively, for the two neutrons in Borromean nuclei interacting by a con-
stant pairing force in the continuum representation through the partial wave
CSPLD.

3 Applications

3.1 Single particle representation

The Woods-Saxon (WS) mean field arranges the neutron 0p1/2 state below the
1s1/2 state; this order is experimentally found in the nucleus 5He but not in
10Li. The ground state of 10Li is the state 1/2+ which corresponds to the 1s1/2
state in the shell model picture. In order to reproduce the experimental order
in the nucleus 10Li, it is usual to use parity-dependent parameters for the WS
[6,7]. Alternatively, we add to the WS a deep Gaussian potential [32] which
produces the same effect. The Gaussian parameters are chosen in a way that
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it strongly (mildly) affects the s(p) state. Doing so, the same mean-field can
be use for odd and even states to describe the neutron states in 10Li.

The single particle Hamiltonian which determines the representation through
the eigenfunction of Eq. (2) is

h(r̄) = − ~
2

2µ
∇2

r̄ + VWS(r) + Vg(r) + Vso(r)(l̄ · s̄) , (17)

where r̄ denotes the coordinate of the nucleon and µ the reduced mass of the
core-neutron system. The central and spin-orbit potentials in terms of r = |r̄|
are given by the following expressions

VWS(r)=− V0
1 + exp( r−R

a
)

(18)

Vso(r)=−Vso
ra

2

~2

exp( r−R
a

)
[

1 + exp( r−R
a

)
]2 (19)

Vg(r)=−Vge
− r2

a2g (20)

with R = r0A
1/3.

The mean-field parameters in (18)-(20) are adjusted using the code Gamow
[33] in order to reproduce as well as possible the low-lying levels of the nuclei
5He and 10Li. Table 1 gives the values of these parameters.

Table 1
Mean-field parameters for a neutron in the 4He and 9Li mean fields of Eqs. (18)-
(20).

Parameter 4He 9Li

2µ/~2 [MeV−1fm−2] 0.038538 0.043394

a [fm] 0.67 0.67

r0 [fm] 1.20 1.27

V0 [MeV] 51.0 39.95

Vso [MeV fm2] 12.4 19.1

Vg [MeV] 0. 609

ag [fm] — 0.26

In Table 2 whe compare the calculated [33] and experimental energies. The real
and imaginary complex energies of 5He are very similar to the experimental
resonant parameters. The ground state energy of 10Li is real and negative but
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this nucleus is unbound. This is an antibound state [34] with wave number
k0 = −i 0.033 fm−1. An antibound state is an unbound single particle state
with negative real energy, which would be bound if the mean field were a bit
stronger [35]. The p1/2 energy in 10Li was fitted to the average of the two
known experimental values.

Table 2
Calculated [33] and experimental [36,37,3] low-lying levels (in MeV) of the nuclei
5He and 10Li.

5He 10Li

State Cal. Exp. Cal. Exp.

0p3/2 0.799 − i 0.361 0.798 − i 0.324 −−− −−−
0p1/2 1.989 − i 2.310 2.068 − i 2.785 0.213 − i 0.053 0.185 ± 0.040

0.240 ± 0.040

1s1/2 −−− −−− −0.025 −0.025 ± 0.015

0d5/2 −−− −−− 4.368 − i 1.670 −−−

The energy cutoff εmax is defined by using the expression which relates its value
with the effective range rnn = 2.75 fm [38] obtained for the three-dimensional
delta interaction in ref. [6]

εmax =
~
2

m

(

4

πrnn

)2

, (21)

which gives 8.884 MeV using mc2 = 939.57 MeV and ~c = 197.327 MeV fm.
In our calculation we are going to used εmax = 9 MeV.

Using the mean-field which reproduces the low-lying levels of Table 2, we
calculate the neutron partial wave phase shifts δlj(ε) as a function of the
energy (up to the energy cutoff εmax) using the code ANTI [39,40] and then,
we calculate each partial density with Eq. (12). The CSPLD g(ε) (16), shown in
Fig. 1, is calculated summing up the partial wave densities up to the angular
momentum cutoff lmax = 4. Partial wave with bigger angular momentum
mildly modify the density for energies ε < εmax.

The complex energy poles of the S-matrix manifest themselves on the real
energy by modeling the shape of the CSPLD. We found two resonances below
9 MeV for the 5He nucleus (see Table 2). While the p3/2 resonance appears
as a bump centered around 800 keV in Fig. 1, there is not signal of the p1/2
resonance because of its large width (∼ 5 MeV). The finger print of the ground
state 1/2+ of 10Li appears as a very sharp structure (labeled as s1/2 in Fig. 1)
in the density, very close to the continuum threshold. This is consistent with
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Fig. 1. (Color online) Neutron continuum single particle level density for lmax = 4
in the 4He and 9Li cores. The mean fields are defined by the parameters of Table 1.
(l, j) label the main contribution of the partial-wave.

the properties of the scattering wave functions ulj(k, r) at low energy [41] in
the presence of bound or antibound state with energy ε ∝ k20 . 0 close to the
threshold

ulj(kr) ∝
√

√

√

√

2k |k0|
k2 + |k0|2

ulj(|k0|r) , (22)

in 10Li, |k0| = 0.033 fm−1. The density has another sharp structure around 200
keV corresponding to the first excited state (1/2− state). The last structure
observed in the 10Li spectrum is due to the 5/2+ resonance around 4.4 MeV.

Notice that the scattering wave functions themselves are not used in the formu-
lation but the CSPLD, i.e. the information of the structure of the continuum
is coded in g(ε) as defined in Ecs. (12) and (16). The single particle represen-
tation is formed by NHe = 174 and NLi = 289 discretized real energy states
for the Helium and Lithium systems, respectively. These numbers of mesh
points are chosen so as to make the results stable. The position of the mesh
points are selected following the structure of the CSPLD, i.e. states around
the resonant energies are favored. The narrower is the resonance, more mesh
points are needed to smoothly describe the density; this explains why more
states are used to describe the Lithium than Helium up to the same energy
cutoff.

3.2 Results

The ground-state energy of the 6He and 11Li nuclei as function of the pairing
strength G is calculated and shown in Fig. 2. They were obtained from Eq.
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(15) using Gauss-Legendre quadrature for the integration. The experimental
ground state energies EExp = −0.973 MeV [3] and EExp = −0.369 MeV [42]
for 6He and 11Li respectively, are marked by dotted horizontal lines. Let us
called physical strength Gph the value of G for which the experimental energy
is reproduced. For the 6He system we get GHe

ph (9MeV) = 1.427 MeV, while for
11Li we get GLi

ph(9MeV) = 0.553 MeV.

Taking a different energy cutoff εmax should only renormalized the pairing
strength but not change the calculated properties of the system. In order to
test this statement, we calculate the wave function amplitudes for a second
model space with εmax = 18 MeV (using 90 extra mesh points to describe the
density in the interval ε = (9, 18) MeV). The evolution of the ground state
energy for this second model space is also shown in Fig. 2.

Fig. 2. (Color online) Ground state energy of the nuclei 6He and 11Li as function of
the pairing strength G for the energy cutoff εmax = 9 MeV (black solid line) and
εmax = 18 MeV (red dashed line). The dotted horizontal lines show the position of
the experimental energies from Ref. [3] and [42], respectively.

For 6He, the value of the physical strength for the second model space is
GHe

ph (18MeV) = 1.507 MeV. This figure is larger than for the smaller model
space. The usual trend for the strength as a function of the energy cutoff is
that the former decreases as the last one increases. The inversion in our model
is due to the small negative values of the tail of 5He density (see Fig. 1). The
value of the physical strength for 11Li is GLi

ph(18MeV) = 0.542 Mev. This figure
is very similar to the one for the first model space (εmax = 9 MeV), indicating
that the Lithium system is less sensitive to the energy cutoff than the Helium,
probably due to the proximity of GLi

ph to the continuum threshold.

The components l = 0, 1, and 2 of the occupation probabilities for the two
different model spaces (energies cutoff) are given in Table 3. Since the results
compare well with each other, we will adopt for purpose of comparison with
other methods, the model space with εmax = 9 MeV obtained from Eq. (21).
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Table 3
Occupation probabilities X2

lj (l = 0, 1, 2) for the 6He and 11Li for the two model
spaces at the physical strengths Gph.

Gph(MeV ) X2
s1/2

X2
p3/2

X2
p1/2

X2
d5/2

X2
d3/2

6He

1.427 0.0853 0.8770 0.0360 0.0015 0.0002

1.507 0.0920 0.8673 0.0358 0.0043 0.0005

11Li

0.5527 0.3324 0.0070 0.6501 0.0103 0.0002

0.5418 0.3302 0.0079 0.6508 0.0102 0.0004

Table 4
Percentage probabilities X2

lj(%) for the main partial-wave components of the

ground state wave function of 6He from different models. The meaning of the ab-
breviations are: DDCI: density-dependent contact interaction; CI(p): contact inter-
action within p model space; CxS: complex scaling; ; CI(psd): contact interaction
within psd model space.

Model X2
s1/2

X2
p3/2

X2
p1/2

X2
d

DDCI [6,7] — 83,0 — —

CI(p) [8] — 97.2 2.8 —

CxS [9] 0.9 91.7 4.3 3.1

CI(psd) [10] 0.8 89.7 8.0 1.4

This work 8.5 87.7 3.6 0.2

The probability occupation of the ground-state wave function of 6He is com-
pared with other methods in Table 4. The calculated (p3/2)

2 contribution is
not far from the one calculated using density-dependent contact interaction
with box basis functions of Refs. [6,7]. Our best agreement is with the result
obtained using contact-delta interaction in the basis of the continuum scat-
tering s, p and d wave functions of Ref. [10]. Notice that the previous work [8]
using only p wave gives much bigger value for the (p3/2)

2 configuration. The
simultaneous comparison of (p3/2)

2 and (p1/2)
2 configurations, shows a good

agreement with Ref. [9] which uses Gaussian basis function in the complex
scaling framework. A remarkable difference with all other methods is the big
contribution of (s1/2)

2 in our model.

It is experimentally well established that the two main configurations of the
two neutrons in the Borromean nucleus 11Li are (s1/2)

2 and (p1/2)
2. Ref. [43]

shows that the contribution of the second configuration is (51±6)%. In Table
5 we compare our result with that of the cluster model of Ref. [1], the denstiy-
dependent contact interaction of Refs. [6,7] and that of the Random Phase

11



Table 5
Comparison of the percentage probabilities X2

j (%) configurations for the ground

state wave function of the nucleus 11Li. The figures for the ’Cluster’ model is taken
from the average of Table 13 of Ref. [1].

Model X2
s X2

p X2
d

Cluster [1] 39.2 54.6 1.1

DDCI [6] 23.1 61.0 —

RPA [17] 40.0 58.0 2.0

DDCI [7] 22.7 59.1 —

This work 33.2 65.7 1.1

Experiment [43] — 51 ± 6 —

Approximation (RPA) of Ref. [17]. In general we observe a good agreement
with all these methods. In particular, the calculated X2

s contribution is in
between the result of the three-body and the collective models while the X2

p

seems to better agree with the result of Ref. [6].

As the last study of the properties of these two Borromean nuclei, we analyze
how change the ratio X2

s -X
2
p as the pairing strength is artificially decreased.

Figure 3 shows the result for the 6He nucleus. At the physical strength, the
ground state wave function is dominated by the (p3/2)

2 configuration. As the
strength is decreased, the p contribution reduces is value at the time that the
s increases. The system becomes unbound (changes to positive energy, see Fig.
2) for Gth ≃ 0.55 MeV, called threshold strength (dashed vertical lines Fig.
3). At this value of the strength both configurations (s1/2)

2 and (p3/2)
2 are

equally important. Figure 4 shows the evolution of the two main components
of the wave function in 11Li. At the physical strength, both (s1/2)

2 and (p1/2)
2

configurations are sizable in 11Li nucleus. As the strength is decreased, the s
configuration becomes more and more important, being the dominant one at
the threshold strength Gth ≃ 0.005 MeV.

A common feature of Lithium and Helium nuclei is that small pairing strength
favors the configuration (s)2 in detriment of (p)2 in both Borromean nuclei.
While a difference between them is that, at the threshold strength the wave
function of the Lithium is almost 100% (s1/2)

2, while the two neutrons in the
Helium share their strength between the (s1/2)

2 and (p3/2)
2 configurations.

Figures 3 and 4 show that both Borromean nuclei 6He and 11Li are unbound
until the pairing force creates enough correlations to unite them all three in
a bound system. For the three-body n-n-9Li this transition occurs very close
to the continuum threshold, hence a very small correlation between the two
neutrons in the 9Li core is enough to bind the three-body system. This behavior
of the two neutrons in the 9Li core resembles very much the behavior of the
electrons Cooper pair [28,17] with the difference, that in our finite system,
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Fig. 3. (Color online) The two most important configuration (lj)2 in the 6He ground
state wave function as a function of the pairing strength. The continuum (dashed)
vertical line indicates the position of physical (threshold) strength Gph = 1.427 MeV
(Gph = 0.55 MeV).

Fig. 4. (Color online) The two most important configuration (lj)2 in the 11Li ground
state wave function as a function of the pairing strength. The continuum (dashed)
vertical line indicates the position of physical (threshold) strength Gph = 0.553 MeV
(Gph = 0.005 MeV).

the threshold strength is not zero. The small value of Gth may be due to the
presence of the antibound state close to the threshold in the n-9Li system. The
antibound state may also affect other observables, like for example the dipole
transition [44].

4 Conclusions

The ground state energy and its wave function of the Borromean nuclei 6He
and 11Li have been studied as a function of the pairing strength using the
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single particle level density. The model consist of a three-body system with two
valence neutrons outside the inert cores 4He and 9Li. The neutrons lie in the
continuum of their respectively mean fields and they are correlated through a
constant pairing interaction modulated by the continuum single particle level
density. The single particle representation was defined using the continuum
single particle level density defined by the subtraction method [22], while the
cutoff energy was settled using the neutron-neutron effective range [6]. In order
to compare with other formalism and experimental data, the pairing strength
was fixed using the ground state energy of 6He and 11Li. It was found a good
agreement with other methods for both nuclei 6He and 11Li. Finally, even
when the (s1/2)

2 configuration becomes dominant as the strength is artificially
decreased in both Borromean systems, a seemingly apparent unique feature
of the continuum s states in the 11Li system appears due to the presence of
the near-threshold antibound state, i.e. an extremely small (although finite)
strength is enough to bind the two-neutron in the 9Li core. This simple model
shows that the essence of the pairing in the continuum is captured through
the continuum single particle level density.

Acknowledgements

This work was supported by the National Council of Research PIP-0625 (CON-
ICET, Argentina).

A Partial wave single-particle level density

In this appendix we give details about the continuum single-particle level
density (CSPLD) which is use in this work for the constant pairing interaction
in the continuum energy representation. This density is derived from the box
representation and it is expressed in terms of the derivative of the partial wave
phase shift. We closely follow the consideration done by Beth and Uhlenbeck
for the calculation of the second virial coefficient [22].

A partial-wave scattering state is characterized by the angular momentum
l, the total angular momentum j and the continuum wave number k. This
generalized eigenfunction of the single-particle Hamiltonian with continuum
eigenvalue ε = ~2

2µ
k2 (where µ is the reduced mass) is characterized asymptot-

ically by the phase shift δlj(k) [45],

ulj(k, r) → sin
[

kr − l
π

2
+ δlj(k)

]

(A.1)
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when r → ∞.

This asymptotic behavior together with the condition that for a given partial-
wave the phase shift tends to zero as k → ∞, determine δlj(k) within a multiple
of π. An increase of the orbital angular momentum makes the single-particle
mean-field less important, and for this reason it makes sense to used an orbital
angular momentum cutoff lmax.

One can discretized the continuum scattering states energy ε by putting the
system into a large spherical box with radius R. Then, the box boundary
condition, ulj(k, R) = 0 forces the continuous spectrum to have discrete values

εnlj = ~2

2µ
k2nlj. The parameter n denotes the number of nodes (counting the

ones at r = 0) of the function unlj(r) = ulj(knlj, r) in the interval [0, R). The
relation between the number of nodes and the phase shift δlj can be obtained
through the asymptotic expression (A.1) and the boundary condition, given

knljR− l
π

2
+ δlj(knlj) = nljπ (A.2)

If for fixed {l, j} one orders the states εnlj according to the number of nodes
of unlj, then nlj gives the number of levels (without counting the degeneracy)
between the bottom of the single particle potential and the energy εnlj [22].
In the limit of the box going to infinity the spectrum εnlj becomes continuous
and a magnitude like

∑

n f(kn) changes to [45]

lim
R→∞

∑

n

flj(knlj) =
∫

dk

(

dnlj

dk

)

flj(k) (A.3)

with
dnlj

dk
= lim∆k→0

∆nlj

∆k
. Where ∆nlj = nlj(k+∆k)−nlj(k) gives the contri-

bution of all states for which k lies between k and k+∆k. Using the expression
(A.2) we get

dnlj

dk
=

1

π

[

R +
dδlj
dk

]

(A.4)

The summation in (A.3) includes negative-energy bound states and positive-
energy discretized continuum states. Single particle energies in the core of
Borromean systems are exclusively positive. Then, in the limit R → ∞ we
would have

lim
R→∞

∑

n ,εnlj>0

flj(knlj) =

∞
∫

0

g
(total)
lj (ε)flj(ε)dε (A.5)
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where we introduce the total partial wave energy density

g
(total)
lj (ε) = lim

R→∞

[

√

µ

2π2~2ε
R +

1

π

dδlj
dε

]

(A.6)

The first term, which diverges with the size of the box corresponds to the
density of the free nucleon. This can be seen by doing an analogous analysis
when the nuclear mean field is zero. In such a case we would have in the
passing to the limit,

lim
R→∞

∑

n ,ε
(0)
nlj

>0

flj(k
(0)
nlj) =

∞
∫

0

g
(free)
lj (ε)flj(ε)dε

(A.7)

where ε
(0)
nlj = ~2

2µ
[k

(0)
nlj]

2 are the positive discrete eigenvalues (notice that the

condition ε
(0)
nlj > 0 is redundant for the free nucleons in the box) and

g
(free)
lj (ε) = lim

R→∞

√

µ

2π2~2ε
R (A.8)

By taking advantage that g
(total)
lj and g

(free)
lj have both the same divergence as

a function of the box radius, we used the following recipe in the limit of an
infinite box (transition to the continuum) [22] for a fixed partial wave (lj),

lim
R→∞









∑

n ,εnlj>0

flj(knlj)−
∑

n ,ε
(0)
nlj

>0

flj(k
(0)
nlj)









=

∞
∫

0

glj(ε)flj(ε)dε (A.9)

where glj is the partial wave single particle level density with the free nucleons
density subtracted

glj(ε) =
1

π

dδlj
dε

(A.10)

i.e., the density so defined is the change in the density of single particle
states at the energy ε due to the interaction [46]. With the usual conven-
tion limǫ→∞δlj(ǫ) = 0, the phase shift at zero energy is determined by the
Levinson theorem as δlj(0) = nljπ [47]. The partial density glj(ε) may be ei-
ther positive or negative depending on the sign of the derivative of the phase
shift. For example if for a specific {lj} there are no resonance and nlj 6= 0,
the phase shift will decrease monotonically from nljπ to zero [47] and the par-
tial CSPLD will be negative for all values of the energies up to infinity. The
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draw-back of this “density” to be negative is compensated by the fact that
it gives the structure of the continuum, i.e. for resonant partial wave glj(ε) is
positive around the resonant energy and its amplitude much bigger than for
non-resonant partial waves.

The continuum single particle level density (CSPLD) results from the sum of
each partial wave CSPLD glj,

g(ε)=
∑

lj

(2j + 1)glj(ε) (A.11)

References

[1] M. V. Zhukov, B. V. Danilin, D. V. Fedorov, I. J. Bang, J. M. Thompson, J. S.
Vaagen, Phys. Rep. 231 (1993) 151.

[2] A. S. Jensen, K. Riisager, D. V. Fedorov, E. Garrido, Rev. Mod. Phys. 76 (2004)
215.

[3] D. R. Tilley, C. M. Cheves, J. L. Godwin, G. M. Hale, H. M. Kofmann, K. J.
H., C. G. Sheu, H. R. Weller, Nucl. Phys. A 708 (2002) 3.

[4] D. R. Tilley, K. J. H., J. L. Godwin, D. J. Millener, J. Purcell, C. G. Sheu,
H. R. Weller, Nucl. Phys. A 745 (2004) 155.

[5] P. G. Hansen, B. Jonson, Europhys. Lett. 4 (1987) 409.

[6] H. Esbensen, G. F. Bertsch, K. Hencken, Phys. Rev. C 56 (1997) 3054.

[7] K. Hagino, H. Sagawa, Phys. Rev. C 72 (2005) 044321.

[8] L. Fortunato, R. Chatterjee, J. Singh, A. Vitturi, Phys. Rev. C 90 (2014) 064301.

[9] T. Myo, Y. Kikuchi, H. Masui, K. Katō, Progress in Particle and Nuclear
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