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Abstract

Understanding the properties of drip line nuclei requires to take into account the
correlations with the continuum spectrum of energy of the system. This paper has
the purpose to show that the continuum single particle level density is a conve-
nient way to consider the pairing correlation in the continuum. Isospin mean-field
and isospin pairing strength are used to find the Bardeen-Cooper-Schrieffer (BCS)
and Lipkin-Nogami (LN) approximate solutions of the pairing Hamiltonian. Several
physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi
level, binding energy, and one- and two-neutron separation energies, were calculated
and compared with other methods and with experimental data when they exist. It
is shown that the use of the continuum single particle level density is an economical
way to include explicitly the correlations with the continuum spectrum of energy in
large scale mass calculation. It is also shown that the computed properties are in
good agreement with experimental data and with more sophisticated treatment of
the pairing interaction.
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1 Introduction

The theoretical and experimental study of drip-line nuclei became increasingly
important in the last forty years since the discovery of the Borromean Lithium
isotope [1]. From the point of view of basic knowledge, it is desirable to reach
a deeper understanding of the properties of loosely bound nuclei by studying
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for example, the spectroscopy as well as the role of pairing in drip line nuclei.
From application point of view, exotic nuclei are important, for example in
astrophysical processes [2,3] and as feeder to produce very heavy elements [4].
A direct indication of the importance of this exotic nuclei is the fact that
there are all around the world nuclear radioactive beam facilities which are
increasing their mass and energy scope [5]. This area of nuclear research will
remain prominent for many years to come [6].

The new ingredient of the exotic nuclei with respect to the nuclei along the
stability valley is the continuum. This implies that any theoretical model which
aim is to describe the properties of exotic nuclei must consider the coupling
with the continuum spectrum of energy. Many of such theoretical models are
described in references [7–16].

One of the main ingredient to study the properties of nuclei is the pairing,
‘pairing lies at the heart of nuclear physics’ [17] and it is expected that this
strong statement be true also for drip line nuclei [18]. The pairing part of
the particle-particle interaction increases the stability of nuclei close to beta-
stability [19], likewise one may hope that the pairing in the continuum tilts
the balance also towards the stability for nuclei close to the drip line [20].
Recently, the treatment of the pairing in the Bardeen-Cooper-Schrieffer (BCS)
approximation was extended by including the continuum through a basis of
transformed harmonic oscillators [21].

As pairing carries much of the weight of the particle-particle interaction it
is very handy for large scale mass calculation, where the use of effective in-
teraction is computationally expensive due to the rapidity increase of dimen-
sionality [22]. In particular, the continuum pairing may be useful to calculate
binding energies of heavy nuclei close to the drip line required in stellar nucle-
osynthesis calculations [23]. It is expected that the inclusion of the continuum
pairing improve the binding energies theoretically estimated by extrapolating
the known masses from the β stability region [24, 25].

In this work we solve the constant pairing Hamiltonian in the BCS [19, 26,
27] and in the Lipkin-Nogami (LN) [28–31] approximations. The continuum
spectrum of energy is incorporated through the continuum single particle level
density (CSPLD) [32,33]. This approach has two advantages: first, the CSPLD
modulates the pairing in the continuum, and second it saves a large amount
of computing time connected with the model space size when continuum is
considered. In particular, the state-independent large-scale mass-calculation
[34] would benefit from this approach.

After this introductory section, the paper describes the formalism in section
2. In section 3, a selected number of nuclear properties for the Tin chain, from
the proton drip line to the neutron drip line, are calculated and compared with
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other formalisms and with experiment when they exist. In the final section 4
we summarize our main finding and draw our conclusions.

2 Formalism

We are going to calculate some physical magnitude in a continuum energy
representation using a constant pairing interaction in the BCS and LN ap-
proximations. The continuum single particle states are normalized to Dirac
delta, then it results more simple to manipulate the equations in a box rep-
resentation. After the equation have been obtained, we make the formal limit
of the size of the spherical box to infinite.

2.1 Hamiltonian

The many-body system is described by the constant pairing interaction

H =∑
α

εaa
†
αaα −GP †P , (1)

where the index α = {a,mα} = {na, la, ja,mα} label the single particle states.
The mass-dependent strength G is parametrized by the total number of par-
ticles, A = Acore +Avalence and the relative neutron excess I = N−Z

A
as [35, 36]

G = χ1

A
(1 − χ2I) , (2)

where χ
2
= 0.385 MeV [35] and the constant χ

1
is adjusted to reproduce the

experimental gap.

The pair creation operator reads

P † = ∑
α>0

a†
αa

†
ᾱ . (3)

The summation α > 0 refers to the positive values of the projection of the
total angular momentum mα, while the operator a†

ᾱ = (−1)ja−mαa
†
a,−mα

is the

time reverse of the a†
α operator. The creation a

†
α and annihilation aα operators

creates bound and continuum states in a spherical box satisfying the usual
anti-commutation relationship {a†

α, aα′} = δαα′ .
Even when negative and positive energy states are normalized in the box
representation, the assignment of the same constant matrix elements of the
interaction between particles in bound and continuum configurations is non-
physical [37]. The influence of the non-resonant continuum is reduced when
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for the density energy is used the difference between the mean field and free
density [38].

2.2 Lipkin-Nogami Equations

The pairing interaction is diagonalized in the LN and the BCS approximations,
with the LN Hamiltonian given by [28, 29]

HLN =H − λ1N − λ2N
2 , (4)

where H is the original Hamiltonian (1) and N = ∑α a
†
αaα is the number

operator. The introduction of the term λ2N2 reduces the effect of the number
fluctuation [28, 29], which is significant in the BCS approximation when the
number of particles is small.

The LN equations in the box representation are given by [31]

4

G
=∑

n

1

En

(5)

N =∑
n

v2n (6)

4λ2

G
= (∑n u

3
nvn) (∑n unv

3
n) − 2∑n (unvn)4(∑n (unvn)2)2 − 2∑n (unvn)4 , (7)

where the index n = {nb, nc} labels the bound states nb and the box-continuum
states nc; representing the negative and positive energy states respectively,
with

v2nb
= 1
2
(1 − enb

Enb

) , v2nb
+ u2

nb
= 1 (8)

Enb
=√e2nb

+∆2 + λ2 (9)

enb
= εnb

− λ + (4λ2 −G)v2nb
(10)

λ =λ1 + 2λ2(N + 1) (11)

and the same for the box-continuum states. The pairing gap reads,

∆ = G
2
∑
n

unvn . (12)

We are now in condition to give the equations for the continuum represen-
tation. For this purpose we extend the size of the spherical box to infinite.

4



In this limit the single particle density for the bound states is represented by∑nb
δ(ε−εnb

). On the other hand, the box-continuum states become more dense
and are represented by the continuum single-particle level density g(ε) [38],
with

g(ε) = 1

π
∑
lj

(2j + 1)dδlj
dε

. (13)

The density for bound and continuum states can be written as

g̃(ε) = ∑
nb

(2jnb
+ 1)δ(ε − εnb

)θ(−ε) + g(ε)θ(ε) . (14)

Magnitudes which in the box representation are calculated as ∑n fn, in the
continuum representation take on the following form:

∑
n

fn→⨋ f , (15)

where

⨋ f = ∞

∫
−∞

dε [∑
nb

(2jnb
+ 1)δ(ε − εnb

)f(ε)θ(−ε)
+g(ε)f(ε)θ(ε)]
=∑

nb

(2jnb
+ 1)fnb

+ ∞

∫
0

dε g(ε)f(ε) . (16)

The symbol ⨋ denotes both a summation over bound states and an integration
over the continuous part of the energy spectrum. The integral is calculated
using Gauss-Legendre quadrature. Hence, the CSPLD contribution seems to
be as the natural extension of the contribution of the discrete part of the
representation.

The BCS equations are obtained by taking λ2 = 0 in the LN equations (5)-(12)
with λ1 being the Fermi level. For this special case Eqs. (5) and (6) reduce to
Eqs. (11) and (10) of Ref. [32] which include the CSPLD.

2.3 Single particle representation. Bound and continuum states

The averaged single nucleon dynamics in the field of all other nucleons is used
as a starting point in all many body methods. The single particle model space
is calculated in a Woods-Saxon (WS) plus spin-orbit potential [39, 40],
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VWS(r) = − V0

1 + e r−R
a

, (17)

Vso(r) = −Vso

ra

2

h̵2

e
r−R
a

(1 + e r−R
a )2 . (18)

The mean field parameters, diffuseness a, the radius parameter r0 in R = r0A1/3

and the strengths V0 and Vso (considered mass-dependent [41])

V0 = c0 − c1 I (19)

Vso = cso0 + cso1 I (20)

I = N −Z
N +Z relative neutron excess (21)

are chosen to reproduce as well as possible the low lying experimental energies
[42] of the core plus one neutron.

The single particle representation is formed by the valence bound and contin-
uum states. The continuum part of the spectrum is represented by the CSPLD
g(ε), defined relative to the free particle density [38, 43]

g(ε) = 1

π
∑
lj

(2j + 1)dδlj
dε

, (22)

where the phase shifts are calculated using the code of Ref. [44].

3 Applications

The numerical calculated gaps are compared with the following experimental
five-point (fourth-order) gap equation [45, 46]

∆(N) = 1
8
[B(Z,N + 2) − 4B(Z,N + 1) + 6B(Z,N)
−4B(Z,N − 1) +B(Z,N − 2)] , (23)

where B are the binding energies. The fourth-order gap equation has the ad-
vantage over the second- and third-order equations that the former is more
precise than the second one and has not the problem of the ambiguity assign-
ment of the last one. The experimental masses are taken from Ref. [47]. In
the case that the experimental masses are unknown, we use theoretical masses
from Ref. [48, 49].
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3.1 Single particle representation. Bound and continuum states

On the proton drip-line side of the Tin isotopes, extrapolation from heavier
isotopes would indicate that the ground state of the 101Sn nucleus would be
the 5/2+ [50] while the excited state would be 7/2+ [51]. Reference [52] find
“strong experimental evidence” that the reverse order actually occurs. In this
paper we use g7/2 as the ground state for the 101Sn.

We are going to calculate physical magnitudes for Tin isotopes from 102 up to
176. Since this is a huge mass interval, we decided to consider mass-dependent
single particle energies (SPE). These SPE, shown in Fig. 1, are calculated using
the mean field parameters of Eq. (19) and (20) given in Table 1, being 100Sn
the inert core. The parameters were fixed in order to reproduce as well as
possible the low-lying neutrons energies of the 101Sn and 133Sn shown in Table
2.
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Fig. 1. (color online) Evolution of the single particle energies in the core 100Sn as
a function of the number of the valence neutrons. The following labels ○g7/2, ◇d5/2,
◻s1/2, △d3/2, ⊲h11/2, ▽f7/2, ⊳p3/2, +p1/2, ∗h9/2, Af5/2 identify each single particle
state.

Table 1
Mean field parameters which define the mass dependent mean field strengths.

c0 = 51.95 MeV c1 = 34.856 MeV

cso0 = 11.30 MeV fm cso1 = 9.075 MeV fm

r0 = 1.27 fm a = 0.7 fm

Figure 2 shows the CSPLD g(ε) of 101Sn and 133Sn labeled as g
101

and g
133

,
respectively. These densities were calculated [44] with angular momentum cut-
off lmax = 10 and energy cut-off εmax = 60 MeV. The imprint of the resonances
shapes the CSPLD. Very narrow resonances appear at low energies whereas
some superposition of wide resonances show up at higher energies. The labels
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Table 2
Low-lying neutron single particle energies ε (MeV) in the 100Sn and 132Sn cores.

The energy splitting between the ground state and the first excited state of 101Sn
was taken from [51], while the order was taken from [52]. The separation energy of
the 101Sn and 133Sn are from Ref. [50].

core state ε (MeV) εExp (MeV)

100Sn 0g7/2 -11.100 -11.100

100Sn 1d5/2 -10.916 -10.928

132Sn 1f7/2 -2.442 -2.402

132Sn 2p3/2 -1.395 -1.548

εlj and εlj + εl′j′ in this figure are used to identify the resonances and a super-
position of two of them, respectively in the 101Sn nucleus. There is one to one
association between the peaks of the CSPLD of the nuclei 101Sn and 133Sn. The
overall structure of the density of the 133Sn remains invariant, but its peaks
are shrink and displaced towards the continuum threshold. In Ref. [53] it was

0 5 10 15 20 25 30 35 40 45 50 55 60
ε (MeV)

0

5

10

15

20

25

30

g(
ε)

 (
M

eV
-1

)

g
101

g
133

ε
j
13/2

+ε
k

17/2

ε
j
15/2

ε
i
11/2

ε
g

9/2

ε
i
13/2

ε
l
19/2

+ε
k

15/2

Fig. 2. Continuum single particle level densities for a neutron in the cores 100Sn and
132Sn.

found that the high density of single particle states in the particle continuum
produces an increase of BCS pairing correlations using the isospin dependent
strength (2). It will be shown that none of the magnitudes calculated using
the CSPLD of Fig. 2, nor even the pairing gap, show any unrealistic behavior.

3.2 Gap parameter

In this section we are going to calculate the pairing gap in the BCS and LN
approximations and we are going to compare the results with that obtained
from the five-point gap equation (23).
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The parameter χ1 of Eq. (2) is different for each neutron major shells 50− 82
and 82−126, and also for each approximate solution BCS or LN. The different
χ1 were chosen to reproduce the gaps of the isotopes 110Sn and 158Sn. These
so called reference gaps were calculate using equation (23). For the isotope
110Sn the experimental masses of Ref. [47] were used, while for the isotope
158Sn the theoretical mass of Ref. [48], were used. Table 3 gives the values of
the different χ

1
for both reference gaps. For the first major shell we choose as

reference isotope the 110Sn, because it is in the middle of the almost degenerate
g7/2 and d5/2 shells. For the second major shell we found that the qualitative
behavior shown in Fig. 3 does not change with the election of different reference
isotopes. Then, we choose as reference the isotope 158Sn because this election
distributes evenly the deviation of the corresponding curves with respect to
the uniform theoretical gap calculated using the five points equation.

Table 3
Values of the parameter χ1 of Eq. (2) for the two major shells which determine the

pairing strengths in the BCS and LN approximations. The gap parameters ∆ were
calculated using equation (23) with data from Refs. [47, 48]

∆ (MeV) χBCS
1

(MeV) χLN
1

(MeV)

∆(110Sn)=1.429 [47] 18.637 18.269

∆(158Sn)=0.864 [48] 15.631 14.972

Using the isospin pairing strength and the isospin single particle representa-
tion we calculate the pairing gap for the whole Tin isotope chain, from the
proton drip line to the neutron drip line. Figure 3 compares the five-points
gap equation (23) with calculated gap in the BCS and LN approximations.

8 16 24 32 40 48 56 64 72
N

0

0,5

1

1,5

∆ 
(M

eV
)

BCS
LN
Audi
Koura
Reference gaps

Fig. 3. Comparison of the calculated gap in the BCS and LN approximations with
the five-point gap equation (23). For N < 36 we use the experimental mass from
Ref. [47], while for N ≥ 36 we use theoretical mass from Ref. [48].

As a general feature, the LN solution is smoother than the BCS one in the
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whole chain. In the first major shell the LN solution shows a better agreement
with the experimental gap. The BCS values and the LN ones are more similar
in the second major shell than in the first one. Besides, the LN result follows
better the five-point gaps in the closure of the first major shell, except at
N = 32 where the five-point equation is not valid [45].

For the isotopes beyond A = 134 the comparison between various theoretical
mass tables [22, 25, 48, 54] show significant differences between them. Thus,
a comparison using the five points gap equation with theoretical mass would
have little sense. In spite of this drawback, we decided to compare our results
with the newest theoretical mass table in order to judge if our calculated gap
in the neutron drip line side is reasonable. Our results for both, BCS and LN
approximations, show the typical shell structure and they do not depart much
from the overall behavior of the five points gaps.

The trend of our calculated gap fulfill the well known result for heavy nuclei
[36] that the average gap decreases towards the neutron-rich side and increases
towards the proton-rich side.

We compare our results with those of Ref. [45] for the isotopes 134Sn-164Sn.
In this work the authors calculate the gap using the five points equation (23)
from state-dependent BCS solution. For the comparison we used the result of
their delta force model since it is smoother than the density-dependent delta
interaction result. From Fig. 4 (upper) (of Ref. [45]) we can see that the BCS
gap lie in the band 0.65-1.1 MeV similar to our BCS 0.58-1.16 MeV. While
from Fig. 7 (upper) (of Ref. [45]) we can see that the LN gap lie in the band
0.55-1.3 MeV similar to our LN 0.7-1.1 MeV except in the vicinity of 164Sn.

A final observation from Fig. 3 by considering the full range of N is that the
differences between the solutions of the BCS and LN are more pronounced
far from the neutron drip line, i.e. the dependence of the gap on the model
solution is less sensitive in the drip line region.

3.3 Quasiparticle energies and occupation probability

In this section we calculate the quasiparticle energies Eq. (9) in the BCS and
LN approximations and show the occupation probabilities Eq. (8) for some
selected isotopes.

Figure 4 shows the evolution of the quasiparticle energies as a function of the
valence neutrons from N = 2 to N = 76. While the bound states accommodate
up to sixty two neutrons, the continuum states, through the CSPLD, provide
the needed configurations for the other fourteen nucleons. The order of the
lowest states, g7/2, d5/2, s1/2, d3/2, h11/2 in the first major shell, is like that of
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Ref. [37] but the g7/2 state, which appears in the fourth order. The lowest
states in the second major shell are f7/2, p3/2, h9/2, p1/2, f5/2 while in Ref. [37]
the order is f7/2, p3/2, p1/2, f5/2, h9/2, i13/2. The last state is absent in Fig. 4
because it is a continuum state included in the CSPLD.

The gap between the two major shells decreases as N increases, as can be
seen from Fig. 4, until the first major shell is completed at N = 32 where
the nucleus becomes normal. Both approximations (BCS and LN) show the
crossing at the same isotope 132Sn, but in the LN approximation the crossing
is smoother. Beside this issue there is not any other appreciable differences
between the solution of both approximations.

It is known that the ground state of the nuclei 103Sn [55] is the neutron single
particle d5/2 state. From Fig. 4 we observe that the crossing between the g7/2
and d5/2 levels happens at 109Sn, instead.
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Fig. 4. (color online) Evolution of the quasiparticle energies in the BCS (upper) and
LN (lower) approximations as a function of the number of the valence neutrons in
the 100Sn. The particle states are identify with the following labels: ○g7/2, ◇d5/2,
◻s1/2, △d3/2, ⊲h11/2, ▽f7/2, ⊳p3/2, +p1/2, ∗h9/2, Af5/2.

In Table 4 we show some selected occupation probabilities. As a general feature
the occupation increases with the number of particle until the first major shell
is completed at 132Sn. Then, the states in the second major shell starting to
be monotonically populated up to the nucleus 162Sn. Henceforth, the particles
have no more bound configurations to fill and them have to populate the
continuum spectrum of energy (this will be better analyzed in the next section,
see Fig. 6). This feature is shown in Table 4 by the almost constant value of
the bound-configuration occupations for particles greater than sixty two.
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Table 4
Occupation probability for some selected Sn isotopes in the BCS and LN approxi-

mations.

g7/2 d5/2 s1/2 d3/2 h11/2 f7/2 p3/2 p1/2 h9/2 f5/2

102Sn(BCS) 0.131 0.104 0.025 0.023 0.006 0.002 0.002 0.002 0.002 0.002

102Sn(LN) 0.260 0.215 0.051 0.046 0.011 0.004 0.004 0.003 0.003 0.003

110Sn(BCS) 0.633 0.582 0.144 0.127 0.026 0.008 0.006 0.006 0.006 0.005

110Sn(LN) 0.574 0.619 0.164 0.145 0.028 0.008 0.007 0.006 0.006 0.005

120Sn(BCS) 0.966 0.963 0.843 0.809 0.101 0.011 0.008 0.006 0.006 0.005

120Sn(LN) 0.943 0.938 0.764 0.728 0.154 0.017 0.012 0.010 0.010 0.008

124Sn(BCS) 0.973 0.971 0.917 0.905 0.358 0.022 0.014 0.011 0.012 0.009

124Sn(LN) 0.966 0.964 0.891 0.875 0.373 0.026 0.017 0.013 0.014 0.011

132Sn(BCS) 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0

132Sn(LN) 0.990 0.989 0.977 0.975 0.904 0.082 0.035 0.023 0.027 0.017

146Sn(BCS) 0.995 0.995 0.992 0.991 0.986 0.840 0.445 0.206 0.364 0.125

146Sn(LN) 0.995 0.995 0.992 0.992 0.987 0.830 0.445 0.214 0.369 0.129

162Sn(BCS) 0.999 0.999 0.999 0.998 0.998 0.990 0.972 0.930 0.973 0.863

162Sn(LN) 0.999 0.998 0.998 0.998 0.997 0.984 0.953 0.884 0.955 0.797

170Sn(BCS) 0.999 0.999 0.998 0.998 0.998 0.993 0.985 0.976 0.987 0.968

170Sn(LN) 0.999 0.999 0.998 0.998 0.998 0.993 0.985 0.974 0.987 0.965

3.4 Fermi level and particle number

The Fermi level defined in Eq. (11) and particle number from Eq. (6) are
calculated and discussed in this section. Both magnitudes are calculated in
the BCS and LN approximations for the whole isotopic chain.

The Fermi level, λ(N), is shown in Fig. 5 as a function of even number of
valence neutrons. It has the usual linear dependence with the particle number
for the whole isotopic chain. At N = 32 the figure shows a change in the slope
between the first and the second major shells, with smaller slope in the second
one. The transition between these two linear behaviors is smoother in the LN
approximation. After all bound states configurations have been filled up, the
Fermi level crosses the continuum threshold at N = 62. Like for the previously
calculated magnitudes both BCS and LN approximations give very similar
results.

In order to illustrate the contribution coming from the energy continuum
spectrum we show in Fig. 6 the discrete Nd and the continuum Nc particle
number. They are defined from the bound and continuum contribution parts
of the single particle representation, respectively as [33],

N = Nb +Nc = lmax∑
lj

(2j + 1)v2lj + ∫ εmax

0
v2(ε)g(ε)dε (24)

with lmax = 10 and εmax = 60 MeV as defined in the section 3.1.
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Fig. 5. Evolution of the Fermi level in the BCS and LN approximations as a function
of the number of the valence neutrons N in the core 100Sn.
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Fig. 6. Discrete and continuum particle number as defined in Eq. (24) in the LN
approximation as a function of the number of the valence neutrons N . At this scale,
the BCS solutions (not shown in the figure) would be almost indistinguishable of
the LN one.

Figure 6 shows how the number of particle in the continuum Nc remains small
for all isotope up to 162Sn, i.e. as long as there is bound state available the
particles will not populate the continuum. From 164Sn on the bound configura-
tions are almost occupied, as can be seen in Table 4, and Nc starts to increases
while Nd approaches to 62. This is an indication

3.5 Binding energy and one- and two-neutron separation energies

In this section we calculate the binding energy per nucleon, the two-neutron
separation energy and the one-neutron separation energy in the non-blocking
approximation. The results are compared with that of Refs. [37, 56] and with
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experimental data [57].

3.5.1 Binding energy:

The binding energy per nucleon in the BCS and LN approximations are cal-
culated from

B

A
= B(100Sn) −EBCS/LN(N)

50 +N , (25)

where the experimental value B(100Sn)/100 = 8.253 MeV [57] was used for the
core binding energy, and

EBCS/LN(N) =⨋
n
v2n (εn − G

2
v2n) − ∆2

G
− λ2⨋

n
2u2

n v
2
n .

(26)

Figure 7 shows the calculated binding energy per particle versus the number
of valence neutrons. Both BCS and LN approximations give similar results for
all isotopes. The maximum binding energy per nucleon occurs at N ∼ 14,16
and coincides with the experimental maximum. At N = 32 the figure shows a
break in the experimental values. From here on, the numerical solutions have
a linear behavior which follows the extrapolated slope of the experimental
data. The insert in Fig. 7 shows the binding energy per nucleon in the range
2 ≤ N ≤ 36. The numerical solutions string along with the experimental values
for N ≤ 24, while for 28 ≤ N ≤ 36 our results depart from the experimental
ones. The comparison with the result from the HF+BCS approximation of
Ref. [56] shows that our precision is similar to this one up to N = 24. Beyond
this nucleus the HF+BCS perfectly agrees with experiment. The CSPLD gives
and alternative representation to include the continuum single particle con-
figurations to that of the spherical box [37]. The inclusion of the continuum
allows to calculate magnitudes in nuclei with extreme neutron-to-proton ratios
and, in this way gives some insight about the behavior of these exotic nuclei
beyond the present experimental data.

3.5.2 Two-neutron separation energy:

The two neutron separation energy is calculated from

S2n(N) = −[EBCS/LN(N) −EBCS/LN(N − 2)] . (27)

Figure 8 shows the calculated two neutron separation energies and the experi-
mental values [57] as a function of the atomic mass A = 100+N . We see a good

14



4 8 12 16 20 24 28 32 36
8

8,2

8,4

8,6

BCS
LN
Exp
HF-BCS

8 16 24 32 40 48 56 64 72
N

6

6,5

7

7,5

8

8,5

B
/A

 (
M

eV
)

Fig. 7. Numerical calculation of the binding energy per particle for the Sn isotopes
from the BCS, LN and HF+BCS approximations. The numerical result of HF-BCS
approximation is from Ref. [56]. The experimental data (Exp) are from the Atomic
Mass Evaluation [57].

agreement with experimental data up to N = 18. From here on, both BCS and
LN calculations depart from the experimental data reaching a maximum of
around 2 MeV at N = 32. Besides this awkward behavior at the closure of
the first major shell, the matching with experimental data for the nuclei 134Sn
to 138Sn is excellent. As stated before, the inclusion of the continuum would
allow us to guess what to expect for observables close to the drip line.
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Fig. 8. Two neutron separation energy for the Sn isotopes. The experimental data
(Exp) are from the Atomic Mass Evaluation [57].

In Ref. [53] the continuum is included via harmonic oscillator (HO) states.
Using BCS approximation, the authors get the two-neutron drip line at the
nucleus 162Sn considering 12 HO shells in the single particle representation and
at 166Sn using 40 HO shells. The more elaborated Hartree-Fock-Bogoliubov
approximation gives that the S2n lies between 168Sn-176Sn, depending on the
interaction used. Our calculation shows that the two-neutron drip line occurs
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at 164Sn.

From Ref. [58] we know that the two-neutron separation energy behaves ap-
proximately as S2n(N) ≈ −2λ(N − 1). In the non-blocking approximation we
take λ(N − 1) as the Fermi level of the even N nucleus. Then, the Fermi level
should change sign at the same nucleus as the two-neutron separation energy,
which is approximately verified as can be seen from Figs. 5 and 8.

3.5.3 One-neutron separation energy:

In the non-blocking approximation the single neutron separation energy is
given approximately by [58]

Sn(N − 1) = −λ(N) + 1

2
[λ(N) − λ(N − 2)

2
] −Emin(N) , (28)

where λ was calculated in section 3.4 and Emin is the smallest of the quasipar-
ticle energies as calculated in section 3.3. Both of this quantities are calculated
for even-N isotopes. The approximation (28) can not be applied for the iso-
topes 101Sn and 133Sn [58].

Figure 9 compares the separation energy calculated in the BCS and LN ap-
proximations with that of experimental data from Ref. [57]. The experimental
separation energy for the isotopes of the first major shell decreases monotoni-
cally up to A = 119 and then the slope decreases slightly. The numerical results
follow the experimental data up to A = 119 and then they match again at the
beginning of the second major shell.
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Fig. 9. Neutron separation energies as a function of the atomic mass for the Tin
isotopes for BCS and LN approximations. The experimental data (Exp) are from
the Atomic Mass Evaluation [57].

Defining the drip line as the even nucleus at which Sn (28) changes sign be-
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tween its odd neighbors, the BCS and LN approximations give the nuclei 154Sn
and 150Sn, respectively. These results are close to that of Ref. [53] which places
the drip line at 148Sn.

4 Discussion and conclusions

In this work, we have calculated several physical properties of the whole chain
of the Tin isotope from the proton to the neutron drip line. For this purpose,
the continuum spectrum of energy was included explicitly via the single parti-
cle level density. The properties calculated were the gap parameter, the Fermi
level, the binding energy, and one- and two-neutron separation energies. Even
when the proposed formulation to deal with the continuum spectrum is able
to produce results beyond the drip line they may have not physical meaning.

The solution of the pairing Hamiltonian were work out in the BCS and LN
approximations. Due to the significant change of the proton-to-neutron ratio
(from 0.96 in the proton drip line side to 0.66 in the neutron drip line side) the
mean field, which defines the single particle representation, and the pairing
strength were both considered isospin dependent.

In calculating the various magnitudes, both BCS and LN approaches, gave
similar results. As an exception, when calculating the gap it can be seen that
the LN approximation agrees quite better with experimental data than BCS,
especially in the first major shell. As a distinctive feature of the comparison
between the solutions of these two approaches, the variation of the physical
magnitudes as a function of the valence neutron, always displayed a smoother
behavior in the LN than the BCS solution.

The gap parameter calculated with the BCS and LN approximations show the
usual shell structure and follow in general the behavior of the experimental
values. The gaps in the second major shell are smaller than the one in the
first major shell, this is the expected tendency for the gap, i.e. it decreases
with increasing number of neutrons. The Fermi level shows the typical linear
dependence with N for the whole chain of Tin isotopes considered. It crosses
the continuum threshold at N = 62, in which also changes the sign of the
two neutron separation energy. The calculated binding energy shows that the
maximum value occurs approximately at N = 14, coinciding with experimental
data. The comparison with the binding energy calculated within the HF+BCS
approach of Ref. [56] (Fig. 1), shows a similar precision up to N = 24. Finally,
the calculated separation energies Sn and S2n, agree with the experimental
values for the isotopes A from 102 to 119 of the first major shell and A between
134 and 138 of the second major shell.
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In this first stage of the approach presented here, i.e. the use of the CSPLD
with constant pairing, configures an economical way to include explicitly the
continuum spectrum of energy in large scale mass calculation where the contin-
uum boosts to the sky the computing time and memory requirement. In spite
to the simplicity of this approach, the computed properties were in general
in good agreement with more sophisticated approaches and with experimen-
tal results. There is in progress, an improvement of the presented method
using state-dependent pairing interaction to overcome the founded discrepan-
cies with experimental data.
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