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ABSTRACT: We present ab initio calculated electric-field
gradient tensors at Cd sites in a set of simple yet diverse
noncubic metals. By combining these predictions with carefully
selected published experimental data, the nuclear quadrupole
moment of the 245 keV 5/2+ level of 111Cd is determined to
be 0.76(2) b. Knowing this quadrupole moment is important
for time-differential perturbed angular correlation spectrosco-
py: decades of experimentally obtained nuclear quadrupole
coupling constants for solids can now be more reliably
converted into electronic structure information. For nuclear
physics systematics, this is a rare opportunity to have reliable
quadrupole moment information for a short-lived level that is
not accessible to regular experimental methods. Much effort is
spent on the determination of a meaningful error bar, which is an aspect that gained only recently more attention in the context
of density functional theory predictions. This required assessing the numerical uncertainty in density functional theory
predictions for electric-field gradient tensors in solids. In contrast to quantum chemistry methods, these density functional theory
predictions cannot detect systematic errors. By comparing our quadrupole moment value with an independent value obtained
from quantum chemistry calculations and experiment, we show that systematic errors are small for the systems studied here. Yet,
there are indications that density functional theory underestimates by a few percent the electric-field gradient, and therefore
overestimates the quadrupole moment by the same amount. We point out which future work needs to be done to characterize
the possible deviations inherent to density functional theory.

■ INTRODUCTION

The existence of a particularly convenient isotope is often the
enabler of an experimental method that probes molecular or
solid-state properties by the interaction of local electromagnetic
fields with nuclear moments. Nuclear magnetic resonance1

(NMR), for instance, would be much less useful if the magnetic
moment of the proton (1H) were smaller than it actually is.
Mössbauer spectrosocopy2 would be a marginal method if it
were not for the 57Fe nucleus with its exceptionally favorable
compromise between many requirements. Similarly, time-
differential perturbed γ−γ angular correlation spectroscopy3,4

(TDPAC), which is of interest in this Article, would be less
useful without the 245 keV 5/2+ level of 111Cd as its work
horse. Like the other above-mentioned experimental methods,
the quantities that TDPAC measures depend both on a
property of a nucleus and a property of the electron cloud in

the studied solid or molecule. In particular, the electric
quadrupole interaction frequency νQ, also known as the
“quadrupole coupling constant”, depends on both the
spectroscopic nuclear quadrupole moment Q of the relevant
nuclear level and the gradient of the local electric field at the
site of the nucleus, Vzz:

ν =
eQV

hQ
zz

(1)

where e is the electron charge, and h is Planck’s constant. For
many purposes, knowledge of the experimental quadrupole
interaction frequency νQ is sufficient, and there is no need to
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disentangle it in nuclear and solid-state information. This
happens, for instance, when one merely wants to label different
lattice sites of an impurity atom in a solid,5−10 or to identify
phase transitions.11−13 However, when one wants to use the
method to experimentally determine the electric-field gradient
(EFG) tensor in a solid, it is mandatory to have precise
knowledge about the nuclear quadrupole moment Q. The latter
is usually the bottleneck: the error bar on experimental
quadrupole interaction frequencies can be better than 0.1%,
whereas nuclear quadrupole moments are typically known up
to one or two digits only, often with an unspecified error
bar.14−17

This rather imprecise knowledge of nuclear quadrupole
moments has spurred several initiatives during the past two
decades to apply ab initio electronic structure methods for the
benefit of nuclear moment determination. It is nowadays
routinely possible to compute the electric-field gradient tensor
in solids from first principles. The absolute accuracy of this
computed/predicted field gradient does by far not reach the
same level as for experimental quadrupole interaction
frequencies yet, but is definitely better than the 1−2 digit
precision of experimental nuclear quadrupole moments.
Equation 1 shows that Q then can be obtained from the
slope of a linear fit through a data set of calculated values of Vzz
versus experimental values for νQ (see also Figure 1), yielding a

much improved precision. The uncertainty on the resulting Q is
mainly determined by the accuracy of the ab initio calculations.
Many quadrupole moments have been determined in this
way.18−26

Whereas the combination of quadrupole interaction
frequency measurements and ab initio calculations does provide
fair values for nuclear quadrupole moments, it remains unclear
how large the uncertainty of the obtained quadrupole moments
is when this procedure is used. A rule of thumb of 10−20% is
sometimes quoted,18,19,21,24 yet the origin of this number is
unclear and certainly not based on rigorous testing. The goal of

this Article is to examine meticulously the various sources of
errors for one particular case where a high precision is essential:
the quadrupole moment of the 245 keV level in 111Cd (Iπ =
5/2+), because this is an important isotope, dominantly used in
TDPAC experiments.
Attempts to determine this quadrupole moment date back to

1962, and have been reviewed by van der Werf et al.27 and by
Haas and Correia.25 These and some additional data points
have been summarized in Figure 2. The data and their error

bars cover the range from 0.3 to 1.9 b, with most data clustering
around 0.8 b. According to the assessement of ref 25, the five
data points labeled by filled circles are sound measurements (in
contrast to the open circles, which are experimental estimates).
Among those, the highest value of 1.5 b is an obvious outlier.
The average of the four remaining experimental values is 0.80 b,
and the error bar on the average is 0.07 b (determined as

ε∑ N/i
2 ). This experimental range is indicated by the shaded

bar in Figure 2. Rather than using this combined value of
0.80(7) b, it has become common practice in the literature to
quote the 0.83(13) b by Herzog et al.28 as the accepted value
for Q. A few authors defend a slightly lower value around 0.78
b.29,30 The recent tabulation by N. J. Stone17 of recommended
values for quadrupole moments favors 0.74(7) b (the one from
ref 31). In the original paper, the value of Herzog et al. is
claimed to have been obtained in a “model-independent way”,
by measuring the quadrupole interaction frequencies for two
different 111Cd levels (5/2+ and 11/2−) in the same host
material (hcp-Zn). It is an immediate consequence of eq 1 that
the quadrupole moment of the 5/2+ level can be determined if
the quadrupole moment of the 11/2− level is known:

Figure 1. Ab initio calculated principal component Vzz of the electric-
field gradient (EFG) tensor (1021 V/m2) versus experimental
quadrupole interaction frequency νQ (MHz). These data are listed
in Table 1 as well. The error bars on νQ vary between 0.1 and 2 MHz,
and are not visible on this scale. The error bars on Vzz are horizontally
shifted for some data points, for clarity. The “○” indicate data points
that were determined to be outliers by the procedure described in the
section on Outlier Assessment. The fitted linear correlation takes into
account the inliers (red ●) only, and corresponds to the fit parameters
listed in Table 2, second column.

Figure 2. Overview of experimental (circles) and theoretical (crosses
and squares) determinations of the quadrupole moment Q of 111Cd
(5/2+). These data have been listed and/or reviewed in refs 14, 25, and
27, and the original data are from refs 25, 28, 31, 33−44. The open
circles indicate experimental values that were merely estimates,
following the assessment of ref 25. The 1975 experimental value of
1.5 b is an obvious outlier. The shaded horizontal bar shows the range
of 0.80(7) b that is determined by the other four reliable experimental
data points. The commonly quoted value of 0.83(13) b is indicated by
an arrow. The gray circle at the right is a reanalysis of the latter value
based on a 2013 result for a reference quadrupole moment45 (see
text). The most recent solid-state theory data point is from this work,
including an in-depth error analysis (the error bar is drawn inside the
red square).
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The reliability of the obtained value is limited by the reliability
of the known 11/2− quadrupole moment, which is in this case a
result from optical double resonance spectroscopy in
combination with an estimate for the ⟨r−3⟩ of the p3/2-electron
in Cd (−0.85(9) b from ref 32). Calling this a “model-
independent result” is therefore not really justified. The most
recent theoretical data point (apart from the present work) in
Figure 2 is by Haas and Correia,25 based on ab initio
calculations for the electric-field gradient in hcp-Cd. Their
value of 0.765(15) b is consistent with the experimental values,
yet is claimed to be an order of magnitude more precise. We
will discuss this claim in the Discussion and Conclusions, and
compare it with our approach.
The subject of this Article fits in a recent trend in the field of

DFT applications to determine error bars on DFT predictions
of various observable quantities46−51 in a more rigorous way. As
will be elaborated upon in the section on Linear Correlation, a
distinguishing feature of the present work is that the property
of interest (Q) can be distorted by a systematic bias in the DFT
predictions that is undetectable. This undetectability will limit
the amount of knowledge that can be collected about the error
bar on DFT-based quadrupole moments.

■ DATA SET
As we aim for the highest accuracy and precision, a limited set
of simple yet diverse solids was taken for which accurate
experimental information on structural parameters and quadru-
pole interaction frequencies at low temperature are available,
and for which precise ab initio calculations could be performed.
The final data are collected in Table 1 and Figure 1. The
important issue of error bars on these data will be discussed in
the section on the Error Budget.
Experimental Section. For all seven crystals shown in

Table 1, the experimental quadrupole interaction frequency νQ
as determined by the TDPAC method at low temperature can
be found in the literature. Low-temperature values are essential
because these will have to be compared to ab initio calculations
at 0 K. Crystals for which only room-temperature values for νQ
are available are not of any use here: the temperature
dependence of the quadrupole interaction in the range 0−
300 K is considerable and cannot be universally para-
metrized,62−68 such that room-temperature values for νQ
cannot be reliably converted into 0 K values. On the other

hand, papers that do report low-temperature νQ values do not
usually report (accurate) low-temperature lattice parameter
data for the same samples. As the latter is essential input
information for the ab initio calculations, these low-temperature
lattice parameters have been collected from dedicated crystallo-
graphic literature and are reported in Table 1 as well.

Computational. DFT can predict ground-state (=0 K)
lattice parameters of solids with considerable accuracy. In a
general error bar assessment for structural properties of solids,
Lejaeghere et al.47 showed that DFT calculations with a
common GGA exchange-correlation functional systematically
overestimate the ground-state volume per atom by 3.8%, with a
remaining scatter (or error bar) of 1.1 Å3/atom. It would
therefore be perfectly possible to predict the ground-state
lattice parameters of these seven crystals ab initio, and then
compute the electric-field gradient tensor for these ab initio
predicted structures. That would be a truly ab initio prediction
of the electric-field gradient tensor. When it comes to extracting
the quadrupole moment Q, however, what one needs is not in
the first place a rigorous ab initio prediction of the electric-field
gradient, but rather a prediction that comes as close as possible
to the true experimental value. Using predicted lattice
parameters that do deviate, albeit only slightly, from experiment
would mean that a deviation of the predicted EFG is already
built-in into the procedure. This holds a fortiori for the c/a
ratio, which directly influences the EFG.25 It is therefore more
appropriate for our present purpose to start from the
experimental low-temperature lattice parameters, and compute
the EFG for that lattice.
The DFT code used for the EFG calculations was

WIEN2k,69 a code with a long tradition in EFG predic-
tions.18,44,70−76 It solves the scalar-relativistic Kohn−Sham
equations using an Augmented Plane Waves + local orbitals
(APW+lo) basis set.77−79 In this method, the wave functions
are expanded into spherical harmonics inside nonoverlapping
atomic spheres of radius RMT and in plane waves in the
remaining space of the unit cell (=the interstitial region).
The plane-wave expansion of the wave function in the

interstitial region was truncated at very large wave numbers
Kmax = RKM/RMT

min (values of RKM are listed in Table 1). A very
dense mesh of k-points (listed in Table 1) was used for
Brillouin zone integration. Several exchange-correlation func-
tionals were considered (see the section on Error Budget). To
mimic the situation of isolated Cd impurity atoms, the actual
unit cells in our calculations were supercells: m × n × k
multiplications of a primitive unit cell, in which one of the host

Table 1. Seven Crystals Where the Quadrupole Interaction Frequency at a 111Cd Nucleus Has Been Measured by TDPACa

host lattice lattice parameters Tabc νQ TνQ supercell RmtKmax k-points Vzz

Ga (64) a = 4.5151, b = 4.4881, c = 7.631852 2.35 −148.6(1)53 4.2 3 × 3 × 3 8 1000 −7.89(90)
Hg (166) a = 3.4573, c = 6.6636 (hex)54 5 −112(2)37 77 4 × 4 × 2 8 1000 −6.45(50)
bct-In (139) a = 3.221, c = 4.93355 4.2 24.82(20)56 1.2 4 × 4 × 3 8 1000 1.25(50)
β-Sn (141) a = 5.81187, c = 3.1574357 4.2 43.56(30)56 1.2 2 × 2 × 3 8 3000 2.65(50)
Sb (166) a = 4.3007, c = 11.222 (hex)58 4.2 132(3)56,59 77 3 × 3 × 2 8 2000 7.0(6)
Cd (194) a = 2.96313, c = 5.5189025 0 136.02(40)56 0.130 1 × 1 × 1 9 40 000 7.53(60)
Zn (194) a = 2.6588, c = 4.851560 0 136.5(1.0)61 4.2 5 × 5 × 4 8 250 8.6(1.1)

aThe columns list subsequently the lattice (space group ITA number is mentioned in parenthesis), the low-temperature experimental lattice
parameters (Å), the temperature at which these lattice parameters were measured (K) (“0 K” refers to a reliable extrapolation to zero kelvin), the
experimental quadrupole interaction frequency νQ (MHz, eq 1), the temperature at which the latter was measured (K), the supercell that has been
used in the most accurate calculation, basis set size (RmtKmax or RKM) and k-mesh for Brillouin zone sampling that have been used in the most
precize calculation, and the resulting ab initio calculated principal component Vzz of the electric-field gradient tensor (1021 V/m2, LDA functional).
The asymmetry parameter η is zero by symmetry in all cases, except for Ga (exp, 0.197;53 LDA, 0.17).
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lattice atoms is replaced by the Cd impurity. All atoms in the
supercell were allowed to completely relax to new equilibrium
positions (keeping the lattice parameters fixed), to accom-
modate for the presence of the impurity atoms.

■ ANALYSIS
Outlier Assessment. To obtain Q, we need to determine

the slope of a linear fit through the calculated Vzz data versus
the experimental νQ data (Figure 1, and the νQ and Vzz columns
in Table 1). Two extreme situations might occur (see Figure 3).

(a) If all data points neatly fall on a straight line, then the slope
can be determined with high reliability. (b) If all data points are
randomly scattered along an (unknown) ideal line, then the
slope of the fitted line has an inherent uncertainty, yet that
uncertainty is robust against removing, adding, or changing one
data point. Both situations would lead to acceptable
conclusions. Additional effort is needed, however, in this
situation: (c) Most data points fall perfectly on a straight line,
while one point (or a few) clearly is an outlier. A
straightforward linear fit through such a data set would result
in a distorted estimate for the slope and an error bar for the
slope that is mostly determined by the deviating point. The
value for the slope would therefore be less precise than the data
actually justify. A much more precise value could be obtained if
the outlier were removed first. This leads to the question: how
to recognize outliers in an objective and statistically justified
way? Obviously one wants to avoid biasing the fit by
subjectively removing data points one does not like.
An objective procedure to detect outliers has been described

in ref 80, and a similar approach has been applied to the present
data set. In particular, a linear weighted least-squares fit with
zero intercept was performed on the data of Figure 1 or Table
1, temporarily neglecting the small error bar on the
experimental νQ. Data points with a studentized residual
corresponding to a two-sided p-value of 0.05 or less were
flagged one by one and removed until no such outliers could be
detected anymore.81 Note that a more advanced regression82,83

is employed to estimate the final regression parameters in the
section on Linear Correlation, which does take the small errors
on νQ into account. Given the latter errors being small,
however, a simpler weighted least-squares fit suffices for the
purpose of outlier identification, while still allowing a statistical
justification. The results of this outlier analysis are reported in
Table 2. When all seven data points are taken into account (left
column of Table 2), the two-sided p-value for Zn is below the

threshold of 0.05, flagging it as an outlier. Repeating the
analysis for the six data points without Zn (right column)
shows no value below the threshold any longer. This objective
removal of the Zn data point resembles scenario (c) in Figure
3, and is consistent with what a subjective analysis of Figure 1
would suggest: the Zn data point does not fit in the linear
trend. What are the implications? The linear correlation from
eq 1 is a law of nature: deviations from linearity can appear only
by a hexadecapole contribution84 or a quadrupole shift,85−87

both being extremely small effects that cannot be noticed at the
present level of experimental and theoretical accuracy. There-
fore, either the experimental νQ or the calculated Vzz value for
Zn must be incorrect. We did indeed observe that the
calculated Vzz value for hcp-Zn is extremely sensitive to details:
in contrast to all other examined crystals, Vzz kept changing
with supercell size, even when very high numerical precision
was requested for every individual calculation. We therefore had
to assign a much larger error bar to this computed Vzz, even
though the 5 × 5 × 4 supercell with 200 atoms was by far the
largest one considered here (see also the section on Error
Budget).

Error Budget. The data points in Figure 1 and in Table 1
have error bars. Whereas this is normal for experimental values,
it is less obvious for DFT predictions. We therefore discuss in
the following how these error bars have been determined.
The error bars on the experimental quadrupole interaction

frequencies νQ have been copied from the original experimental
papers. In most cases, these papers do no mention a formal
justification of the error bars. It is common practice in TDPAC
experiments, however, to report the regression error bar on the
frequency. This is obtained in the same way as for linear
regression, but now for the so-called time-dependent
correlation function3,4 R(t) that is fitted through an
experimental time series of a few hundred points. Systematic
experimental errors that are due to temperature calibration,
frequency calibration, detector properties, etc., are hardly ever
incorporated in this error bar. Although we will use the
experimental error bars as reported, they are therefore definitely
underestimations of the true error.
Error bars on DFT predictions are not common at all.47,80

How do they arise? DFT as a formal method is exact, and

Figure 3. Depending on the properties of the data points (red circles),
different approaches are needed to extract the maximum amount of
information from the data. A linear fit (full line) is appropriate for
either ideal data points (a), or for data sets where all data points show
a similar amount of scatter (b). In case a few data points are clear
outliers (c), a linear fit through all data points distorts the available
information. If the outlier can be removed first, a linear fit through the
remaining data points reveals the underlying information better
(dashed line).

Table 2. Two-Sided p-Values for the Outlier Analysis,
Applied to All Seven Data Points (Left Column) As Well As
to the Data Points without Zn (Right Column)a

all data no Zn

Ga 0.214 0.306
Hg 0.910 0.158
In 0.828 0.751
β-Sn 0.816 0.324
Sb 0.407 0.496
Cd 0.741 0.560
Zn 0.021
R2 0.9986 0.9992
slope 0.056(2) 0.054(1)
intercept 0.2(2) 0.01(3)
Q (b) 0.74 0.76
error (b) ±0.03 ±0.02

aThe lower half of the table gives for the (x = νQ, y = Vzz)-graph the
correlation coefficient of the linear fit, the fitted slope and intercept
with their error bars (determined by the method of refs 82 and 83),
and the quadrupole moment deduced from the slope with its error bar.
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should provide absolutely accurate predictions. In practice,
however, a choice has to be made for the so-called exchange-
correlation functional. This leads to deviations between reality
and DFT predictions (called “intrinsic errors” in ref 47). We
have calculated the EFG for the considered seven crystals with
three different choices of the exchange-correlation (LDA,88

Wu−Cohen89 (WC), and PBE-sol90). This led to a spread in
EFG values of ±0.10 × 1021 V/m2. It is important to realize
that this bears no guarantee at all that the EFG predicted using
the unknown exact exchange-correlation functional would be
within this margin. This is a limitation in confidence that is
inherent to DFT. Only a comparison with very accurate
experimental values for Vzz, or with high-level quantum
chemistry methods (provided they can be applied to metallic
solids), would reveal the presence of this intrinsic error. This
would require knowledge of the quadrupole moment, however,
and this is exactly what we are trying to determine here. The
true value of the intrinsic error can therefore not be known for
this case.
Once a choice is made for the exchange-correlation

functional in DFT, the Kohn−Sham equations are fully
determined. A DFT code solves those numerically, and in
principle this leads to solutions/predictions that are numerically
exact. Settings of this numerical procedure will introduce some
noise, though (called “numerical errors” in ref 47). The settings
that are most important for keeping the numerical errors small
are the basis set size and the density of the mesh used for
Brillouin zone sampling. By examining the effect on the EFG of
various basis set sizes and sampling meshes for these seven
crystals, we find a spread of ±0.05 × 1021 V/m2. Another
feature that affects the predicted EFG is the distance between
two Cd impurities, that is, the supercell size. This distance
should be “infinite” (=100 Å or more), but is limited in practice
to 10−20 Å. By systematically scanning several supercell sizes
for these seven crystals, we estimate the supercell size effect on
the EFG to be ±0.10 × 1021 V/m2. An exception is hcp-Zn,
where even a very large 5 × 5 × 4 supercell (200 atoms) was
not sufficient at all to converge the EFG to this level. We
therefore adopt a supercell size contribution of ±0.50 × 1021

V/m2 for the error on the EFG for Cd in hcp-Zn. Another
source of uncertainty on the EFG is the choice of the lattice
parameters, and, in particular, the c/a ratio. These should
correspond to the low-temperature values valid for the sample
on which the νQ measurement was done. For each of the seven
crystals, we have calculated the EFG for several c/a ratios in an
interval of ±0.75% around the experimentally observed c/a
ratio that can be obtained from Table 1. This gave a linear
variation of the EFG, with a slope that is different for each
crystal. We then took a conservative estimate of 0.5% for the
uncertainty in c/a ratio, and assigned a crystal-dependent
uncertainty of the EFG to every crystal, ranging from ±0.08 ×
1021 V/m2 (In) to ±0.35 × 1021 V/m2 (Zn). A final source of
error is due to neglecting zero-point corrections to the
calculated Vzz. For the case of hcp-Cd, this contribution was
reported68 to be 0.1 × 1021 V/m2, by ab initio molecular
dynamics. We added this value as a constant to all error bars.
Although there have been several studies that showed how
spin−orbit coupling can affect the electric-field gradient,91−95

tests for the two host lattices with heavy elements (hcp-Cd and
hcp-Hg) showed a negligible influence on Vzz for a Cd impurity
(0.004 and 0.03 × 1021 V/m2, respectively). Therefore, no error
bar contribution due to neglecting spin−orbit coupling was
considered.

The total error bar on the predicted EFG that is mentioned
in Table 1 was then taken as the sum of the five contributions
discussed in the previous paragraphs (0.10 + 0.05 + 0.10 + the
crystal-dependent c/a-induced uncertainty +0.10). In this way,
we obtain a conservative upper bound for the error, as it is
unclear how the different error contributions are correlated.
The conclusion is that the uncertainty on the predicted EFG is
in the range (0.4−0.7) × 1021 V/m2 (with Zn as a pathological
exception: 1.1 × 1021 V/m2). When expressed as a relative error
bar, this corresponds to 5−10% for “large” EFGs (>5 × 1021 V/
m2) and 20−30% for “small” EFGs (<3 × 1021 V/m2).
These uncertainties for ab initio calculated EFGs can be

straightforwardly compared to recent post-Hartree−Fock
calculations of the EFG in the 3P2 and

2P3/2 states of the free
Cd atom.45,96 Such calculations do not suffer from the choice of
an exchange-correlation functional, nor do they require
progressively larger supercells. The accuracy is determined by
the number and type of “substitutions” of the reference
configuration state function that are taken into account. The
more substitutions are considered, the better the exact value of
the EFG is approximated. Constraints on computing time
determine how closely one can approach exactness. In ref 45,
the EFG at the Cd nucleus in the 2P3/2 state of the Cd atom
was calculated to be Vzz = (27.5 ± 1.1) × 1021 V/m2. In ref 96,
a value of Vzz = (20.7 ± 1.2) × 1021 V/m2 was found for the 3P2
state. The absolute uncertainties of these numbers are twice as
large as the uncertainties found in the present work, yet this is
not surprising as the magnitude of the Vzz is substantially larger.
The relative errors are 4% and 6%, respectively. This is in
agreement with the relative error found in the present work for
(very) large Vzz. We can therefore state that the error bar
(precision) of these two very different theoretical methods is
comparable. This does not imply that density functional and
quantum chemistry methods must necessarily yield identical
values for the EFG when applied to the same system.
Comparisons between these classes of methods were made
by Hemmingsen et al., who examined the EFG at the Cd
nucleus in the CdCl2 molecule. They found29,30 two highly
accurate quantum chemistry methods (MP2 and CCSD(T)) to
provide nearly the same large value of about −30.4 × 1021 V/
m2. Density functional theory, on the other hand, gave a Vzz
that is 20% smaller for the B3LYP functional (EFG calculated
in ref 30). A comparable reduction was observed with a GGA
functional (similar to the WC and PBEsol functionals used in
the present work, EFG calculated in ref 97). Somewhat smaller
deviations in the same direction were observed in Hg-
containing molecules, where electric-field gradients obtained
by nonrelativistic DFT were consistently a few percent smaller
than the corresponding CCSD(T) values.98 The crystals
studied in the present work are more isotropic (i.e., they
have a smaller Vzz) than the CdCl2 molecule. Therefore, it is
relevant to inspect the difference between quantum chemistry
methods and DFT in more isotropic environments as well. In
ref 30, Vzz on Cd was calculated for the CGI and TTC
complexes. MP2 provides a Vzz of −5.6 × 1021 and 10.6 × 1021

V/m2, respectively. The Vzz by DFT with the B3LYP functional
is 1.0 × 1021 and 1.4 × 1021 V/m2 smaller in absolute value.
The relative difference is comparable to what is given hereabove
for less isotropic systems, yet the absolute difference is smaller.
If these observations for molecules would hold for crystals as
well, and if one accepts that the Vzz determined by quantum
chemistry methods is indeed closer to the exact value than the
DFT value, then the quadrupole moment as determined by
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DFT in the present work would be overestimated by up to 10−
20%. A way to test this will be described in the Discussion and
Conclusions.
Linear Correlation. Many basic as well as advanced data

analysis packages provide routines to perform linear regression
fits. In many of these, however, either no error bars on the data
points are taken into account, or only error bars on the Y-
variable, and often it is not explicitly documented what exactly
has been implemented. In the present case, one wants to take
into account error bars on the X-axis as well as on the Y-axis
(Table 1 and Figure 1), and we want to be sure what the final
error bar on the quadrupole moment really means. We have
therefore implemented the formalism described by Borcherds,
Ngwengwe, and Sheth82,83 to perform linear regression on data
with X and Y error bars, including a well-defined variance on
the fitted parameters. The resulting values for the slope and
intercept of the linear regression fit are given in Table 2,
together with their error bars. According to eq 1, the intercept
should be zero; this is consistent with Table 2, where the
interval for the intercept does cover zero. Equation 1 is
eventually used to convert the fitted slope into a quadrupole
moment, including a value for its error bar. This error bar
decreases upon the removal of the deviating data point for Zn.
The final value of Q = 0.76(2) b is the central result of this
work. The significance of this result in relation to the previous
literature will be discussed in the following section.

■ DISCUSSION AND CONCLUSIONS
How does our presently determined value of 0.76 ± 0.02 b for
the 111Cd quadrupole moment relate to the one determined a
few years ago by Haas and Correia,25 0.765 ± 0.015 b? The
values as well as the error bars are very similar, which
apparently suggests that there is not much new information in
the present study. We argue, however, that this good agreement
is fortuitous, and that the error bar proposed by Haas and
Correia can only be partially justified. The arguments are as
follows: (1) Their 0.765 b quadrupole moment is entirely
determined by the DFT prediction of Vzz in hcp-Cd only. This
makes the value sensitive to imperfections in the exchange-
correlation functional that are specific for this crystal, and that
could perhaps have different effects in other classes of crystals.
The 0.015 b error bar too is determined exclusively by the
numerical uncertainty on the Vzz prediction for hcp-Cd, which
they estimate to be 2% without documenting the procedure.
(2) The slope of the (νQ, Vzz)-correlation determined from the
low-temperature value of νQ for hcp-Cd is found by Haas and
Correia to be in excellent agreement with room-temperature
data for four other crystals (CdCl2 from ref 37, CdSiP2 from ref
99, CdSnP2 and CdGeP2 from ref 100). This is actually a
worrisome observation, given the temperature dependence of
νQ discussed in the experimental part of the Data Set section.
To remediate these concerns, we considered seven different

crystals in our analysis, with experimental data all taken at low
temperatures. In principle, it would indeed be sufficient to have
just one crystal for which the low-temperature lattice
parameters, the low-temperature νQ, as well as the calculated
Vzz are very precisely determined. That would lead in a less
complicated way to a lower error bar on the quadrupole
moment. Such a procedure has been followed, for instance, to
determine the quadrupole moment of 14N to be 0.02044(3) b
(“perhaps the most accurate Q value known” according to ref
15), obtained either from an excited state of the N ion101 or
from the diatomic NP molecule.102 This atomic or molecular

route to the quadrupole moment, however, requires the
applicability of quantum chemistry methods to determine the
electric-field gradient (see also the discussion at the end of the
section on the Error Budget). In contrast to density functional
theory, these methods can in principle approach absolute
accuracy for Vzz. Density functional theory, on the other hand,
is limited by the (unknown) limitations of the chosen
exchange-correlation functional. Even when several exchange-
correlation functionals are used to assess the possible spread, as
was done in this work, and when they are found to be in good
agreement with each other, there is no guarantee that the
obtained predictions for Vzz come anyhow close to the true
value. It is, for example, possible that due to a particular form of
electron behavior that semilocal exchange-correlation func-
tionals cannot describe, the predicted Vzz for a particular
material is far from the experimental value. The only way to be
reasonably safe against such DFT artifacts due to the functional
is to spread the risk over many cases: whereas an erroneous
prediction of Vzz by some factor x is possible for one solid, it is
unlikely that the same factor will apply to seven different solids.
This enables outlier detection (see the section on Outlier
Assessment), and the remaining, slightly differently erroneous
predictions will blend into a larger overall error bar. A possibly
remaining systematic deviation, however, will not be detectable.
One way to assess such a possible bias due to the choice of

exchange-correlation functional, is to compare our value for this
quadrupole moment to a value that does not rely on density-
funtional theory. This can be done by repeating the analysis
from Herzog et al.28 that was discussed at the end of the
introduction, but starting from the recently determined
quadrupole moment of the 11/2− level by Yordanov et al.:45

−0.747(30) b, by a combination of laser spectroscopy and
quantum chemistry. This value should be more accurate and
precise than the 1969 value32 of −0.85(9) b that was used by
Herzog et al. Plugging the new value into eq 2 together with the
experimental quadrupole coupling constants νQ(11/2

−) =
−139(15) MHz (ref 28) and νQ(5/2

+) = −136.5(1.4) MHz
(ref 61) (both for hcp-Zn as host material), we obtain for the
245 keV 5/2+ level of 111Cd 0.73(8) b (gray circle at the right-
hand side of Figure 2). This value does not depend on density
functional theory, only on quantum chemistry and experiment.
It is entirely consistent (i.e., overlapping uncertainties) with our
0.76(2) b obtained from DFT and experiment, yet tends to be
somewhat smaller than the DFT value. This could be an
indication that the Vzz values as predicted by DFT are indeed a
few percent (5%?) too small, consistent with the observations
made at the end of the section on the Error Budget.
Finally, we now demonstrate how these two differently

determined values for the 5/2+ quadrupole moment of 111Cd
serve as a litmus test to inspect the difference between DFT
and quantum chemistry calculations of Vzz, without the need to
apply both types of calculations to the same system. For a
typical value of νQ = 135 MHz, the difference between Vzz
obtained via our DFT quadrupole moment and Vzz obtained by
the quantum chemistry quadrupole moment is 0.3 × 1021 V/m2

or 4%. That is comparable to the numerical uncertainty on Vzz
when calculated by DFT (see the Analysis section). Because of
the largely overlapping error bars on the DFT and the quantum
chemistry Q, one cannot conclude whether or not the
difference in Vzz predictions is significant. If the error bar of
0.08 b on the “quantum chemistry Q(5/2+)” could be further
reduced, one would have a very clean case to examine the
otherwise undetectable systematic deviation on Vzz-values
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determined by DFT. Not directly, which would require DFT
and quantum chemistry calculations on exactly the same
systems, which is often not possible, but indirectly, through the
quadrupole moment. The major contribution to this 0.08 b
error bar is due to the 15 MHz uncertainty on the 11/2−

quadrupole coupling constant of Cd in hcp-Zn measured by
nuclear orientation (ref 28). If this could be reduced to 1 MHz,
something that is certainly achievable by modern equipment,
the error bar on the quantum chemistry Q(5/2+) would reduce
to 0.03 b. The second most important contribution stems from
the error on the quantum chemistry Q(11/2−) itself. This can
be reduced by performing multiconfiguration Dirac−Hartree−
Fock calculations for the 3P2 or

2P3/2 states of the free Cd atom,
going further in the configuration interaction expansion than
has been done so far.45,96 Reducing in this way the error bar on
the quantum chemistry Q(5/2+) to 0.02 b or better would
make the comparison between the DFT and quantum
chemistry values of Vzz sensitive to differences of about 0.2 ×
1021 V/m2 or 3%.
In conclusion, we claim that the value with error bar of

0.76(2) b for the nuclear electric quadrupole moment of the 5/
2+ level of 111Cd is the most accurate and most precise value
that can be achieved by semilocal exchange-correlation
functionals in density functional theory. This precise determi-
nation complements recent efforts45,96 to determine quadru-
pole moments of long-lived levels of Cd isotopes (the short-
lived 5/2+ level is not suitable for laser spectroscopy
experiments as in the previous studies). The value we found
is slightly lower than the experimental value that is most often
quoted, yet consistent with a reanalysis of that experiment
based on a recently determined reference quadrupole moment
that depends on experiment and independent quantum
chemistry calculations. More importantly, our value comes
with a well-justified error bar. It is an inherent limitation of the
solid-state density functional theory approach to quadrupole
moments that this error bar cannot detect systematic deviations
that are due to limitations of the exchange-correlation
functional. We try to minimize this limitation by using
information from seven different crystals, and the agreement
of our value with an independent value based on experiment
and quantum chemistry indicates that indeed this systematic
deviation cannot be large. If anything, the presently proposed
quadrupole moment could be a few percent too large.
Suggestions for nuclear orientation experiments and quantum
chemistry calculations are given that can lead to an even more
precise comparison between DFT and quantum chemistry
predictions for Vzz. Up to date, nuclear model calculations to
predict this quadrupole moment directly from nuclear physics
theory would be another way to shed new light on this topic.
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(91) Pyykkö, P.; Seth, M. Relativistic Effects in Nuclear Quadrupole
Coupling. Theor. Chem. Acc. 1997, 96, 92−104.
(92) Pernpointner, M.; Schwerdtfeger, P. Spin-Orbit Effects in
Electric Field Gradients of Alkali Metal Atoms. J. Phys. B: At., Mol. Opt.
Phys. 2001, 34, 659−670.
(93) Seewald, G.; Hagn, E.; Zech, E.; Kleyna, R.; Voss, M.; Burchard,
A. Spin-Orbit Induced Noncubic Charge Distribution in Cubic
Ferromagnets. I. Electric Field Gradient Measurements on 5d
Impurities in Fe and Ni. Phys. Rev. B: Condens. Matter Mater. Phys.
2002, 66, 174401.
(94) Arcisauskaite, V.; Knecht, S.; Sauer, S. P. A.; Hemmingsen, L.
Electric Field Gradients in Hg Compounds: Molecular Orbital (MO)
Analysis and Comparison of 4-Component and 2-Component
(ZORA) Methods. Phys. Chem. Chem. Phys. 2012, 14, 16070−16079.
(95) Autschbach, J.; Peng, D.; Reiher, M. Two-Component
Relativistic Calculations of Electric-Field Gradients Using Exact
Decoupling Methods: Spin-orbit and Picture-Change Effects. J.
Chem. Theory Comput. 2012, 8, 4239−4248.
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