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The interaction between two initially causally disconnected regions of the Universe is studied using
analogies of noncommutative quantum mechanics and the deformation of Poisson manifolds. These
causally disconnect regions are governed by two independent Friedmann-Lemaître-Robertson-Walker
(FLRW) metrics with scale factors a and b and cosmological constants Λa and Λb, respectively. The
causality is turned on by positing a nontrivial Poisson bracket ½Pα;Pβ� ¼ ϵαβ

κ
G, where G is Newton’s

gravitational constant and κ is a dimensionless parameter. The posited deformed Poisson bracket has an
interpretation in terms of 3-cocycles, anomalies, and Poissonian manifolds. The modified FLRWequations
acquire an energy-momentum tensor from which we explicitly obtain the equation of state parameter. The
modified FLRW equations are solved numerically and the solutions are inflationary or oscillating
depending on the values of κ. In this model, the accelerating and decelerating regime may be periodic. The
analysis of the equation of state clearly shows the presence of dark energy. By completeness, the
perturbative solution for κ ≪ 1 is also studied.
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I. MOTIVATING THE PROBLEM

Understanding the origin and behavior of dark matter
and dark energy poses one of the most important challenges
of today’s physics, and its solution could require new
radical ideas.
Standard cosmology rests on the cosmological principle,

the assumption that the Universe is homogeneous and
isotropic on large scales. However in the big bang era,
approximately 13.8 billion years ago, when the Universe
violently expanded from a very high density and temper-
ature state, the cosmological principle conditions were not
fulfilled because of the extraordinarily nonhomogeneous
and anisotropic nature of this expansion. The released
energy, then, was redistributed in such a way that causally
disconnected sectors were formed [1].
After this extremely short period of time, our known laws

of physics apply and one can speculate, for example, about
the formation of topological defects which break the large -
scale homogeneity [2–4], as domain walls, cosmic strings,
or monopoles, of which no visible sign has been found.
This led to the assumption of a period of cosmic inflation

[5–14] during which the Universe grew exponentially,
smoothing out inhomogeneities inside the cosmological

horizon, the boundary of our observable causal patch of the
Universe. Inflation ends in a reheating phase where the
standard model particles are produced and, as temperature
decreases, quantum fluctuations explain the formation of
galaxies and the current large-scale structure of the observ-
able universe.
After the cosmic inflation, most of the evolution of the

Universe has been dominated by matter and radiation. But
evidence coming from the red shift of Type Ia supernovae
[15] and from the fluctuations in the cosmic microwave
background [16] suggests that our Universe is presently in a
phase of accelerated expansion. Lambda cold dark matter
(ΛCDM) is the standard cosmological model describing
this situation, with approximately 4.9% of ordinary (bar-
yonic) matter, 26.8% of (cold) dark matter, and 68.3% of
dark energy (Λ stands for the cosmological constant),
compatible with a flat space with a critical total density
ρtot ¼ ρmatt þ Λ=8πG ≈ 3H2=8πG (where H the Hubble
parameter). The origin of dark matter and dark energy is
still unknown.
The universe in this model is described by the

Friedmann-Lemaître-Robertson-Walker (FLRW) metric

ds2 ¼ −dt2 þ aðtÞ2R0
2

�
dr2

1 − kr2
þ r2dΩ2

�
; ð1Þ

whereaðtÞ is the (dimensionless) time-dependent scale factor
of spatial sections, R0 is the present length scale (if að0Þ ¼ 1
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at the present time t ¼ 0), r is the (dimensionless) radial
coordinate, and k is the curvature of spatial sections, being
k ¼ 0 for a flat space. For this geometry, Einstein’s equations
reduce to the two Friedmann’s equations [17]

HðtÞ2 ≔
�
_aðtÞ
aðtÞ

�
2

¼ 8πG
3

ρþ Λ
3
−

k
R0

2aðtÞ2 ;

äðtÞ
aðtÞ ¼ −

4πG
3

ðρþ 3pÞ þ Λ
3
; ð2Þ

where dots refer to time derivatives. The role of Λ is clear
from the previous equations. Indeed, for a Λ-dominated
era—the dark energy dominated epoch—we have that

asymptotically aðtÞ ∼ et
ffiffiffiffiffiffi
Λ=3

p
. The physical origin of the

cosmological constant is troublesome, on the other hand. For
example, the identification of Λ with the vacuum energy of
the various species of particles of the standard model,
evaluated with a cutoff of the order of the Planck scale,
leads to a mismatch of around 120 orders of magnitudewhen
compared with observable data, while an exact supersym-
metric field theory predicts a vanishing result. If SUSY is
broken—a natural way out to the problem—a fine-tuning is
necessary to approximate the experimental value of Λ.
This is the cosmological constant problem [18–20], one

of the most significant open problems in fundamental
physics. Models to solve this puzzle have been formulated
in which Λ is related with the vacuum expectation value of
the energy density of dynamical light scalar fields [21] with
local minima in the potential energy, which would produce
phase transitions as the temperature decreases, or with a
sufficiently small slope to produce a slow roll down to the
minimum of the potential.
Different scenarios explore the possibility that cosmic

acceleration could be described by higher-dimensional
theories [22]. It has also been argued [23] that quantum
mechanics combined with Einstein’s theory would require
a kind of nontrivial uncertainty relation at the Planck scale,
which impose effective short distance or large momentum
cutoffs, since the attempt to localize an event with extreme
precision would demand an energy that would lead to a
gravitational collapse.
In the present work, we consider a model where patches

of the Universe—causally disconnected after the inflation
era—have independently evolved to a dark energy domi-
nated era according to Einstein’s equations. A tiny effective
interaction is considered, which can be interpreted as a relic
of a primordial nontrivial uncertainty relation.
Technically, a mechanism that might explain how our

Universe evolved to the conditions we know today—an
accelerated expansion state—is based on a deformed
Poisson-bracket structure for the metrics describing the
patches of initially causally disconnected components.
Indeed, deformed Poisson-bracket algebras, which

describe phase-space noncommutative geometries [24–30],

usually imply nontrivial interactions [31]. As an example,
consider theHamiltonianH0 ¼ 1

2
πiπi (sum is implied) in two

dimensions, with phase space coordinates fxi; πjgfi;jg∈f1;2g
satisfying the noncanonical Poisson brackets

fxi; xjg ¼ 0; fxi; πjg ¼ δij; fπi; πjg ¼ Bϵij: ð3Þ
HereB is a constant and ϵij is the totally antisymmetric tensor.
This system describes the Landau model as can be seen

by performing the change of variables in the momentum
sector πj ¼ pj þ B

2
ϵjkxk (the so called Bopp’s shift). The

system is now described by the Hamiltonian

H ¼ 1

2

�
pi þ

B
2
ϵikxk

�
2

; ð4Þ

while the Poisson-bracket structure is the canonical one,
namely,

fxi; xjg ¼ 0; fxi; pjg ¼ δij; fpi; pjg ¼ 0: ð5Þ
Let us just mention that performing a linear Bopp’s shift

is equivalent to using the ⋆-Moyal product when the
deformation parameters are constant. Otherwise, the more
general ⋆-Kontsevich product or an ℏ expansion should be
employed [29].
This paper is organized as follows. In Sec. II, we

implement the main idea by extending the FLRW metric
to a universe with two FLRW metrics—that is with two
scale factors aðtÞ and bðtÞ—coupled by rules resembling
the case of the Landau problem, which will be explained
below. Basically, the idea is to consider the standard
cosmological model as a Hamiltonian system formally
similar to classical mechanics with the second metric as a
new degree of freedom coupled through a Landau-like
mechanism. In Sec. III, the coupled FLRW equations are
solved, first by using numerical methods in Sec. III and
then through a first-order perturbative expansion in
Sec. III B. These solutions show inflation at early times
but another behavior emerges at late times. The inflation
at early times is an effect that becomes manifest assuming
that cosmological constants in the two different patches
satisfy a relation Λa ≪ Λb. In Sec. IV, the interpretation
in terms of dark energy is given for the solutions
previously found, and the last section is devoted to
discussion and conclusions.

II. THE MODEL

Following the analogy with the Poisson manifold defor-
mation (Landau problem) described above, we consider a
universe with two scale factors aðtÞ and bðtÞ and we posit
the following deformed Poisson bracket for the conjugate
momenta πa and πb of a and b:

fπα; πβg ¼ ϵαβθ: ð6Þ
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Here, indices α; β ∈ f1; 2g label scale factors—that is,
a1 ≡ a, a2 ≡ b, π1 ≡ πa, π2 ≡ πb—while ϵαβ is the two-
dimensional Levi-Civita tensor.
The θ parameter can be chosen with dimensions of

ðenergyÞ2 if aα has dimensions of ðenergyÞ−1 and πα
dimensions of energy (see the Appendix). However, we
must note that, contrary to the Landau problem, θ should
not be identified with an external magnetic field and its
value should be fixed using different physical arguments.
The remainingPoisson brackets are the standard ones, i.e.,

faα; aβg ¼ 0; faα; πβg ¼ δαβ: ð7Þ
Before continuing with the technical discussion, let us

introduce a useful parametrization for θ. Indeed, since it is a
constant for the two metrics under consideration in this
universe, it seems natural to define θ ¼ κ

G, where κ is a
dimensionless parameter andG is Newton’s constant. From
this point of view, the G → ∞ limit with fixed κ (formally
equivalent to κ → 0 with fixed G) would correspond to a
universe with two causally disconnected patches.
In fact, the G → ∞ limit closely resembles the tension-

less limit in string theory [32]. In string theory the tension
of the string T and the Regge slope α0 are related through
T ∝ 1

α0, the tensionless limit corresponds to α0 → ∞, gen-
erating the so called ultralocal limit, where every point in
the string evolves in a causally disconnected manner from
the rest of the points on the same string. (Parenthetically,
many efforts were devoted to the study of such scenario as
can be seen, for example, in [33]. See also [34]) However
we stress the difference with our approach where no relic of
spatial dependence appears in the metric, as a consequence
of the cosmological principle.
For the total Hamiltonian of the model presented here,

under the conditions set out above, we take1

H ¼ N

�
Gπ2a
2a

þGπ2b
2b

þ 1

2G

�
kaa−

Λa

3
a3 þ kbb −

Λb

3
b3
��

;

ð8Þ
where ka and kb are the spatial curvatures of the patches
described by the scales aðtÞ and bðtÞ, respectively.
The equations of motion derived from this Hamiltonian

with the Poisson-bracket structure defined in (6) and (7)
turn out to be

_a ¼ G
πa
a
; ð9Þ

_b ¼ G
πb
b
; ð10Þ

_πa ¼ G
π2a
2a2

þ Λaa2 − ka
2G

þ κ
πb
b
; ð11Þ

_πb ¼ G
π2b
2b2

þ Λbb2 − kb
2G

− κ
πa
a
; ð12Þ

where we have used the reparametrization Ndt → dt or,
equivalently, we have taken N ¼ 1 at the end of the
derivation.
The constraint _pN ¼ 0 derived from this Hamiltonian

(a consequence of time-reparametrization invariance of the
effective action) turns out to be

π2a
a
þ π2b

b
þ 1

G2

�
kaa −

Λa

3
a3 þ kbb −

Λb

3
b3
�

¼ 0: ð13Þ

Notice that this constraint is independent of κ and so it
applies to our model even in the canonical Poisson-brackets
case.
The equations of motion (9) and (10) can be used to write

the momenta equations (11) and (12) as second order
differential equations, and also to bring Eq. (13) to the
standard form. In so doing we find the following set of
equations:

2
ä
a
þ
�
_a
a

�
2

¼ Λa −
ka
a2

þ 2κ
_b
a2

; ð14Þ

2
b̈
b
þ
�
_b
b

�2

¼ Λb −
kb
b2

− 2κ
_a
b2

; ð15Þ

a _a2 þ b _b2 ¼ Λa

3
a3 − kaaþ Λb

3
b3 − kbb: ð16Þ

They contain all the dynamical information about the
model and show that the evolution of the scale factor of
one patch is modified by the behavior of the scale factor of
the other patch. We can venture an interpretation here in
terms of gravitational bubbles. Indeed, each scale factor

1We are taking the same time coordinate for both sectors. We
recall that Friedmann’s equations can be derived from the
effective Lagrangian

L½a; _a; N� ≔ 1

G

�
a _a2

2N
þ Λ

6
Na3 −

k
2
Na

�
;

where NðtÞ is an auxiliary variable which ensures the time-
reparametrization invariance of the action. Indeed, the second line
in (2) is the equation of motion for aðtÞ if we choose NðtÞ≡ 1,
while the equation for NðtÞ imposes the first line in (2) as a
constraint on the system. The corresponding Hamiltonian, with
pa ¼ a _a=GN and pN ¼ 0, reads

Hðpa; a; pN; NÞ ¼ NHðpa; aÞ;
where

Hðpa; aÞ ¼
1

2

�
G
pa

2

a
−

Λ
3G

a3 þ k
G
a

�
;

and the constraint implies H ¼ 0 on the physically acceptable
trajectories.
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describes one of the bubbles and they evolve under a sort of
interaction induced by (6).
The previous system of differential equations can also be

derived from a canonical Poisson structure by performing a
Bopp’s shift in the momenta πα, in complete analogy with
noncommutative quantum mechanics. That is, we can
perform a change of variables in the form

πα ¼ pα þ
θ

2
ϵαβaβ ¼ pα þ

κ

2G
ϵαβaβ;

where pα are the canonical momenta (faα; pβg ¼ δαβ).
The Hamiltonian in these variables turns out to be

H ¼ N

�
G
2a

�
pa þ

κ

2G
b

�
2

þ G
2b

�
pb −

κ

2G
a

�
2

þ 1

G

�
kaa −

Λa

3
a3 þ kbb −

Λb

3
b3
��

: ð17Þ

The corresponding Hamilton’s equations of motion are

_a ¼ G
a

�
pa þ

κ

2G
b
�
; ð18Þ

_b ¼ G
b

�
pb −

κ

2G
a

�
; ð19Þ

_pa ¼
G
2a2

�
pa þ

κ

2G
b

�
2

þΛaa2 − ka
2G

þ κ

2b

�
pb −

κ

2G
a

�
;

ð20Þ

_pb ¼
G
2b2

�
pb −

κ

2G
a

�
2

þ Λaa2 − ka
2G

−
κ

2a

�
pa þ

κ

2G
b

�
;

ð21Þ

where the gauge N ¼ 1 has been chosen again. Of course,
the constrained system of second order differential equa-
tions derived from here is also given by (14), (15), and (16).
Finally, note that it is possible to identify the right-hand

sides of Eqs. (14) and (15) with an energy-momentum
tensor that is covariantly conserved. Indeed, let us
consider the a sector of the model, that is, the patch of
the Universe described by the scale factor a. The FLRW
Einstein tensor Gμν for the a patch has time component
G0

0 ¼ −3ð _a2 þ kaÞ=a2 and space components G1
1 ¼ G2

2 ¼
G3

3 ¼ −ð2aäþ _a2 þ kaÞ=a2. Then Eqs. (14) and (16) can
be written as the Einstein equations for the a patch

Gμν ¼ 8πGTμν; ð22Þ

provided

T0
0 ¼

Λa

8πG
þ b3

a3

�
Λb −

3ð _b2 þ kbÞ
b2

�
;

T1
1 ¼ T2

2 ¼ T3
3 ¼ −

Λa

8πG
−

θ

4π

_b
a2

: ð23Þ

Notice that the term in square brackets in T0
0 is

G0
ðbÞ0 þ Λbδ

0
0, with G0

ðbÞ0 ¼ −3ð _b2 þ kbÞ=b2, and thus

vanishes when for θ ¼ 0 the a and b patches evolve
independently. Energy-momentum covariant conservation
then implies that

Tμ
ν;μ ¼ 0 ⇒

3_b
a3

ð2bb̈þ _b2 þ kb − Λbb2 þ 2κ _aÞ ¼ 0:

ð24Þ
This condition is just the equation of motion for bðtÞ,
Eq. (15). This is a self-consistency property, intrinsic to the
model proposed here. Notice that, in this way, each sector
appears as a kind of local source of the other. Moreover, the
effective density, which does not depend on κ, is induced by
the time-reparametrization invariance through the con-
straint in Eq. (13), while the effective pressure, proportional
to κ, is a consequence of the assumed noncommutativity,
Eq. (6). Notice also that the sign of the effective pressure
depends on the behavior of the scale bðtÞ (expansion or
contraction) of the second sector.
The realization of our model in a more fundamental

theory is not unique and deserves a careful analysis.
A possible picture of the model could be the effective
description of two regions of the Universe, originally
disconnected (as, for example, regions separated by domain
walls as mentioned in the Introduction). It might also be
possible to have an interpretation in terms of two uni-
verses,2 albeit initially disconnected, such that this dis-
connection is broken at a certain time through the
modification of the canonical brackets. Another interpre-
tation is simply in terms of a universe with two metrics,
namely, a bimetric theory, which does not suffer from the
usual instabilities and in this sense our model resembles the
results presented by Freidel et al. [35,36].
Finally, and this is the idea we explore now, the

possibility that the effect of the dark energy responsible
for the accelerated expansion of our Universe at the present
time could be encoded in a second metric interacting in the
way we have explored here is very attractive.

III. SOLUTIONS OF THE GENERALIZED
FLRW EQUATION

In order to study the properties of the model proposed
here, we will analyze the solutions of the equations of
motion in different regimes. The perturbative regime is

2This point of view has been defended vigorously by Linde;
see [1] and references therein.
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defined by κ ≪ 1. We will show that this analysis can be
done consistently only at early times in the evolution of the
Universe.
For late times, instead, numerical solutions of the

equations of motion will be useful. For this case, instead
of using the second order set of equations, (14) and (15), it
will be convenient to solve directly the Hamiltonian system
defined in Eqs. (9) to (12).
For the analysis, it is convenient to define a scale μ with

dimensions of energy, that is ½μ� ¼ þ1, such that the
quantities t̄≡ μt, ā≡ μa, b̄≡ μb are dimensionless. For
the momenta we define π̄α ≡ μGπα (or in terms of
canonical variables p̄α ≡ μGpα). Finally, cosmological
constants can be rescaled also and we define λ such that

sin λ≡ Λb

μ2
; cos λ≡ Λa

μ2
;

so μ ¼ ðΛ2
a þ Λ2

bÞ
1
4.

In terms of these dimensionless quantities, the set of first-
order dynamical equations reads

dā
dt̄

¼ π̄a
ā
; ð25Þ

db̄
dt̄

¼ π̄b
b̄
; ð26Þ

dπ̄a
dt̄

¼ π̄2a
2ā2

þ ā2 cos λ − ka
2

þ κπ̄b
b̄

; ð27Þ

dπ̄b
dt̄

¼ π̄2b
2b̄2

þ b̄2 sin λ − kb
2

−
κπ̄a
ā

; ð28Þ

while the second order dimensionless system is

2ā
d2ā
dt̄2

þ
�
dā
dt̄

�
2

¼ ā2 cos λ − ka þ 2κ
db̄
dt̄

; ð29Þ

2b̄
d2b̄
dt̄2

þ
�
db̄
dt̄

�
2

¼ b̄2 sin λ − kb − 2κ
dā
dt̄

: ð30Þ

Finally, the dimensionless form of the constraint is

ā

�
dā
dt̄

�
2

þ b̄

�
db̄
dt̄

�
2

¼ ā3
cosλ
3

þ b̄3
sinλ
3

− āka− b̄kb: ð31Þ

In what follows we will take the case ka ¼ 0 ¼ kb.

A. Nonperturbative solutions: Numerical analysis
and late times

In order to extract qualitative physical information from
the model, in the present section we will perform a study of
the behavior of āðt̄Þ and b̄ðt̄Þ for different regimes of the
parameter κ and also for different values of λ.

For the nonperturbative case, it is much better to
consider the set of Hamiltonian equations, (25) to (28),
with ka ¼ 0 ¼ kb. Initial conditions for the system are
āð0Þ¼ra, b̄ð0Þ ¼ rb, and for numerical solutions we use
ra ¼ 1 ¼ rb. This symmetric condition just encodes the
fact that patches of the Universe are distinguished at initial
time only due to the content of cosmological constant. Note
also that these initial conditions translate to the functions
aðtÞ, bðtÞ as að0Þ ¼ ðΛ2

a þ Λ2
bÞ−1=4 ¼ bð0Þ so that the case

Λa ¼ 0 ¼ Λb is not included in the rest of the discussion.
On the other hand, the initial conditions for the momenta

πa and πb are restricted by the constraint (31) which can be
written also as

π̄2a
ā
þ π̄2b

b̄
¼ cos λ

3
ā3 þ sin λ

3
b̄3: ð32Þ

For the numerical solutions we choose

πað0Þ ¼ r2a

ffiffiffiffiffiffiffiffiffiffi
cos λ
3

r
; πbð0Þ ¼ r2b

ffiffiffiffiffiffiffiffiffi
sin λ
3

r
: ð33Þ

This symmetric choice of initial conditions fulfills the
constraint (31) at t ¼ 0 and, since the Hamiltonian is
preserved during the evolution of system, it is satisfied
at any time.
In our numerical study we are interested in the behavior

of four quantities in the patch described by a. Namely, the
scale factor a, the velocity of the expansions _a, the Hubble
parameter Ha, and the deceleration parameter qa. The last
two are defined as follows:

Ha ¼
_a
a
¼ μ

_̄a
ā
≡ μH̄ā; qa ¼ −

ä
_a2
a ¼ −

̈ā
_̄a2
ā; ð34Þ

where time derivatives of quantities with a bar are taken
with respect to t̄. Similar definitions hold for the scale
factor b̄. Note finally that qa is independent of the scale μ.
It is interesting to explore the cases Λa ≪ Λb and Λa ∼

Λb separately. The case Λa ≫ Λb is contained in the first,
due to the symmetry a → b and κ → −κ. Then we will
study the quantities of interest in such limits for different
values of κ.

1. The case Λa ≪ Λb

We first examine the case Λa ≪ Λb, which we illustrate
by Λa ¼ μ2 sin ϵ ≈ ϵμ2, Λb ¼ μ2 cos ϵ ≈ ð1 − ϵ2=2Þμ2,
ϵ ¼ 10−4. The behavior of the scale factors a and b for
κ ¼ 0.1, κ ¼ 1, κ ¼ 2 and κ ¼ 4 is shown in Fig. 1.
We observe here that as κ increases, the scale factors ā

and b̄ start an exponential growth. Indeed, while in
panels 1(a) and 1(b) we see that b̄ðt̄Þ > āðt̄Þ, the situation
is reversed in panels 1(c) and 1(d) for t̄≳ 1.
On the other hand, as κ increases further, the system

exhibits a quasiperiodic behavior as can be checked in
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panels 1(c) and 1(d) in the same figure. The oscillation
pattern also shows how ā grows at the expenses of b̄.
Figure 2 shows the behavior of the scale factors for

negative κ and Λa ↔ Λb. We show only the cases κ ¼ −0.1
and κ ¼ −4. We verify here our statement that the case
Λb ≪ Λa is already contained in the present discussion.
From here on we plot only the values of κ that exhibit the

main features we would like to highlight.

The Hubble parameter Ha defined in (34) also has an
interesting behavior. Figure 3 shows the evolution of Ha
and Hb as a function of their respective scale factor. For
the scale factor ā, we observe a different behavior of the
Hubble parameter for κ ¼ 0.1 in panel 3(a) compared with
the case κ ¼ 2 in panel 3(b). It is similar for the scale
factor b̄ shown in panels 3(c) and 3(d) for same values
of κ.

(a) (b)

(c) (d)

FIG. 1. Scale factors for different values of κ and for Λa ¼ μ2 sin ϵ, Λb ¼ μ2 cos ϵ, ϵ ¼ 10−4.

(a) (b)

FIG. 2. Scale factors for negative values of κ and for Λb ¼ μ2 sin ϵ ≈ ϵμ2, Λa ¼ μ2 cos ϵ ≈ ð1 − ϵ2=2Þμ2, ϵ ¼ 10−4. The plots are the
same as in Figs. 1(a) and 1(d) after changing ā ↔ b̄.
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It is interesting again to note the complementary behav-
ior of ā and b̄, in the sense that the increase in one of the
Hubble parameters is accompanied by the decrease of the
Hubble parameter of the other scale factor.
Indeed, for λ ¼ π=2 and κ ¼ 0, H̄ā ¼ 0 since the

solution of the equations of motion in such a situation is
āðt̄Þ ¼ constant. The Hubble parameter for b̄ðt̄Þ in such
case is a nonzero constant (μ2H̄b̄ ¼ 3−1=2 ¼ 0.57735).
Panel 3(a) shows how the Hubble parameter for ā going
from 0 to ≈0.31 in Δā ≈ 2 while in panel 3(c) the Hubble
parameter for b̄ diminishes from ≈0.57735 to ≈0.576005
in Δb̄ ≈ 2.
This kind of complementarity is also observed in

panels 3(c) and 3(d), where the increase-decrease process
occurs for Δā ≈ 10 ≈ Δb̄.
Figure 4 shows velocities and deceleration parameters of

ā and b̄ for two different values of κ. For κ ¼ 2.07 we
observe the imprints of the quasiperiodic behavior of the
scale factor. In panel 4(b) we appreciate an increasing

deceleration parameter, which starts to decrease at t̄ ∼ 6 and
for t̄≳ 12 starts to stabilize to zero.
The increase of the velocity expansion of ā due to the

interaction with b̄ can be appreciated as κ increases. While
the velocity of the ā patch increases, the velocity of the b̄
patch decreases.

2. The case Λa ∼ Λb

Let us consider the case Λa ∼ Λb. For illustration, we
have taken λ ¼ ðπ=4Þ − ϵ with ϵ ¼ 10−4. The scale factor
behavior can be appreciated in Fig. 5. We note that the
effect of κ is to increase the exponential growth of the
scale factor ā. The cosmological constants satisfy Λa ≈
ð1þ ϵÞΛb and we expect the scale factor ā to increase
faster that b̄. This is what panel 5(a) shows. In the rest of the
panels we see how the faster increase of ā becomes more
pronounced as κ grows. The quasiperiodic behavior of ā
and b̄ can be appreciated in panels 5(c) and 5(d).

(a) (b)

(c) (d)

FIG. 3. Parametric plot of the Hubble parameter as a function of the scale factor for different values of κ and for Λa ≪ Λb. On the
horizontal axes we can read the value of the scale factor at different times.
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The Hubble constant behavior can be appreciated in
Fig. 6. Panel 6(a) shows how the expansion rate of ā
increases, and panel 6(c) shows the decrease of the expan-
sion rate of b̄, both cases for the same value of κ ¼ 0.1. This
is in agreement with the behavior of ā and b̄ previously
shown in panel 5(a). The situation changes as κ increases.
The scale factor b̄ decreases from its initial value b̄ð0Þ ¼ 1
and ā starts to grow [see panels 5(b) and 5(c) in Fig. 5, and
note that in this figure we take κ ¼ 1.5]. The expansion rate
of ā, however, is greater than the expansion rate of b̄, but in
any case always decreases.
The velocity of the expansion and the deceleration

parameter are shown in Fig. 7 for the ā patch [panels 7(a)
and 7(b)] and for the b̄ patch [panels 7(c) and 7(d)].

For κ ¼ 0.1, the expansion velocities _̄a and _̄b, and the
deceleration parameters qa and qb, show a similar behavior,

as expected for Λa ≈ Λb and initial conditions that are
symmetric under the change ā ↔ b̄.
For a higher value of κ (κ ¼ 3), the quasiperiodic

structure is present although the behavior of velocity and
deceleration is not symmetric [panels 7(b) and 7(d)].
Indeed, in the range 1.0≲ t̄≲ 2.3 the scale factor ā shows
two zeroes while the scale factor b̄ shows three zeros (the
instants for which qa and qb go to infinity). The fact that κ
appears with a different sign in the equations of motion for
ā and for b̄ is responsible for this asymmetry. Figure 8
shows the plots for κ ¼ −3, clearly illustrating the
change ā ↔ b̄.
As a conclusion we would like to stress that the

interaction induced through (6) substantially modifies
the evolution of the patches of the Universe. For a patch
with a small cosmological constant compared with the

(a) (b)

(c) (d)

FIG. 4. Velocity expansion and deceleration parameters for the scale factors ā and b̄ as functions of t̄ in the regime Λa ≪ Λb for two
different values of κ. The panels on the right show imprints of the quasiperiodic behavior of the scale factors.
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cosmological constant of a second patch, interacting in the
way described before, an accelerated expansion rate is
observed even for small values of κ. Such expansion occurs
at the expense of the expansion of the second patch, which
is consistent with the fact that the interaction term can be
thought of as an energy-momentum source for the first
patch, as can be seen in (23).

B. Perturbative solutions for κ ≪ 1

In this section we explore the solutions of the full system
of equations to first order in a perturbative expansion in the
dimensionless parameter κ. However, as for the case of the
Landau problem which is formally related to the model
proposed here in view of the modified Poisson bracket in
(6), the limit κ ≪ 1 might be subtle.
Indeed, for the Landau problem the magnetic length l ¼

1=
ffiffiffiffi
B

p
is ill defined for a magnetic field B → 0. Even

though this effect is quantum in nature, our model contains
the dimensional parameter lg ¼

ffiffiffiffiffiffiffiffiffi
G=κ

p
, which does not

admit the limit κ → 0. We will show that this fact is linked
to the inflationary behavior of the unperturbed solution
and, therefore, the perturbation theory works well only for
times close to the initial time. The length lg is a clear
example where the nonperturbative behavior becomes
important.

We look for solutions of the second order set of Eqs. (29)
and (30) of the form

āðt̄Þ ¼ ā0ðt̄Þ þ κā1ðt̄Þ þOðκ2Þ;
b̄ðt̄Þ ¼ b̄0ðt̄Þ þ κb̄1ðt̄Þ þOðκ2Þ; ð35Þ

with initial condition āð0Þ ¼ ra; b̄ð0Þ ¼ rb.
The zeroth order solutions, ā0ðt̄Þ and b̄0ðt̄Þ, are

superpositions of functions that contract and expand
exponentially in time. We choose the expanding
solutions

ā0ðt̄Þ ¼ rae
t̄

ffiffiffiffiffi
cos λ
3

p
; b̄0ðt̄Þ ¼ rbe

t̄
ffiffiffiffiffi
sin λ
3

p
: ð36Þ

These solutions satisfy the constraint (31) (with ka ¼
0 ¼ kb) and for the given initial conditions one also has

_̄a0ð0Þ ¼ ra

ffiffiffiffiffiffiffiffiffiffi
cos λ
3

r
; _̄b0ð0Þ ¼ rb

ffiffiffiffiffiffiffiffiffi
sin λ
3

r
: ð37Þ

The equations at first order in κ read

̈̄a1þ
ffiffiffiffiffiffiffiffiffi
cosλ
3

r
_̄a1−

2

3
cosλā1¼

ffiffiffiffiffiffiffiffiffi
sinλ
3

r
rb
ra
et̄ð

ffiffiffiffiffi
sinλ
3

p
−

ffiffiffiffiffi
cosλ
3

p Þ; ð38Þ

(a) (b)

(c) (d)

FIG. 5. Scale factors ā and b̄ for different values of κ and for Λa ≈ Λb.
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̈b̄1 þ
ffiffiffiffiffiffiffiffiffi
sin λ
3

r
_̄b1 −

2

3
sin λb̄1 ¼ −

ffiffiffiffiffiffiffiffiffiffi
cos λ
3

r
ra
rb

e−t̄ð
ffiffiffiffiffi
sin λ
3

p
−

ffiffiffiffiffi
cos λ
3

p
Þ;

ð39Þ

r2a
ffiffiffiffiffiffiffiffiffiffi
cos λ

p
e2t̄

ffiffiffiffiffi
cos λ
3

p �
_̄a1 −

ffiffiffiffiffiffiffiffiffiffi
cos λ
3

r
ā1

�

¼ −r2b
ffiffiffiffiffiffiffiffiffi
sin λ

p
e2t̄

ffiffiffiffiffi
sin λ
3

p �
_̄b1 −

ffiffiffiffiffiffiffiffiffi
sin λ
3

r
b̄1

�
: ð40Þ

The solutions of the set of Eqs. (38) and (39) depend on
two arbitrary constants when the conditions ā1ð0Þ ¼
0 ¼ b̄1ð0Þ are imposed. Initial conditions for the velocities
are chosen in agreement with (33), which guarantees the

constraint and then _̄að0Þ ¼ 0 ¼ _̄bð0Þ. The integration
constants are now fixed and the solutions to order κ are

āðt̄Þ ¼ et̄
ffiffiffiffiffi
cos λ
3

p
ra þ e−2t̄

ffiffiffiffiffi
cos λ
3

p �
κrb
ra

�

×

ffiffiffiffiffiffiffiffiffi
sin λ
3

r �
sec λ

2þ ffiffiffiffiffiffiffiffiffi
tan λ

p
− tan λ

�
½2þ et̄

ffiffiffiffiffiffiffiffiffi
3 cos λ

p

− 3et̄
ffiffiffiffiffi
cos λ
3

p
ð1þ ffiffiffiffiffiffiffi

tan λ
p Þ þ

ffiffiffiffiffiffiffiffiffi
tan λ

p
ðet̄

ffiffiffiffiffiffiffiffiffi
3 cos λ

p
− 1Þ�; ð41Þ

b̄ðt̄Þ ¼ et̄
ffiffiffiffiffi
sin λ
3

p
rb − e−2t̄

ffiffiffiffiffi
sin λ
3

p �
κra
rb

�

×
1ffiffiffiffiffiffiffiffiffiffiffiffi

3 sin λ
p

�
1

2 tan λþ ffiffiffiffiffiffiffiffiffi
tan λ

p
− 1

�
½et̄

ffiffiffiffiffiffiffiffiffi
3 cos λ

p
− 1

þ ð2þ et̄
ffiffiffiffiffiffiffiffiffi
3 sin λ

p
− 3et̄

ffiffiffiffiffi
cos λ
3

p
ð1þ ffiffiffiffiffiffiffi

tan λ
p ÞÞ

ffiffiffiffiffiffiffiffiffi
tan λ

p
�: ð42Þ

These are the scale factors of the two patches when a
kind of interaction is introduced by a modification of the
Poisson brackets of momenta in the κ ≪ 1 limit. These
solutions satisfy the initial conditions āð0Þ ¼ ra; b̄ð0Þ ¼
rb; _̄að0Þ ≠ 0; _̄bð0Þ ≠ 0.

(a) (b)

(c) (d)

FIG. 6. Hubble parameters vs scale factors for different values of κ and for Λa ≈ Λb.
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Let us explore the case Λa ∼ 0 (or λ ∼ π=2). In Fig. 9 we
observe the scale factors for κ ¼ 10−2 and λ ¼ π=2 − 10−4.
It can be seen in (41) and (42) that perturbative terms

contain an exponential dependence in time and therefore the
perturbative approach is valid only for early times. Indeed,
in Fig. 10 we can compare the scale factors with κ ¼ 0, with
the behavior of the perturbative term Δā≡ āðt̄Þ − ā0ðt̄Þ
(and the analoguous definition for Δb̄). Panel 10(a) shows
the case of ā, while panel 10(b) shows the case of b̄.
The perturbative approach in the present case (see

Fig. 10) is valid for times t̄ < 8. But we observe that,
already for t̄ ≈ 4, the scale factor ā starts growing. In this
sense, we say that the perturbation solution is valid at early
times. The precise value of the time cutoff depends on κ, as
well as λ.
The second case of interest is Λa ∼ Λb. Scale factors are

shown in Fig. 11 and one can observe that they are almost
equal, as expected.

To check the validity of the perturbation expansion, we
plot the scale factors with κ ¼ 0 (unperturbed solutions)
and compare them with the perturbed solutions. Figure 12
shows the results. We observe that for the present case, no
early time restrictions are present and therefore the pertur-
bation expansion can be safely applied for κ ≪ 1.
In any case, we observe that the b̄ scale factor induces a

cosmological constant on the Universe described by the ā
scale factor, i.e., a sort of dark energy [17] coming from
another sector (or patch) of the Universe.
The idea that causally disconnected regions influence the

evolution of some part of the Universe by assuming a small
interaction between the regions is an interesting proposal in
itself. The solutions discussed in this paper show that the
Universe would experience inflation faster than in the
cosmological standard model (or slower, depending on
the initial conditions). More importantly, even if the
cosmological constant Λa of our patch of the Universe

(a) (b)

(c) (d)

FIG. 7. Expansion velocities and deceleration parameters for the scale factors ā and b̄ as functions of t̄ in the regime Λa ≈ Λb for two
different values of κ. The panels on the right show imprints of the quasiperiodic behavior of scale factors.

INFLATION WITHOUT INFLATON: A MODEL FOR DARK … PHYSICAL REVIEW D 96, 083534 (2017)

083534-11



were very small at the present epoch, our patch may
actually accelerate [37,38] by the presence of a second
patch with nonzero cosmological constant Λb under the
Poisson-bracket interaction proposed here.

IV. DARK ENERGY

As discussed in Sec. II, the coupling between two
causally disconnected regions induces interactions that
are consistent with energy-momentum conservation. An
observer in the a patch would measure an effective density
ρðaÞ and an effective pressure pðaÞ as given in Eq. (23).
Knowing the solutions for aðtÞ and bðtÞ, this model can

predict whether there is dark energy effect or not. We can
numerically compute the pressure pðaÞ, the density ρðaÞ, and
evaluate from the equation of state the parameter w.

(a) (b)

FIG. 8. Expansion velocities and deceleration parameters for the scale factors ā and b̄ as functions of t̄ in the regime Λa ≈ Λb for two
different values of κ < 0. We observe that panel 7(b) in Fig. 7 goes over to panel 8(b) in the present figure and panel 7(d) goes over to
panel 8(a). The asymmetry mentioned in the text is then explained as due to the sign of κ.

FIG. 9. Scale factors āðt̄Þ and b̄ðt̄Þ for κ ¼ 10−2 and λ ¼
π=2 − 10−4. One can observe the exponential growth of ā.

FIG. 10. The perturbative terms grow exponentially for the scale factor ā for κ ≪ 1. The scale factor b̄ does not show the same
behavior. The perturbative approach is valid, therefore, only at early stages in the evolution of the system.
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In particular, it follows that

pðaÞ þ ρðaÞ ¼ 1

8πG

�
Λb

�
b
a

�
3

− 3
b
a3

ð _b2 þ kbÞ − 2κ
_b
a2

�
:

ð43Þ

For dark energy, one has empirically that pþ ρ ≈ 0.
Therefore, in the context we have been discussing in the
present work, if the solutions of the Einstein equations
become quasiperiodic, they acquire a behavior compatible
with a dark energy component only during some specific
periods of the evolution.
In other words, the quasioscillatory nature of the

cosmological solutions we have found eventually stops
the accelerated expansion of the Universe and, from this
point of view, the concept of dark energy as a particular
component of the Universe could become unnecessary.

V. COCYCLES

The mathematics of Poisson bracket deformation is well
known [24–29] and as was previously mentioned, the
deformed Poisson bracket (6) is reminiscent of the

magnetic translations group in the quantum Hall effect.
A magnetic translation is an operator T̂½θ� defined by [39]

T̂½θ� ¼ eiπaθ
a
; ð44Þ

where πa are the momenta defined in Sec. I and θa are real
parameters. In terms of this notation, the internal compo-
sition law of the magnetic group is very unconventional
because it satisfies

T̂½θ�T̂½τ� ¼ e
iκ
2
ϵabθ

aτb T̂ðθ þ τÞ: ð45Þ

The phase in (45) is a 3-cocycle implying that the
generators T̂½θ� are a ray representation of the group of
magnetic translations [40]. A good example of this are the
Gauss’s anomalies terms of cocycles found by Faddeev in
1984 [41,42].
From a conceptual point of view the deformation of the

Poisson bracket includes not only a crucially important
change (namely, the appearance of quasiperiodicity) but
also makes explicit the presence of 3-cocycles which were
not obvious a priori.

VI. SUMMARY AND DISCUSSION

In this paper we have studied an extension of the FLRW
model with two metrics assuming that two patches of the
Universe (causally disconnected in principle) interact
through a modification of the Poisson bracket of the
momenta of the two metrics, one on each patch. This
modification is inspired by an analogy with the quantum
Hall effect. Following this analogy, the deformation
parameter of the Poisson bracket might be interpreted as
a minimum distance between two neighboring regions that
rotate with respect to a plane of the target two-metric space
or, in other words, this assumption is equivalent to the
analog of the lowest Landau level in cosmology.
However, the assumption explained above heuristically

is not exempt from mathematical subtleties; the first, as
explained above, assumes that the deformation (6) corre-
sponds to a change of algebraic structure known as a group

FIG. 11. Comparison of scale factors āðt̄Þ and b̄ðt̄Þ for κ ¼ 10−2

and λ ¼ π=4 − 10−4.

FIG. 12. For Λa ∼ Λb, perturbations are always smaller than the unperturbed solution. Here we show λ ¼ π=4 − 10−4 and κ ¼ 10−2.
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of magnetic translations which contain an internal compo-
sition rule containing a 3-cocycle. This 3-cocycle is
responsible for the oscillatory behavior of the equations
of FLRW we have found in this paper.
Finally, we would like to insist on the fact that the

quasiperiodic structure of the solutions of the extended
FLRWequations contain both acceleration and deceleration
epochs, and therefore if these quasiperiodic solutions are
used for interpreting dark energy, it would mean that the
observations of the current universe [37,38] are only a
snapshot of the Universe evolution at a particular (accel-
erating) time.
However, there is a highly nontrivial phenomenon in the

results presented here. In the theory discussed in this paper
there are inflationary solutions with a negligible cosmo-
logical constant in our patch of the Universe (Λa ≪ Λb).
This fact is a consequence of the causality breaking
produced by the deformation of the momenta of the
metric.
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APPENDIX: DIMENSIONS

We consider the Hilbert-Einstein action with cosmologi-
cal constant

S ¼ 1

16πG

Z ffiffiffiffiffiffi
−g

p ðRþ ΛÞd4x: ðA1Þ

In natural units, the canonical dimensions of the different
elements composing the action are ½G� ¼ −2, ½g� ¼ 0,
½R� ¼ þ2, ½d4x� ¼ −4, ½Λ� ¼ 2, so that the action has
canonical dimension zero.
For the FLRW metric, the scale factor a and the

lapse function N can be chosen as dimensionless. Since
the scale factor depends on time only, the action (A1)
reduces to

S ¼ V
16πG

Z ffiffiffiffiffiffiffiffiffiffiffi
−gðtÞ

p
ðRðtÞ þ ΛÞdt ðA2Þ

where V is a space volume. The quantity V=G has
canonical dimension −1. We define a quantity v ¼
V=ð16πGÞ and write the action as

S ¼ v
Z

Lða; _aÞdt: ðA3Þ

The canonical dimension of vL is þ1. In order to have a
close analogy with the case of the Landau problem (which
is defined for particles rather than fields) we consider the
Lagrangian L≡ vL and the action

S ¼
Z

Ldt:

Since a is dimensionless and L has canonical dimension
þ1, the canonical momentum pa ¼ ∂L=∂ _a is also dimen-
sionless. The Poisson bracket between coordinates and
momenta—inherited from the gravity theory as a field
theory—is also dimensionless as it should be

fa; pag ¼ 1:

For the case of particles, the coordinates and canonical
momenta have inverse dimensions to each other, and while
the Poisson bracket between coordinates and momenta is
dimensionless, the modified Poisson bracket between
momenta has canonical dimension þ2.
In our case one can make a similar choice. Indeed, let us

define a new variable ~a ¼ a
ffiffiffiffi
G

p
with canonical dimension

−1 (as the spatial coordinates in a particle theory), then the
canonical momentum will have dimension þ1.
Since L is a homogeneous function of a of degree 3

L ¼ vLða; _aÞ ¼ v

G3=2 Lð ~a; _~aÞ ¼
V

16πG3=2

1

G
Lð ~a; _~aÞ:

Finally, the quantity V=ð16πG3=2Þ is a dimensionless
constant, and therefore we can take as the Lagrangian
for our model

L≡ 1

G
Lð ~a; _~aÞ: ðA4Þ

The action is thus redefined up to a dimensionless param-
eter. The Lagrangian so redefined has canonical dimension
þ1, ~a has dimension −1, and ~pa has dimension þ1. The
deformed Poisson bracket then has dimension þ2, as
desired.
In the text we use a instead of ~a for simplicity.
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