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h i g h l i g h t s
� We model rechargeable batteries for use in BMS design.
� The rate capacity effect and the state of charge are explicitly considered.
� The model is based on an electrochemical approach.
� A reduced-order model with electrochemical sense is presented.
� This approach is able to interpret the most commonly used models in the literature.
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a b s t r a c t

There are numerous models of rechargeable batteries in the current literature. Some of them are
complicated electrochemical approaches; others, are given by simple analogies. However, simple models
with electrochemical states capable of describing important quantities, like the rate capacity effect and
the recovery effect, are hard to find. In this paper, based on an electrochemical approach, we present a
generalized model suitable for use in BMS applications, which takes into account explicitly the rate
capacity effect and the state of charge. Moreover, the model is thought up for general energy storage
processes based on mass transport and charge transfer. The proposed general model approach is able to
interpret the most commonly used models in the literature.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The battery model is necessary both for estimation and pre-
diction, which are very important topics for battery management
systems (BMS). A good model is needed in order to know the on-
line state of charge (SOC), the state of health (SOH), and the avail-
able power, also to decide control actions for equalization and for
battery pack design. An important feature of rechargeable batteries
is that the voltage drops faster for high discharge currents. Thereby,
the effective capacity drops for high discharge rates. This effect is
called rate capacity effect (RCE) and it is associated with the re-
covery effect (RE), which is the time required for battery recuper-
ation. Both quantities are important for an optimal use of batteries.
.
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In the current literature there are numerousmodels of rechargeable
batteries. Some of them are complicated electrochemical ap-
proaches; others, are given by simple analogies. However, it is
difficult to find practical models that interpret the RCE and the RE
using electrochemical states. In this paper, based on an electro-
chemical approach, we present a generalized model, suitable for
use in BMS applications, which takes into account explicitly the RCE
and the RE. The novel contribution is that our model has a simple
structure composed by the cascaded of a pure integrator, a high
pass-filter (HPF), and a nonlinear function; all these components
related with explicit important electrochemical states, like SOC,
and surface charge concentration, which is a key variable for
describing the concepts of RCE and RE. Moreover, the model is
proposed for general energy storage processes based on mass
transport and charge transfer. This approach is able to interpret the
most commonly used models in the literature.

The development of an accurate dynamic battery model is
difficult due to the nonlinear infinite-dimensional and distributed
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mass transport processes governing electrochemical system dy-
namics. Physiochemical models provide an accurate insight on
battery processes, but models based on fundamental physi-
ochemical principles are rarely employed in real time, due to their
high order and computational requirements. The need to identify a
great number of parameters is also a drawback. Several kinds of
simplifications have been presented in some publications; for
example, diffusion limitations in the electrolyte and potential dis-
tribution in the porous structure of the electrodes are disregarded
in Ref. [1]. Other models are focused on the simplification of the
diffusion dynamics in the active material. In this direction, in Ref.
[2] a second degree polynomial approximation is used tomodel the
concentration profile in the active material. Barbarisi [3] presents a
Ni-MH electrochemical model driven by the measured current and
potential. For this model several kinetic and transport parameters
of the battery, which are difficult to obtain, need to be known. In
order to overcome this difficulty, the static nonlinearity can be
approximated by using a Taylor series expansion and by identifying
the coefficient applying linear regression, as in Ref. [4]. In recent
publications [5e7] reduced order models based on frequency
domain transfer function analysis, are presented.

A widely used approach to model batteries consists in
employing analogies with electrical circuits where the voltage
source is the open circuit voltage (OCV). The analogies with elec-
trical circuits are presented in Refs. [8,9] as well as the references
they contain. These models have been extensively used, for
example in Ref. [10], to estimate the SOC in a Lithium Polymer
battery with nonlinear sliding observers; in Ref. [11], for hybrid
electric vehicles with lead acid batteries; in Ref. [12], with
nonlinear observers to estimate the parameters of the model and
the SOC jointly; also in Ref. [13], to estimate the SOC in lead acid
batteries. Such models are simple, but difficult to relate with the
battery chemical states. One well-known model used to represent
the dynamics of the stored charge for design engineering applica-
tions was presented in Ref. [14]. It is a battery model based on the
approach of chemical kinetics, known as kinetic battery model.
Specifically, it takes into account the rate capacity effect by
assuming that the charge can be stored in two ways, either as
immediately available or as chemically bound. Although this model
interprets the RCE, is not able to represent the output voltage as a
natural function of electrochemical states requiring special ad-
justments based on tables.

Basically, simple analogies are practical but empirical and
sometimes they do not work properly. On the other extreme, there
are electrochemical models with several parameters and states,
which are very difficult to obtain. In this paper, following electro-
chemical arguments, we show that any rechargeable battery can be
modeled as a cascade of a linear dynamic system with a static
nonlinearity in a setup called Wiener model. The linear dynamic
system is related to the transport of the reacting substances in the
active material. These processes are governed by Fick’s law and can
be represented as a series of two subsystems; one is a pure inte-
grator representing the real stored charge or SOC, and the other is a
high-pass filter representing the dynamic of the concentration at
the electrode interface and related to the rate capacity of the bat-
tery. The static nonlinearity is due to the electrochemical reactions
at the electrode interfaces, and it is governed by a ButlereVolmer
type equation but can also be combined with other reaction types
described by a non-linear function which characterizes the elec-
tromotive force of the battery.

The paper is organized as follows: in Section 2 we present the
model formulation basically through two main stages. First, the
charge transfer process at the interface; and second, the diffusional
process. In this section, the diffusional process is shown to be
composed by two parts: one, a pure integrator, and the other a HPF.
The general model is presented in this section. In Section 3, the rate
capacity effect is related to the diffusional process. In Section 4, we
present a reduced order approximation and it is shown that in the
case of second order approximation, the dynamics of diffusion
follow the kinetic battery model. Connections with the Thevenin
electrical circuit analogy are also presented. In Section 5, a proce-
dure to identify the parameters together with experimental results
are shown for different battery types, like Li-Ion, Ni-MH, and Lead
Acid. Finally, we discuss the conclusions in Section 6.

2. Model formulation

A battery is basically a system conformed by two electrodes
immersed in an electrolytic media. During discharge, the negative
electrode is oxidized, while the positive electrode is reduced. The
process is reversed during charge, being this global process
responsible for energy storage or release. Battery electrodes are
generally porous structures composed of particles of active mate-
rial, conductive additives and adequate binders, supported on a
conductive substrate acting as current collector, the whole assem-
bly being immersed in the electrolytic media. Models for porous
electrodes mainly use the porous electrode theory, as reviewed by
Newman and Tiedemann [17]. In according to this theory, the liquid
and the solid phases are approximated as superimposed continua.
The intimate contact between both phases generates the interfacial
surface, where the different electrochemical processes take place
(electrochemical interface). In the energy storage or release pro-
cesses, two main stages must be distinguished: one, corresponding
to the charge transfer process at the electrodes electrochemical
interface, including electrochemical reactions and double layer
charging; and another one, corresponding to mass transfer, either
in the electrolyte or in the electrode active material. In the next
subsections, we describe both stages, which are the main part of
our battery model.

2.1. Faradaic charge transfer processes

The electrochemical reactions taking place at the electro-
chemical interface give rise to the faradaic current, I(t). The faradaic
current may be described in terms of the ButlereVolmer equation,
as follows [18,19]:

I ¼ ~k
o
ea

oE
�Y

coi
�
þ ~k

r
ea

rE
�Y

cri
�
; (1)

where ~k
r
and ~k

o
are constants corresponding to reduction and

oxidation reactions; E is the electrode potential; ar ¼ arF/RT and
ao ¼ aoF/RT are constant with ar ¼ ao � 1 and ao is a symmetry
factor in the interval (0,1); F is the Faraday constant; R the universal
gas constant; T is the temperature; and cri and coi are the concen-
tration of reactants and products at the electrochemical interface.
In the sequel we shall consider that the very high concentrations of
species are constants, so for most batteries it is possible to reduce
the complexity to a simple redox reaction, as follows [18,20]:

I ¼ ~k
o
coea

oE � ~k
r
crea

rE: (2)

By multiplying and dividing the first term on the right by co, and
by cr the second, which are the maximum concentration of the
oxidized and reduced states of the active materials, the following
simple equation holds:

I ¼ koXoea
oE � krXrea

rE; (3)

where kr ¼ ~k
r
cr and ko ¼ ~k

o
co are constants, and Xr ¼ cr=cr and

Xo ¼ co=co are the normalized concentrations at the interface, with



Fig. 1. Example of storage matter by diffusion. Compartments 1 and 3 are in contact
with the electrolyte.
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respect to the maximum concentration. Taking into account that
concentration lies in the interval [0�1], it follows that each elec-
trode fulfills Xr ¼ 1� Xo. Inwhat follows, for notation simplicity, we
neglect the superfix o by calling X ¼ Xo, c ¼ co, and c ¼ co. Then,
equation (3) can be written as

I ¼ fIðE;XÞ ¼ koXea
oE � krð1� XÞearE; (4)

where fI(E,X) is the ButlereVolmer equation expressing the func-
tional relationship of current with respect to potential and con-
centration. From equation (4) it is possible to obtain the
concentration at the electrode surface X explicitly, as

X ¼ fXðE; IÞ ¼ krea
rE þ I

krearE þ koeaoE : (5)

Note that concentration X increases when the current that enter
to the electrode is considered positive. Although it is not possible to
obtain an explicit expression of the form E ¼ fE(I,X) from equation
(5), in the Appendix A it is demonstrated that such function exists.
It is important to note that when the faradaic current is zero, (I¼ 0),
by using logarithms in equation (5), the potential can be obtained
explicitly as

E ¼ fEð0;XÞ ¼ 1
ar � ao

�
log
�

X
1� XÞ

�
� log

�
kr

ko

��
; (6)

which is called Electro-Motive-Force (EMF). The battery EMF is
denoted as E ¼ fE(0,X), which represents the functional relationship
of the potential with respect to the concentration X at zero current,
I ¼ 0. Note that the potential E increases when the concentration X
increases.

It is worth noting that the potential at the electrode surface, E(t),
can be decomposed into a sum of two terms. One, is the equilibrium
potential, defined by zero current, I ¼ 0, and concentration
Xeq ¼ 0.5, denoted as E0 and is obtained using equation (6). The
other, is the potential that depends on both the current and the
concentration.

2.2. The diffusion process

The reacting substance approximates the electrode surface by
diffusion. The second part of the model deals with the dynamics of
the mass transport process, which determines the concentration
X(t) described in equation (5). These are essentially diffusion pro-
cesses, either in the electrolyte or in the electrode active materials.
The number of substance moles that reacts at the electrochemical
interface is proportional to the electrons produced or consumed,
according to the Faraday constant. The electrons flow through the
load while the reacting substance is accumulated. The total amount
of such moles is proportional to the accumulated amount of charge
giving the SOC of the battery, as follows:

SOCðtÞ ¼ 1
Qmax

0
@Q0 þ

Zt
0

IðsÞds
1
A; (7)

where Q0 and Qmax are the initial and the maximum battery charge.
The quantity Qmax is called battery capacity and is defined as the
product of a very low constant current multiplied by the time
required to reach the maximum charge, starting with the battery
completely discharged (Q0 ¼ 0).

In order to model the diffusional process, consider that the
reacting substance is accumulated or released by diffusion from an
area of higher concentration to another of lower one. Assume that
the physical place where the reacting mass is stored is divided into
N small volumes, each with volume (V) equal to each other, with
constant fractional concentrations denoted as xi for i¼ 1,.,N. Then,
by denoting the mass flow as Jij, in mass/time units, from com-
partments i to j, the following relationships, cj s i, hold:

Jij ¼ Kij
�
xi � xj

�
; (8)

Kji ¼ Kij (9)

Jij ¼ �Jji; (10)

where Kij is in mass/time units; suffix I ¼ 0 corresponds to the
differential compartments adjacent to the contact surface with the
electrolyte, the interface. There is also an associated mass balance,
which is given by

dxi
dt

¼ �g
X

j¼1;N

Jij; (11)

with g ¼ 1=Vc in 1/mass units, and

X
j¼1;M

J0j ¼
I
F
; (12)

where M is the number of compartments adjacent to the surface in
contact with the electrolyte. The state of charge is the total accu-
mulated charge and it is given by

SOCðtÞ ¼
X

i¼1;N

xiðtÞ
N

: (13)

A simple example of three compartments will be shown for
clarity. Assume that the material, where the mass is stored, has
N ¼ 3 with M ¼ 2 compartments, as it is shown in Fig. 1. Then, the
mass balance equations are given by

_x1 ¼ gðJ01 � J12 � J13Þ;
_x2 ¼ gðJ12 þ J32Þ;
_x3 ¼ gðJ03 þ J13 � J32Þ;

where

J12 ¼ K12ðx1 � x2Þ;
J13 ¼ K13ðx1 � x3Þ;
J32 ¼ K32ðx3 � x2Þ:

(14)
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Fig. 2. Battery model.

R.H. Milocco et al. / Journal of Power Sources 246 (2014) 609e620612
J01 and J03 are inputs. Taking into account that Kij ¼ Kji, and defining
a1 and a3 as the fractional part of the sum of incoming mass flow
Jt ¼ J01 þ J03, such that a1 þ a3 ¼ 1, the following holds:

J01 ¼ a1J
t ; J03 ¼ a3J

t : (15)

The system equations can be written in a matrix form by

_xðtÞ ¼ AxðtÞ þ gBJt ; (16)

where

xðtÞ ¼ ½x1; x2; x3�T ; B ¼ ½a1;0; a3�T

A ¼ g

0
@�K12 � K13 K12 K13

K12 �K32 � K12 K32
K13 K32 �K32 � K13

1
A:

We are interested in obtaining the dynamical relationship be-
tween the charge current and the concentration at the interface X.
To this end, let us average the individual concentrations corre-
sponding to the M differential volumes, at the interface, in contact
with the electrode surface. This is obtained bymultiplying BT by the
vector x, as follows:

X ¼ BTxðtÞ: (17)

The transfer function between concentration and charge current
is obtained from this definitions by applying the Laplace transform
to equations (16) and (17) resulting in the following input/output
relationship:

XðSÞ ¼ HðSÞIðSÞ; (18)

where XðSÞ and IðSÞ are the Laplace transform of X and I; S is a
complex variable, and

HðSÞ ¼ BTðSI � AÞ�1Bg=F; (19)

where I means identity matrix. Before continuing, it is important to
say that the same procedure can be extended to the case of N
constant volume partitions, as follows:
xðtÞ ¼ ½x1; x2;/; xN�T ; Jt ¼ PM
i¼1

J0i;

A ¼

0
BBBBB@

� P
j¼1;N

K1j K12 K13 . K1N

K21 � P
j¼1;N

K2j K23 . K2N

. . . . .
KN1 KN2 . KN3 � P

j¼1;N
KNj

1
CCCCCA;

(20)

where J0i represents the mass flow that enter to each of the M
compartments in contact with the surface, and B is a column vector
having a constant entry value ai if the infinitesimal volume V is in
contact with the surface and zero otherwise. TheM constants ai are
constrained to

P
i¼1;M

ai ¼ 1. The total mass flow generated by the

reacting substances at the surface of the electrode is
Jt ¼ P

i¼1;M
J0i ¼

P
i¼1;M

aiJt . Note that ideally, the expanded matrices

A, B, and C are infinite-dimensional, but still can be used in equa-
tions (17)e(19), obtaining an infinite-dimensional-linear dynamic
system.

By multiplying and dividing equation (18) by SQmax, the func-
tional relationship between the current and the concentration at
the interface can be rewritten as a function of the state of charge as
XðSÞ ¼ GðSÞSOCðSÞ; (21)

where

GðSÞ ¼ HðSÞSQmax; (22)

SOCðSÞ ¼ IðSÞ
SQmax

: (23)

2.3. The complete model

It should be noted that the battery is formed by two electrodee
electrolyte interfaces. However, since generally only one is limiting,
it is possible to represent the global dynamics with only one
equivalent electrode. Apart from diffusion and static nonlinearity,
the complete battery model should include the electrolyte ohmic
resistance (re) and the effect of the double layer capacity (Cdl). The
complete model is obtained by relating the charge transfer
E ¼ fE(I,X), the diffusion processes (21), re, and the current (ID),
which includes the current due to the capacity of double layer and
others derived from secondary reactions such that Ibat ¼ I þ ID,
where Ibat is the current measured at the battery terminals. Thus,
the rechargeable battery can be modeled as a cascade of a linear
dynamic system followed by a static nonlinearity, as shown in
Fig. 2, which is known as the Wiener model [4].

3. The rate capacity effect

Since the redox reaction occurs at the electrode surface and that
the charge transport process is diffusive, for a given charge/
discharge current, X increases/decreases faster than the SOC. By
taking into account that E depends directly on X, the useful capacity
of the battery heavily depends on the charge/discharge current
profile. Great current demands reduce the effective capacity of the
battery. This effect is reflected on the high-rate discharge behavior
of the battery and it is called rate capacity effect (RCE), [15], and it is
important for battery use optimization, [16]. It can be seen from
equation (21) that X and SOC are related by the dynamics imposed
by the filter G(S), which determines the rate capacity H(S)of the
battery and also the recovery time. Thus, we are interested in
studying the filtering properties of G(S).

First, note that G(S) is an infinite dimensional rational function
in the variable S. Secondly, its steady state gain is equal to one. To
prove the last, note that in steady state the mass is equally
distributed in all the small volumes, and by considering that both
the SOC and the fractional X are in the interval [0,1], it follows that
in steady state both quantities are equal. Thus, from equation (21),
it means that the steady state gain of G(S) is equal to one, G(0) ¼ 1.
Now we will show that G(jw) is an infinite dimensional rational
HPF. To this end, let us define a positive real function and two
important properties.
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A rational function H(S) is called positive real functione PRFe if
and only if H(S) is real when S is real, and Re(H(S)) � 0 when
Re(S) � 0, see Ref. [21] for details. If H(S) is a PRF, it is called
impedance and the following properties hold: i) the absolute value
of the phase angle of H(S) is never greater than p/2; ii) H(S) cannot
have any poles or zeros in the right-half S-plane, i.e. it is a minimum
phase system. In the Appendix B it is shown that H(S) in equation
(18) is a PRF. Then, because H(S) is a cascade of a pure integrator
element and the filter G(S), it is clear that in order to fulfill the
property i, the element G(S) must have a positive phase. From the
property ii, and taking into account the foregoing, the module must
necessarily be greater than, or equal to, unity. Given that low-
frequency gain is unity, the filter frequency response of G(jw)
necessarily amplifies high frequencies. Thus, G(jw) is a HPF.

As an example, consider the case where a planar diffusion
process is governed by Fick’s law, which is a very good approxi-
mation for some batteries. The Laplace transform of concentration
XðSÞ is derived in Ref. [22]. In the case of finite diffusion and
impermeable barrier, it has the following expression:

XðSÞ ¼ L
FAD

coth 4ðSÞ
4ðSÞ IðSÞ; (24)

where D is the diffusion constant, L and A are the thickness depth
and the area of the electrode, and 4ðSÞ ¼ L

ffiffiffiffiffiffiffiffiffi
S=D

p
. Multiplying and

dividing by 4ðSÞ the expression can be rewritten as

X ¼ IðSÞ
QmaxS

GðSÞ; (25)

where Qmax ¼ 1/FV with volume V ¼ AL and

GðSÞ ¼ 4coth 4; (26)

The frequency responseG(S¼ ju) corresponds to a linear infinite
dimensional HPF, unity static gain, with frequency response as
shown in Fig. 3. A similar analysis can be made for spherical
diffusional processes. In such cases, the concentration has the
following Laplace transform:

XðSÞ ¼ L
FAD

tanh 4ðSÞ
ðtanh 4ðSÞ � 4ðSÞÞ IðSÞ; (27)
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Fig. 3. Frequency response of filter G(ju) for planar diffusion symmetry in solid
electrode.
where L is now the radio and A, the area of the sphere. By consid-
ering that the volume of the sphere is V ¼AL/3, the equation can be
written as equation (25), where G(S) is now given by

GðSÞ ¼ 42ðSÞ
3

tanh 4ðSÞ
ðtanh4 ðSÞ � 4ðSÞÞ; (28)

with frequency response also shown in Fig. 3. Note that, in both
cases, the function admits infinite derivatives with respect to S.
Thus, they can be written as an infinite dimensional rational HPF in
S, as in equations (19), (20) and (22).
4. A practical approximated model

As it was shown, the filter G(S) is an infinite dimensional linear
system described by ordinary differential equations. However, in
order to have a generalized working expression, we assume that a
finite order can be used as a good approximation. The following
unit gain nth-order rational function is used to approximate the
infinite dimensional G(S):

GðSÞ ¼ NðSÞ þ nnSn

DðSÞ ; (29)

where

NðSÞ ¼ d0 þ n1Sþ/þ nn�1Sn�1

DðSÞ ¼ d0 þ d1Sþ/þ dn�1Sn�1 þ Sn:

Note that the HPF requires equal order for numerator and de-
nominator polynomials and equal constant term d0, for unit gain.
By replacing the above in equation (21), the concentration can be
written conveniently, for further parameter identification pur-
poses, as the sum of two terms, one depending on SOC and the
other, depending on I, as follows:

XðSÞ ¼ NðSÞ
DðSÞ SOCðSÞ þ

nnSn�1

QmaxDðSÞ IðSÞ: (30)

Any given transfer function which is strictly proper (denomi-
nator polynomial order greater than numerator polynomial order),
can easily be transferred into state-space observable canonical form
[32]. Then, a useful way to write the above equation, to be used in
what follows, is in the time-domain as

_xðtÞ ¼ FxðtÞ þ G1SOCðtÞ þ G2IðtÞ; (31)

where

F ¼

0
BBBBBB@

�dn�1 1 0 0 / 0
« 0 1 0 / 0
« « 1 1 1 0

�d1 0 0 0 / 1
�d0 0 0 0 / 0

1
CCCCCCA
; G1 ¼

0
B@

nn�1

«

d0

1
CA;

G2 ¼

0
BBB@

nn=Qmax

0
«

0

1
CCCA;

and the concentration X(t) is given by

XðtÞ ¼ Cx; (32)

where C ¼ [1,0,.0]. Using the above, the complete model in state
variables can be written as follows:



Fig. 4. Model approximation where HPF is the finite order unit gain high pass filter
approximation of G(S) representing the rate capacity effect.

Fig. 5. Equivalent circuit for second order approximation. C ¼ Qmax/m, Rg ¼ m(n1 � 1)/
d0Qmax and Cg ¼ Qmax/m(n1 � 1).
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�
SOC_ðtÞ

_x

�
¼
0
@ 0 j 0

� j �
G1 j F

1
A� SOCðtÞ

x

�
þ
�
1=Qmax

G2

�
IbatðtÞ þ c

(33)

EbatðtÞ ¼ fEðI;CxÞ þ reIbatðtÞ; (34)

where c is a disturbance vector to the states which includes the
effect of current ID and other possible disturbances. Ebat is the po-
tential at the battery terminals which include the electrode po-
tential, E, plus the ohmic drop.

There are several approaches that can be used to choose the
appropriatemodel order (n). Statistical methods, such as the Akaike
criterion, [33], or the robust approach used in Ref. [6]. The reduced
order approximation of HPF together with a normalized basis for
the nonlinear voltage equation, like polynomials, expansion of
Taylor series, wavelets, radial basis functions, etc., could be used for
identification of the Wiener model (33) and (34) (see Refs. [25,26]).
However, a further approximation can be made by considering the
voltage model as formed by the sum of two terms. One nonlinear
that depends solely on the concentration and another linear, that
depends only on the current:

Ebat ¼ fEðI;XÞ þ reIbatzfEð0;XÞ þ reqIbat; (35)

where the equivalent resistance, req ¼ vEbat/vIbat, includes not only
the resistance of the electrolyte, but also the resistance of the
charge transfer. In Appendix C a formal expression of req is given.
Although the resistance due to charge transfer is dependent on
both current and state of charge, it is considered constant.

It is important at this point to establish the relationship between
EMF (fE(0,X)) and the OCV (fE(0,SOC)). The EMF is the function
E ¼ fE(0,X) which relates the potential E with concentration X and
the OCV is the same as EMF but considered in steady state. Since at
steady state fulfills X ¼ SOC, in such conditions, both EMF and OCV
are the same. The final approximated model is depicted in Fig. 4,
where the disturbance vector to the states c was neglected,
consequently I ¼ Ibat fulfills.
β β

Fig. 6. Equivalent hydraulic model or kinetic battery model.
4.1. The first order HPF approximation and its relationship with
other known linear models

Considering a first order approximation of the high-pass filter in
equation (33) and neglecting the disturbance vector c, we obtain
the following second order model for diffusion:

�
_SOCðtÞ
_XðtÞ

�
¼
�

0 0
d0 �d0

��
SOCðtÞ
XðtÞ

�
þ
�

1
n1

�
IbatðtÞ
Qmax

: (36)

In order to obtain a linear expression for the voltage equation, a
further approximation can be made from equation (34) by linear-
izing the increments of the nonlinear term, as follows:
Ebat ¼ fEð0;XÞ þ reqIbatzE0 þ mX þ reqIbat; (37)

where m and E0 are constants used for the pseudolinear approxi-
mation of the EMF. By using this pseudolinear model, it is possible
to derive an analog electric circuit by performing the Laplace
transform to equations (36) and (37), which gives

EbatðSÞ ¼ ð0 m Þ
�
SI �

�
0 0
d0 �d0

���1� 1
n1

�
IbatðSÞ
Qmax

þ E0

þ reqIbatðSÞ
(38)

EbatðSÞ ¼
�

m

SQmax
þ mðn1 � 1Þ
ðd þ SÞQmax

þ req

�
IbatðSÞ þ E0: (39)
0

This expression can be represented by the circuit of Fig. 5. Note
that the capacitance is related to the maximum battery charge by
C ¼ Qmax/m and the parallel RgCg represents the first order HPF
approximation, where Rg ¼ m(n1 � 1)/d0Qmax and Cg ¼ Qmax/
m(n1 � 1). Often, the series of E0 and the capacity, C, is replaced by
the OCV. The circuit structure is called Thevenin Battery Model and
can be extensively found in the literature (see for example Refs.
[29,30] used for State of Charge estimation; also computational
implementation costs with respect to higher order degree
approximation were studied in Ref. [31]). It is noteworthy that the
circuit is analog to our model, from battery current/potential point
of view, only if the OCV is approximated by the series of a capaci-
tance and a constant voltage source, which constitute a quasi-linear
system, otherwise the nonlinearity of the OCV affects different in
both models.

Other popular battery model used to represent the dynamics of
the stored charge for design engineering applications is presented
in Ref. [14]. It is a battery model based on the approach of chemical
kinetics, known as kinetic battery model also known as the hydraulic
model; and it is depicted in Fig. 6. Specifically, it takes into account
the rate capacity effect by assuming that the charge can be stored in
twoways, either as immediately available or as chemically bound. It
is generally described by the analogy of two-tanks. The bound
charge can be released at a rate proportional to a constant g. The
total charge (Qmax) in the battery at any time is the sum of both the
immediately available (q1), and the chemically bound (q2).
Considering that q1 and q2 are the tank levels of areas b and 1 � b

respectively, the equations describing the charge dynamics are
given by
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b _q1ðtÞ ¼ ðq2ðtÞ � q1ðtÞÞg; (40)

ð1� bÞ _q2ðtÞ ¼ ðq1ðtÞ � q2ðtÞÞg þ uðtÞ; (41)

where b ˛ [0,1] is the ratio of available charge capacity to total
capacity and g is a rate constant in 1/time. By performing the
following change of coordinates:

SOC ¼ bq1 þ ð1� bÞq2; (42)

X ¼ q2; (43)

the following equations succeed:

�
_SOCðtÞ
_XðtÞ

�
¼
 

0 0
g

bð1�bÞ � g
bð1�bÞ

!�
SOCðtÞ
XðtÞ

�
þ
 

1
1

1�b

!
uðtÞ

(44)

which is equal to equation (36) with the equivalences d0 ¼ g/
b(1 � b), n1 ¼1/(1 � b), and u ¼ Ibat/Qmax. Note that n1 is lesser that
one, as it is expected according to the characteristic of the HPF. Note
that this dynamic is equal to the linear second order approximation
(36) of our general model. This dynamical part of the model needs
to be completed with the battery voltage model. A voltage model
given by Ebat ¼ E0 þ k1p þ k2p/(k3 þ p) þ reqIbat was proposed,
where k1, k2, k3 are constants, and p is the normalized charge
removed from the battery that is obtained from the discharge data,
as explained in Ref. [27]. Sometimes, other voltagemodels are used,
such that the Unnewehr Universal Model [28] expressed by
Ebat ¼ E0 � kSOC þ reqIbat, where k is a constant. However, in all
these cases the voltage model is different from equation (34), since
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Fig. 7. Experiment 1. L
we used X instead of SOC, which is electrochemically correct. Thus,
with this model approach, the RCE model corresponds with our
second order model approximation, but the voltage model is
built using tables which is not practical for BMS applications.
Others voltages models uses SOC instead of X which does not
represent the real electrochemical relationship, as it is described
with our model, leading to erroneous results.

4.2. Saturation and hysteresis

For the complete model, the effect of the saturation concen-
tration X and the hysteresis remains to be included. To this end, we
consider that the concentration saturation at the interface affects
the charge current in the sense that when X is equal to one/zero,
only a fraction of the charge current can be accumulated/delivered.
In such circumstances the assumption that the charge current is
approx equal to the battery terminals is not fulfilled. In order to
obtain such current, the following algorithm is used:

if X > 1 and Ibat > 0; then I ¼ maxðIbat � lðX � 1Þ;0Þ;
else; if X < 0 and Ibat < 0; then I ¼ minðIbat � lX;0Þ
else; I ¼ Ibat; end; end;

(45)

where Ibat is the battery current and l is a positive constant high
value. This algorithm takes a proportion of the load current, so that
the concentration X does not deviate from values close to satura-
tion. Common values of l range from 20 to 40.

The hysteresis problem arises from the fact that the EMF in the
charge is different from that obtained in the discharge. In certain
batteries this phenomenon is significant and must be taken into
consideration. Assuming f cE ð0;XÞ and f dE ð0;XÞ are the charge and
discharge of EMF, the following algorithm was used in our model:
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fEð0;XðkÞÞ ¼ pðkÞf cE ð0;XðkÞÞ þ ð1� pðkÞÞf dE ð0;XðkÞÞ; (46)

pðkÞ ¼ lpðk� 1Þ þ ð1� lÞsgðIbatðkÞÞ; (47)

where sg(Ibat(k)) is one if the sign of Ibat(k) is positive, and zero if it is
negative. The forgetting factor l is within the interval [0,1] and
weighs the velocity of change between both EMF functions.

5. Results

In this section we present the identification of the model pa-
rameters, as well as the model performance. We consider the sec-
ond order approximation of equation model (36) with the voltage
model given by the approximation in equation (35). The saturation
and hysteresis are also considered. The model parameters to be
identified are Qmax, d0, n1, and req. To this end, the continuous-time
model (31) is discretized using a sampling period h ¼ 60seg and
approximating the derivative by the backward shift approximation,
dx(t)/dt z (x(kh) � x(kh � h))/h, giving the following discrete-time
model:

Xðkþ 1Þ ¼ FdXðkÞ þ G1dSOCðkÞ þ G2dIbatðkÞ þ cðkÞ; (48)

where Fd ¼ (1 � hd0), G1d ¼ hd0, and G2d ¼ hn1/Qmax. The dis-
cretized voltage model is given by

EbatðkÞ ¼ fEð0;XðkÞÞ þ reqIbatðkÞ: (49)

First, the value of req is obtained. Taking into account equation
(48), the resistance req can be obtained for fast variations of po-
tential due to increments of current, as follows:
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reqz
1 XN EbatðkÞ � Ebatðk� 1Þ

; forjIbatðkÞ � Ibatðk� 1Þj > ε
N
k¼1

IbatðkÞ � Ibatðk� 1Þ
(50)

where N is the number of current steps and ε is a threshold. Using
this equation, the calculated internal resistance is an averaged
value. In order to identify the parameters d0 and n1, we first obtain X
from the voltage error and the inverse of the EMF, as follows:

XðkÞ ¼ fX
�
0; EbatðkÞ � reqIbatðkÞ

�
: (51)

In the case where the EMF has hysteresis, an intermediate value
from charge/discharge values was considered for obtaining X(k). By
assuming that the value of Qmax has been previously identified and
that the disturbances c(k) are small with respect to the states, using
the experimental values of Ibat(k) and SOC(k) together with the
estimated values of X(k), the coefficients d0 and n1 can be identified
by using equation (48). The problem leads to the following linear
regression model:

XðkÞ � Xðk� 1Þ ¼ hd0ðSðk� 1Þ � Xðk� 1ÞÞ þ hn1
Qmax

Ibatðk� 1Þ:
(52)

In order to obtain the voltage/current register for parameter
identification, we propose performing two tests. On one side,
starting with a full-charge battery, a train of regular discharge
pulses of current is used to determine the capacity Qmax. Also, the
SOC is obtained. Assume, as well, that the pulses are enough spaced
in time so that the system relaxes between pulses. Taking into
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Table 1
Identified parameters.

Type d0 [s�1] re [Ohms] n1 [s�1] Qmax [Ah]

Li 2.28 � 10�3 1.13 � 10�2 2.66 11
NiMH 3.42 � 10�3 2.05 � 10�1 5.67 2
Pb 2.62 � 10�3 5.5 � 10�1 9.11 2.5
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account that after the system relaxes, the value of X is equal to the
SOC, the EMF function is obtained by the pair (SOC,E) measured at
the end of the relaxing time for each pulse. In order to identify the
hysteresis, the same procedure is done for charge pulses to obtain a
second EMF.

A second test is performed by using a random sequence of
current pulses of different amplitudes and duration in both charge
and discharge. This experiment is used to identify the constants d0,
and n1 using equation (52).

To achieve the initial state of charge, SOC ¼ 0, a discharge cur-
rent of small amplitude is applied until the potential decreases
abruptly. Since the current is small, there is no voltage drop across
the internal resistance. Consequently, the potential variation is
solely due to the variation of surface concentration in the nonlinear
region, where the value of X is approximately zero. A similar pro-
cedure is used to obtain SOC ¼ 1.

In Figs. 7 and 8 both experiments are shown on a Lithium ion,
TM SEIDEN, Mode: Prismatic LiFePO4E ¼ 3.5 V, nominal capacity,
Qmax ¼ 10 Ah battery. In Figs. 9 and 10, the same procedure was
used for a Ni-MH, TM SANYO, Model HR�4UE ¼ 1.2 V battery of
nominal capacity Q ¼ 2.7 Ah; and in Figs. 11 and 12, the same
procedure was applied to a Lead acid battery, TM Press, Model
PR1240, E ¼ 12 V with Q ¼ 4 Ah of nominal capacity. The parameter
set obtained for the three batteries is shown in Table 1. Experiments
have been performed with current values lower than 1C. Presum-
ably, the resistance values do not vary significantly when higher
current is applied. Should this not occur, a new parameter identi-
fication at high currents is suggested.

It is interesting to analyze the differences of the RCE among the
three batteries tested. Solving equation (36) for a constant
discharge current entry, I ¼ �mQmax, wherem is an integer in units
(1/time), the states SOC(t) and X(t) can be obtained. By performing
the subtraction of the two states, the loss of capacity due to the RCE
is obtained as
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Fig. 13. Rate capacity for the three types of batteries.
SOCðtÞ � XðtÞ ¼ m
n1 � 1
d0

�
1� e�d0t

�
: (53)

It can be seen from the equation that the parameters d0 and n1 of
the HPF define the RCE. In Fig. 13 the capacity lost due to RCE of all
the batteries tested is depicted for constant current withm¼ 1 h�1.
It can be seen that the Lithium battery has less RCE than Ni-MH, and
it can also be seen that the lead acid battery shows a great RCE
effect.

6. Conclusions

A simple model based on an electrochemical approach to be
used in applications BMS has been presented. The key feature is
that it can be used for any type of battery that works for charge
accumulation and transport of matter. The model is based on two
fundamental electrochemical states as the state of charge and
the surface concentration. The latter is responsible for the RCE
and enables a clear understanding of potential variation as a
function of the surface concentration X. Tests show that a low-order
approximation is indeed sufficient to obtain a good model.
Furthermore, we have analyzed the similarities and differences
with respect to other widely used simple models, demonstrating
that our model has the same degree of simplicity associated with
important electrochemical variables, which expands its range of
use.
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Appendix A

The inverse function E ¼ fE(I,X) of equation (5) exists. In order to
show this, let us state that a continuous function f is one to one if
and only if it is either strictly increasing or decreasing with no local
maxima or minima. In our case, the partial derivative with respect
to E after some algebraical manipulation can be written as

vX
vE

¼ kobaoeaoEð1� XÞ � krarea
rEX

krearE þ koeaoE : (54)

Taking into account that X ˛ (0,1), and ar < 0, ao > 0, the de-
rivative above is always positive. Thus, for each value of I, the in-
verse function E ¼ fE(X,I) exists. Hence, there is only one value of E
for each couple (X,I).

Appendix B

By taking into account that S ¼ s þ ju the infinite dimensional
rational function H(S) can be written as

Hðsþ juÞ ¼ BTððsI � AÞ þ juIÞ�1gBF: (55)

Thus, when u ¼ 0, HðsÞ ¼ BT ðsI � AÞ�1gBF , which is real for all
s, the first condition is fulfilled. To prove the second condition,
taking into account that F and g are positive real constants, we find
that H(s � 0) � 0 iff �A � 0. Thus, we need to show that �A is
positive semidefinite, which is the same as proving that given an
arbitrary raw vector Z always fulfills that �ZAZT � 0. Note that each
element kij appears in matrix A at positions (ij) and (ji) with a
positive sign, and at (jj) and (ii) with a negative sign. Then, each
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element kij appears multiplied by �(Zi � Zj)2, which is always
negative semidefinite for arbitrary values of Zi and Zj. Since the
elements kij are positive, we conclude that the matrix�A is positive
semidefinite and the second condition for PRF of H(S) fulfills.

Appendix C

Assume the potential E of the ButlereVolmer equation in
equation (4) is a sum of two components. One due to the EMF given
by equation (6), which does not depend on the current, denoted as
E1¼ fE(0,X), and the other which depends on the current I, called E2.
The functional relationship between E2 and the current can be
obtained by replacing E in equation (4) which gives

I ¼ g
�
ea

oE2 � ea
rE2
�
; (56)

where g ¼ koXea
oE1 ¼ krð1� XÞearE1 come from the fact that E1 is

defined for I ¼ 0 and E2 ¼ 0. Then, the voltage equation (34) can
now be written as follows:

Ebat ¼ fEð0;XÞ þ ðE2 þ reIbatÞ; (57)

The second term on the right can be interpreted as the ohmic
drop produced by an equivalent resistance req(g,E2) given by

reqðg; E2Þ ¼ E2
Ibat

þ re (58)

Now, we want to know the dependency of req(g,E2) with both
current and concentration. To this end, note that the symmetry
factor of electrodes in a rechargeable battery has a value approxi-
mately equal to ao ¼ 0.5. This means that the charge current cor-
responding to positive overpotentials are approximately the same
than for discharge current corresponding to negative over-
potentials. Then, the equality ao ¼ �ar holds in equation (56) and
the current can be written as

I ¼ 2g sinhðaoE2Þ; (59)

Thus, by assuming Ibat z I, the nonlinear resistance is given by

E2
I

¼ 1
2gao

sinh�1ðI=2gÞ
I=2g

: (60)

It must first be noted that the element sinh�1 (x)/x is a sym-
metrical decreasing function with a maximum value equal to one,
at x¼ 0. Thus, the nonlinear resistance has it maximumvalue equal
to 1/2gao at I ¼ 0. As the current increases the resistance decreases.
It is also worth mentioning that the constant g increases with
battery capacity as may be inferred from equation (56). Then, it is
expected that for large capacity batteries the non-linear distortion
is less significant. Finally, it is easy to see from equation (60) that for
any given value of current amplitude, the nonlinear resistance de-
creases as g- or equivalently X-increases.
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