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Abstract
We investigate the emergence of zero-energy resonance effects in atomic processes occurring
within a plasma. By applying the final-state interaction theory we uncover the presence of these
effects for particular configurations of density and temperature. We study the distortions that
these resonances might produce in the corresponding cross sections whenever the relative
momentum of a pair of charged particles intervening in the atomic process vanishes. We
exemplify this general theory by applying it to the study of ionization processes by photon or ion
impact. Finally we demonstrate that while for certain configurations of density and temperature
these resonances might be blurred out by inhomogeneities; in others, the plasma might be tuned
to the conditions for a zero-energy resonance, producing cross sections many times larger than
standard estimates at the energy threshold.
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1. Introduction

The effect produced by the surrounding medium on the
interaction of charged particles within a plasma leads to
atomic spectra and cross sections that differ from those in
vacuum. Since the seminal article by Debye and Hückel
(1923), a large amount of experimental and theoretical
research has been devoted to this effect, with consequences
ranging from stellar physics to inertial confinement fusion.
Various approaches, as for instance generalized variational
methods (Stubbins 1993) and density functional theories
(Gupta and Rajagopal 1982) have been employed to study
atoms in dense plasmas (Rogers et al 1970, Dai et al 2001,
Mukherjee et al 2002, Okutsu et al 2005), showing that the
Debye screening might produce a strong distortion of the
energy spectra of bound states. Furthermore, the effects pro-
duced by the plasma on scattering processes has also been
profusely studied. For instance, inelastic collisions (including
ionization of atoms and ions and charge transfer processes) by
the impact of electrons (Hatton et al 1981, Deb and
Sil 1984,Whitten et al 1984, Yoon and Jung 1996, Zhang
et al 2010), positrons (Ghoshal et al 2013), photons
(Jung 1998, Kar and Ho 2008, Lumb et al 2015), protons

(Scheibner et al 1987), He-like (Pandey et al 2013) and
highly charged ions (Pandey et al 2012) have been analyzed
in recent years. Of special interest for our study are the
complex-coodinate rotation calculations performed by Ho and
co-workers (see, for instance, Zhao and Ho 2004, Lin and
Ho 2010, Sahoo and Ho 2010, Chang et al 2013) on the
photoionization of atoms and ions near the ionization
threshold.

These and other studies have demonstrated that not only
the properties of bound states but also the scattering processes
occurring within a plasma might be strongly influenced by its
characteristics. Therefore, it is not possible to rely on atomic
and scattering data measured or calculated in vacuum to
represent what happens inside a plasma. This point becomes
particularly crucial when these data are employed to analyze
the performance and working conditions of fusion reactors.

Let us consider the transition matrix element  for an
arbitrary atomic process taking place within a plasma (Sal-
zmann 1998). Since the plasma can affect the interaction
between the particles involved in the transition, it is very
natural to presume that  would not only depend on the
parameters that characterize the corresponding scattering
states, but also on those characterizing the plasma itself, as for
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instance, its density and temperature. The purpose of this
article is to discuss on very general grounds the kind of
consequence that this dependence might have on an atomic
transition occurring within a plasma, and whether it might
lead to any sizeable effect.

In the following two sections we summarize the final-
state interaction (FSI) theory and apply it to the study of an
arbitrary atomic transition when the relative energy of two
particles intervening in this process vanishes. In sections 4
and 5 we particularize these results to the case of Hulthn and
Yukawa potentials, as working examples of the distortions
produced on the corresponding cross section by a Debye
screening effect, with special emphasis in section 6 on the
appearance of zero-energy resonances. We illustrate these
results, by applying them to ion-atom ionization and photo-
ionization processes occurring within a plasma in sections 7
and 8, respectively. Finally, in section 9 we investigate the
effects that inhomogeneities of the plasma might have on the
results presented in the present article.

2. FSI theory

Let us analyze an atomic transition when the relative
momentum k between a pair of particles vanishes. This two-
body threshold might occur, for instance, in photoionization
or radiative recombination processes, where the momentum k
of the emitted (or absorbed) electron can be arbitrarily small
depending on the relation between the energies of the
absorbed (or emitted) photon and the initial (or final) bound
state. Let us point out that in the present analysis, as it might
be clear from the preceding example, k might be referring to
the initial or final state of a two-body system, indistinctively.

According to the FSI theory (Gillespie 1964, Barra-
china 1997, Fiol et al 2002), the k 0 limit of  is domi-
nated by the inverse of the s-wave Jost function f k0 ( )
(Jost 1947, Jost and Pais 1951), namely

 =
f k

1
, 1

0 ( )
˜ ( )

where (Taylor 1972) (Atomic Units are used throughout this
article, except where otherwise stated),
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Here lV r( ) represents the potential between the two active
particles of reduced mass m, relative momentum k and dis-
tance r; and f k0 is the regular solution of the corresponding
s-wave radial Schrödinger equation, namely,
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which satisfies the condition,

f » kr rfor 0. 4k0 ( )

We have characterized the potential by means of a screening
length λ as it is the case, for instance, in the Yukawa

potential,

= -l
l-V

Z

r
e . 5Y r ( )

The reduced transition matrix element T̃ is usually approxi-
mated by T itself, but evaluated without the interaction Vλ in
the final state (see, e.g. Taylor 1972). However, this FSI
‘approximation’ might not always provide a realistic result.
This is the case, for instance, in photoionization process
(Clauser and Barrachina 2015a). Thus, it is customary to
employ (1) as the actual definition of T̃ , representing a
decomposition of the transition matrix element into one term,
T̃ , which is mostly independent on the details of Vλ for
k 0, and another one, f k1 0 ( ), which might be strongly

dependent on the FSI, and even lead to a zero-energy reso-
nance for k 0. This factorization is not alien to that
used for describing a Breit–Wigner resonance of energy
ER and width Γ, namely s s= +E E 1ℓ ℓ

2( ) ˜ ( ) ( ) with
 = - GE E2 ;R( ) or as, for instance, in Fano (1961) and
Shore (1967) parameterizations.

In our case, the decomposition (1) would allow us to
describe in a general but very simple way how the screening
effect produced by the plasma and characterized by the
potential lV r( ) affects any particular atomic process where
this interaction intervenes. In particular, the corresponding
cross section would be distorted by a factor

=F k
f k

1
. 6

0
2

( )
∣ ( )∣

( )

Finally, let us point out that even though in sections 7 and 8
we will be applying the present theory to the description of
zero-energy resonances in ionization collisions and photo-
ionization of hydrogenic atoms, the FSI formulation is not
restricted to hydrogenic atoms or even to these particular
atomic processes. Actually, it can and has been successfully
applied to a variety of species and processes. Let us mention,
for instance, the ionization of Ar atoms by the impact of
neutral He (Barrachina 1990), the single-electron detachment
of He− (Báder et al 1997) and Li− (Macri and Barra-
china 2012) projectiles colliding with He and Ar gas targets or
the photo-detachment of Li− (see, e.g. Macri and Barra-
china 2003, 2012 and references therein). Zero-energy reso-
nances can also be observed in direct scattering processes,
even if the intervening particles cannot form a bound state, as
it will be explained in a following section.

3. S-wave Jost function

Let us summarize some general properties of f k0 ( ) which are
relevant to the present work. For instance, the phase of the
Jost function is related to the s-wave phase shift of the stan-
dard non-relativistic scattering theory (Taylor 1972),

d = -k f karg . 70 0( ) ( ) ( )

It can be also demonstrated that f k 10 ( ) for  ¥k . On
the other hand, under certain restrictive conditions on the
potential lV r( ) thoughtfully explained by, for instance, Taylor
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(1972), Newton (1982) and Burke and Joachain (1995), and
which are generally verified by the Hulthèn and Yukawa
potentials considered in this article, the s-wave Jost function
satisfies the following Taylor expansion in k (Macri and
Barrachina 2013)

⎡⎣= + + + + +f k g g k O k h h k O k ki .

8
0 0 2

2 4
0 2

2 4( ) ( )] [ ( )]
( )

It can be demonstrated (Macri and Barrachina 2013) that the
coefficients gi and hi (for = ¼i 0, 2, 4, ) are real. Further-
more, in view of equation (7), the first four coefficients of this
expansion, i.e. g0, g2, h0 and h2, can be related to the scat-
tering length a0 and effective range r0 of the well-known
effective range expansion (Bethe 1949),

d = - + +a k k r a k O kcot 1
1

2
. 90 0 0 0

2 4( ) ( ) ( )

Actually, by replacing (8) and (9) in equation (7) and com-
paring the successive powers of k, we obtain (Macri and
Barrachina 2013)
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While the coefficients in the expansion (8) do not present
singularities, i.e. they do not diverge as a function of λ (Macri
and Barrachina 2013), the scattering length and the effective
range might diverge for particular values of λ. This simple
result would become of the outmost importance in the fol-
lowing sections for the description of the effects produced by
a surrounding plasma on an atomic process. Even though it is
not relevant to the present study, it might be worthwhile to
mention that most of the previous discussion can be gen-
eralized to the case of ℓ-wave Jost functions, as thoughtfully
explained by Macri and Barrachina (2013).

A very important characteristic of the Jost function is the
relation between its zeroes and the bound states of lV r( ). In
fact, it can be demonstrated (Taylor 1972) that each bound
state of energy 0 of the potential lV r( ) is unequivocally
related to a zero of the Jost junction in the positive imaginary
axis at = +k mi 2 0∣ ∣ . Now let us arbitrarily reduce the
screening length λ. The zero will move towards the origin and
eventually reach it. For reasons that will be explain later, this
situation is referred to as a ‘zero-energy’ resonance. If we
reduce λ even further, then this zero will continue along the
negative imaginary axis. This zero, which no longer repre-
sents a bound state of lV r( ), is referred to as a ‘virtual’ state,
in the understanding that it could become a bound state if the
potential were more attractive.

Now, let us analyze the effect that these bound and vir-
tual states, and in particular a zero-energy resonance, might
produce on the distortion factor F k( ). We assume that the
range of validity of the expansion (8) includes a region of

positive real (i.e. physical) values of k. Thus, we write

= »
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f k g h g g k
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2
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We see that the distortion factor tends to a Lorentzian profile

of height g1 0
2 and width +a g g20

2
2 0 . At a zero-energy

resonance, i.e. whenever =f 0 00 ( ) , the coefficient g0 van-
ishes and therefore, replacing in (12), we obtain that the
distortion factor diverges like

µF k
h k

1 1
, 13

0
2 2

( ) ( )

for k 0. Let us finally point out that the previous Lor-
entzian shape is usually written as (see, e.g., Taylor 1972)

µ
+

F k
a
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. 140

2

0
2 2
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But this expression is only valid near a zero-energy resonance
(Macri and Barrachina 2002, 2013), i.e. for a bound or virtual
state close to the origin, whenever the coefficient g0 is small
enough so that g h g20 0

2
2.

4. Hulthèn potential

As a working example of the general theory described in the
previous section, let us consider the model potential proposed
by Lamek Hulthèn in 1942

l
= -

-l

l

l

-

-
V r

Z e

1 e
. 15H

r

r
( ) ( )

It behaves as the Coulomb interaction at small distances and
is exponentially screened for large values of r. In this respect,
it resembles the Yukawa potential,

= -l
l-V

Z

r
e . 16Y r ( )

Far more important, the corresponding s-wave radial Schrö-
dinger equation (3) can be solved analytically. The regular
solution reads (Ford 1964)

f l
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where F2 1 is the hypergeometric function (Abramowitz and
Stegun 1965) and

k
l

l
= -k

mZ

k
1

2
. 18
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Now, replacing in (2), the integral can be analytically solved
to get the following expression for the Jost function (Barra-
china and Garibotti 1983),
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Let us note that this Jost function depends only on two
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dimensionless parameters, lk and lmZ2 . In particular,

l l
p l

p l

= =
G + G -

=

g f
mZ mZ
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0
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1 2 1 2

sin 2

2
21

0 0 ( )
( ) ( )

( ) ( )

becomes zero (i.e. produces a zero-energy resonance) when-
ever (Garibotti and Barrachina 1983),

l = = mZ n n2 with 1, 2, 3, 222 ( )

As it was explained in the previous section, at these particular
values of λ the s-wave bound energies,
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vanish.
By applying Euler’s reflection formula for the Gamma

function (Abramowitz and Stegun 1965)

p
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we easily obtain the following expression for the distortion
factor,
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Note that, as expected, F k 1H ( ) for  ¥k or Z 0. On
the other hand, for l lk mZmin 1; 2{ }, this enhancement
factor takes a Lorentzian shape of height g1 0

2 and width

l lg mZ20∣ ∣ , as explained in the previous section. Finally,
at a zero-energy resonance,
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as it is shown in figure 3.
Let us now evaluate the enhancement factor F (k ) in the

limit l  ¥, for which lVH tends to the Coulomb potential
= -V r Z rC ( ) (Ma 1954). The limits k 0 and l  ¥

can not be taken independently (Kolsrud 1978), and therefore
the Lorentzian shape is not valid anymore. Instead, we obtain,

p
=

- p-
F k

mZ k2

1 e
, 27C

mZ k2
( ) ( )

which goes to unity for large values of k, as usual; but
diverges like

p
» F k

mZ

k
k

2
for 0. 28C ( ) ( )

This behavior is radically different from the Lorentzian shape
or even the k1 2 divergence at zero-energy resonances, that
are standard for screened potentials. This particular k1
behavior can be ascribed to the presence of an accumulation
point of the bound energy spectrum

 = -mZ n2 29C
n

2 2 ( )

at the ionization threshold.
Finally, let us point out that, as it was demonstrated by

Wang (1992), since  lV r V rC H( ) ( ) for every r, then

   l= n mZfor 1, 2, 3, 2 , 30C H
n ns ( )

as it can be readily verified.

5. Yukawa potential

Within a plasma, the effect of a charge Z can be represented
(Ichimaru 1973, Krall and Trivelpiece 1973) by a Yukawa
potential (Yukawa 1935)

= -l
l-V

Z

r
e . 31Y r ( )

To define the screening length, λ in terms of the plasma’s
temperature and density, let us first consider the well-known
degeneracy parameter (Ichimaru 1987)

q =
T

E
, 32

F
( )

which allows us to separate the quantum (or degenerate)
region (q  1) and the classical region (q  1). Here

=E v 2F F
2 is the Fermi energy, p=v N3F

2 1 3( ) is the Fermi
velocity and N is the plasma number density. Then the
screening length (Neufeld and Ritchie 1955, Arista and
Brandt 1984, Clauser and Arista 2013) reaches the Thomas–
Fermi limit

l
w

q= v

3
1 , 33F

P

( ) ( )

Figure 1. Enhancement factor FH for the Hulthèn potential, as given
by equation (25), as a function of the dimensionless parameters lk
and lmZ2 . Note how a zero-energy occurs each time that

l =mZ n2 with = ¼n 1, 2, 3, .
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for low values of θ, while for q  1 the Debye limit

l
p

q= T

N4
1 , 34( ) ( )

is obtained. Here w p= N4P refers to the plasma frequency.
As it was previously stated, all quantities are expressed in
atomic units. Here we are assuming that the ion of charge Z is
static with respect to the plasma, or moving with a velocity
much smaller than lw ;P an assumption that is consistent with
the study of small relative electron–ion momenta k as con-
sidered in the present work.

Figure 2 shows different values of λ as function of
density and temperature. We also show the conditions q = 1.
Let us note that, at most of the values of T and N considered
in the figure correspond to the classical region q  1. In
addition, we show the conditions G = 1, where

p
G =

N

E

4 3
35

1 3( ) ( )

is the parameter that separate the correlated (G  1) and
uncorrelated (G  1) regions. Here, E refers to the char-
acteristic electron energy. For classical plasmas E=T and,
for degenerate plasmas, =E EF (Ichimaru 1982). In order to
ilustrate Γ in a continuous way, we use » +E T EF which is
consistent with a cuadratic electron velocity approximation.

As we have already demonstrated, all the results obtained
in the previous sections are not unique to the Hulthèn
potential, but are generally valid for any screened Coulomb
potential including, for instance, the cut-off Coulomb poten-
tial (Garibotti and Barrachina 1983),

l= - Q -lV r
Z

r
r , 36C ( ) ( ) ( )

whose s-wave Schrödinger equation can also be solved ana-
lytically (Garibotti and Barrachina 1983). Unfortunately, such
an exact solution is not available for the Yukawa potential

(Hall 1992)

= -l
l-V

Z

r
e . 37Y r ( )

However, it is still valid that the energy spectrum of bound
states verifies the same scaling rule than for the Hulthèn
potential,

 e l= mZ mZ2 . 38Y
ns

2
ns ( ) ( )

Furthermore, since l lV r V rH Y( ) ( ) for  < ¥r0 , then
(Wang 1992)

  . 39H Y
ns ns ( )

This means that for every particular value of the quantum
number n, the corresponding zero-energy resonance has to
occur for values of the dimensionless parameter lmZ2 that
are larger for the Yukawa potential than for the Hulthèn
potential. This is corroborated in figure 3 which shows the
values of lmZ2 at which a zero-energy resonance occurs as
a function of the quantum number n for the Yukawa and
Hulthèn potentials. The data corresponding to the Yukawa
potential were extrapolated from the numerical calculation by
Stubbins (1993). The figure shows that lmZ2 also follows a
simple linear dependency with n, as the one occurring for a
Hulthèn potential. A fitting of the data leads to

l l»mZ mZ2
4

3
2 , 40Y H ( )

for the critical values of lmZ2 . Furthermore, a direct
comparison with the numerical calculation by Stubbins
(1993) shows that equation (23) provides a good approx-
imation for the energies of s-wave bound states for the
Yukawa potential whenever lH is re-scaled according to

Figure 2. Debyes screening lengths λʼs as function of density and
temperature. The conditions q = 1 separate the classical and
degenerate plasma regions, corresponding to the upper and lower
parts of the figure, respectively. We also show the condition G = 1,
which separates the correlated and uncorrelated regions, as explained
in the text.

Figure 3. Critical values of lmZ2 for Yukawa and Hulthèn
potentials, at which a zero-energy resonance occurs, as a function of
the quantum number n. The data corresponding to the Yukawa
potential were extrapolated from the numerical calculation by
Stubbins (1993).
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equation (40), namely
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6. Zero-energy resonance

The k1 divergence of the Coulomb enhancement factor (28)
for k 0 is responsible for one of the most striking effect of
Atomic Collisions Physics. In 1970 Crooks and Rudd
observed a cusp-shaped peak in the energy spectrum of
electrons emitted in the forward direction in the ionization of
helium by the impact of energetic protons. This cusp occurred
when the velocity of the electron matches that of the pro-
jectile, i.e., when the relative electron–proton momentum k
vanishes. It was thoughtfully studied for decades, both theo-
retically and experimentally, being observed for a variety of
ionic projectiles, including 90MeV/u +U 88 (Hillenbrand
et al 2015), and even in positron-atom ionization collisions
(Kövér and Laricchia 1998, Fiol et al 2001). By visualizing
this effect in terms of a smooth continuation through the
ionization limit of a capture of the electron by the proton into
highly excited states of a hydrogenic atom, the name ‘electron
capture to the continuum’ (ECC) was coined (Macek 1970).
Being this so, the same existence of an ECC divergence was
associated to the presence of an accumulation point of Ryd-
berg states at the ionization threshold, i.e. to the Coulomb
potential itself. The mere possibility of a similar effect being
produced by a screened potential was simply ruled out. For
instance, McGuire et al (1987) argued that, in view of the
Uncertainty Principle, a screening of the Coulomb tail would
lead to a truncated ECC cusp, with a width  lD »k . At
that time it was already known (Garibotti and Barra-
china 1983) that this argument was not entirely valid, since it
was mistakenly relying on the screening length λ directly,
instead of on the scattering length a0. As we have shown in
the previous sections, the difference was not of minor
importance, since it might lead to drastically different beha-
viors at the k 0 threshold. It can even produce a k1 2

dependence in the case of a zero-energy resonance, resulting
in a cusp even sharper than the one produced by the k1
divergence corresponding to a pure Coulomb potential. Even
so, the argument stated by McGuire et al (1987) was so
convincing that it set the basis for assuming that the differ-
ential ionization cross section would not show any strong
dependence on the electron-projectile momentum k for short-
range potentials (see, e.g. Jakubaßa-Amundsen 1989).

In 1989, the possibility of a ECC cusp occurring in the
presence of a screened electron-projectile interaction was
experimentally confirmed (Sarkadi et al 1989). In particular, a
narrow ECC peak measured in coincidence with neutral He
outgoing projectiles (Sarkadi et al 1989) was ascribed to the
presence of a virtual state in the +-e SHe 21( ) system (Bar-
rachina 1990, see also Macri and Barrachina 1998). This

hypothesis was initially received with disbelief (Jagutzki
et al 1991, Salin 1994), but it was later confirmed by an
experimental analysis of the dependence of the cusp on the
fraction of metastable He states in the projectile’s beam
(Kuzel et al 1993, Báder et al 1997, see also Schuch 1997).

Up to our knowledge, the first observation of a zero-
energy resonance (Bethe 1949, Newton 1955) involved the
singlet neutron–proton scattering, whose cross section at low
impact energies is at least two orders of magnitude larger than
geometrical estimated (see e.g. Eisenberg and Greiner 1976).
Zero-energy resonances have also been actively investigated
in relation with Bose–Einstein condensates. If the temperature
is low enough, the elastic scattering of atoms can be described
by the s-wave scattering a0 alone (Huang 1987), and the
presence of low-lying s-wave virtual or bound states might
lead to extremely large values of a0, i.e. zero-energy reso-
nances; as observed, for instance, in 4He (Mester et al 1993),
Cs (Arndt et al 1997) or triplet 6Li collisions (Abraham
et al 1997). The presence of zero-energy resonances have also
been proposed in a variety of processes, ranging from the
p+pμ scattering at very low energies (Kvitsinsky and
Hu 1993) to atomic collisions in magnetic or optical ‘wave-
guides’ (Bergeman et al 2003).

Our study is somewhat related to this last example of
atomic processes occurring under confinement. Within a
plasma the interaction between particles is screened by the
surrounding media; with a Debye screening length λ that
depends on the conditions of density N and temperature T. In
view of the previous evidence, this means that for any atomic
processes occurring in the interior of a plasma, the corresp-
onding cross section might differ from that occurring in
vacuum with pure Coulomb interactions, mainly whenever
the relative energy of a pair of charged particles in the initial
or final states vanishes.

In the following two sections we exemplify these con-
clusions by considering the effects produced by a Debye
screening in ionization collisions and photoionization pro-
cesses occurring within a plasma.

7. Ionization collisions

In view of the previous discussions, the cross section for an
ionization collision within a plasma might be strongly dis-
torted whenever the relative energy of the emitted electron
with respect to the target or the projectile vanishes. Let us
consider, for instance, the single ionization of an atom by the
impact of an ion of charge Z.

+  + ++ + + -P T P T e . 42Z Z ( )

The double differential cross section (DDCS) for the emission
of an electron of momentum ke reads (Fiol et al 2001)

ò
s

p
m

=
K

vk
K

d

d
2 d . 43

e

4 2( ) ∣ ∣ ˆ ( )

Here, μ and K are the reduced mass and relative momentum
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of the ++ +P TZ system in the final state, respectively, and

 = áY Yñ- V 44f i∣ ∣ ( )

is the transition matrix element where the state Yi describes
the initial target bound state and the projectile’s free motion
with velocity v, while Y-

f describes the stationary scattering
state of the three-body system constituted by the electron (e),
the projectile ( +P Z) and the residual target ( +T ). Here, V is the
interaction of +P Z with both particles -e and +T .

Let us first consider that the ionization process occurs ‘in
vacuum’ (i.e. for l  ¥). Most perturbative models allow
for the following FSI separation of the DDCS (see, e.g.,
Stolterfoht et al 1997 and references therein),

s s
= ´F k

k k
d

d

d

d
, 45

e

C
P

e
( ) ˜ ( )

where the distortion factor reads (see equation (27)),

p
= G - =

-
p

p-
F k Z k

Z k
e 1 i

2

1 e
. 46C

P
Z k

P
P
Z k

2 2
2

P

P
( ) ∣ ( )∣ ( )

Here = -k k vP e is the relative momentum of the electron
with respect to the projectile. This Coulomb distortion factor
diverges like k1 P whenever kP vanishes, i.e. at the electron–
projectile ionization threshold, producing the well-known
ECC cusp described in the previous section. The reduced
DDCS s kd d e˜ does not diverge at kP=0, but reaches dif-
ferent limiting values along different directions kP

ˆ (Shake-
shaft and Spruch 1978).

Let us now consider that the ionization process occurs
within a plasma, so that the distortion factor F kC ( ) does no
longer provide a valid description of the ECC cusp, and
should be replace by the distortion factor with the correct
dependence on kP and λ. Thus we replace it by the one
corresponding to the Hulthn potential, according to
equation (25),

p p l
p l pkl

=
-

F k
Z

k

k

k

sinh 2

sinh sinh
, 47H H

H H
2 2

( ) ( )
( ) ( )

( )

but with the lH screening length corrected according to
equation (40), namely l l» 9 16H . Figure 4 shows this
distortion factor for the single ionization of an atom within a
plasma as a function of the electron momentum ke in the
forward direction (i.e. for ke parallel to v). We clearly see a
sizable distortion of the ECC cusp for different values of the
screening length λ. Note that the enhancement factor verifies
all the properties analyzed so far. For instance, it takes a
Lorentzian shape for small values of kP and, even though it is
not evident in the figure, it goes to unity for  ¥kP . For
l = 3.55, the zero-energy condition l =mZ9 8 2 is satis-
fied, and therefore a k1 P

2 divergence occurs. On the other
hand, the gaussian shape is recovered for l = 2, 2.8 and 7,
since lmZ9 8 gets the non-integer values 1.5, 1.775 and
2.8, respectively. In particular, since for l = 2,

l »mZ9 8 1.5 is halfway between the l =mZ9 8 1 and
2 resonances, the distortion produced by the enhancement
factor is milder than in the other cases, as shown in the inset
in figure 4. Finally, the usual k1 P divergence corresponding

to a pure Coulomb case is also shown in the figure for
comparison.

Here we have exemplified the kind of distortions that
might occur in ionization collisions by considering the
emission of a target electron by ion impact. However, it is
important to point out that this effect does not depend on
whether the electron is emitted from the target or from the
projectile itself, in which case it is customarily known as an
‘electron loss to the continuum’ effect. The screening by the
surrounding media in a plasma can similarly affect the so-
called ‘soft collision’ peak, where the relative energy of the
emitted electron with respect to the residual target vanishes
(Stolterfoht et al 1997).

These results clearly show that the calculation of ioniz-
ation collisions within a plasma should not been done with
disregard to the corresponding screening effect, particularly
when they are meant to be used in relation with the diagnosis
of atom distributions in fusion reactors (Ning et al 2007).

8. Photoionization

In order to provide another example of the kind of effects that
a zero-energy resonance might produce on an atomic process
within a plasma, let us apply the previous results to a simple
photoionization (PI) process,

g+  ++ -A A e , 48( )

where a single electron is emitted to the continuum with
momentum k by the absorption of a photon of wave vector gk
and polarization ê (̂ gk ) by a Hydrogenic atom or ion A with

Figure 4. Electron capture to the continuum (ECC) peak for the
single ionization of an atom by the impact of a proton of velocity
v=1 a.u. The enhancement factor is shown for the electron emitted
in the forward direction (i.e. along the proton’s velocity), as a
function of the ratio of the electron and projectile velocities. The
case corresponding to a pure Coulomb case (dashed line) is also
shown for comparison. In the inset, the maximum of the
enhancement factor is shown as a function of the screening length λ.
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ionization charge Z. The differential cross section reads


s p
W

=
gc

k

k

d

d

4
. 49

k

PI 2

2
2∣ ∣ ( )

The non-relativistic transition matrix element  reads

 y f= á  ñge e , 50k
k r

r
i∣ ˆ · ∣ ( )·

where yk is the final continuum state of the emitted electron
and f is the initial bound state. The same transition matrix
element describes the radiative recombination process, where
an atom captures an electron with emission of a photon. The
corresponding differential cross section reads


s p
W

= g

g c

k

k

d

d

4
. 51

k

RR 2

2
2∣ ∣ ( )

The total cross sections sPI and sRR are obtained by inte-
grating over the solid angle and averaging on the polarization,
verifying (for the ground state)

s s´ = ´gk k . 522 PI 2 RR ( )

As we did in the previous section, let us first consider the
photoionization ‘in vacuum’ (i.e. forl  ¥) of a Hidrogenic
ground state

f
p

= -r
Z

e , 53Zr
3 2

1 2
( ) ( )

of energy -Z 22 to a Coulomb continuum state

y
p

= G -

´ +

p

-

Z k

F Z k kr

r

k r

1

2
e 1 i

i , 1, i e . 54

k
k

k r

3 2
Z 2

1 1
i

( )
( )

( )

( ( · )) ( )·

The transition matrix element  can be analytically evaluated
(Clauser and Barrachina 2015a) by means of Nordsieck’s
method (Nordsieck 1954). The corresponding total cross
section sPI is shown in figure 5 as a function of the photon
energy

 = +
Z k

2 2
55

2 2
( )

for a hydrogen atom (Z=1). In accordance to the FSI theory,
as explained in section 2, the total photoionization cross
section can be written as

s s= ´F k , 56CPI PI( ) ˜ ( )

where F kC ( ) is the distortion factor for a pure Coulomb
potential (see equations (27) and (46)), which diverges like

k1 for at the ionization threshold. However, note that since
s µ kPI˜ for small values of k, the photoionization cross
section (56) does not diverges but reaches a finite value for
k 0, as it can be seen in figure 5.

Now, when the photoionization process occurs within a
plasma, F kC ( ) should be replaced by the distortion factor
F kH ( ) for a screened electron–ion potential, as explained in
previous sections. On the other hand, since the k dependence
of sPI˜ does not vary significantly with λ, we will keep the
calculation for a pure Coulomb potential, but with an effective
ionization charge, as given by equation (41),

⎜ ⎟⎛
⎝

⎞
⎠l

» -Z Z
Z

1
8

9
, 57eff ( )

affecting the initial bound state (53) and the corresponding
energy,-Z 22 , as well as the Coulomb continuum state (54)
(but -of course- not the distortion factor FH). Figure 5 shows
the total cross section sPI for the photoionization of a
hydrogen atom within a plasma as a function of the photon
energy for different values of the screening length λ. We
clearly see a sizable distortion of the cross section, even
though this effect was mistakenly overestimated in a recent
communication (Clauser and Barrachina 2015b).

We see that this simple model manages to reproduce the
zero-energy resonances, which occur according to
equation (22) at photon energies

⎜ ⎟⎛
⎝

⎞
⎠ = - = Z

n
n

2
1

1
with 1, 2, 3, . 58n

2

2

2

( )

Furthermore, the values of λ at which these zero-energy
resonances occur,

l = = n

Z
n

16

18
with 1, 2, 3, , 59

2
( )

are in reasonable agreement with those obtained in recent
numerical complex-coordinate rotation calculations of pho-
toionization of hydrogen and hydrogen-like helium (Zhao and
Ho 2004, Lin and Ho 2010). For instance, the resonances
observed in figures 1 and 2 in the article by Zhao and Ho
(2004) and in figures 2 and 4 in the article by Lin and Ho
(2010) match those for n=2 obtained with our simple and
general approach, as given by equation (58). Even the suc-
cessive resonances evaluated by Lin and Ho (2010) for H and
He+ with a exponential-cosine-screened Coulomb potential
verify the -Z 1 and n2 scaling rules predicted by equation (22).
However, it is important to point out that in the article by Lin
and Ho (2010), it was conjecture that they are shape-reso-
nances resulting from quasi-bound np states. In our model, on
the other hand, we propose that they are divergences occur-
ring as a result of zero-energy resonance effects. In fact, the
sharp form and strong asymmetry of the resonances evaluated

Figure 5. Total cross section sPI for the photoionization of a
hydrogen atom within a plasma as a function of the photon energy
for different values of the screening length λ.
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by Zhao and Ho (2004) and Lin and Ho (2010) seem to be
more consistent with zero-energy effects than with p shape-
resonances.

9. Inhomogeneities

The screening length λ, being dependent of the density N and
temperature T (see equation (34)), is not uniform all along the
plasma. Therefore, the atomic transitions would occur under
potentials with different values of λ, depending on the posi-
tion within the plasma where they take place. The corresp-
onding distortion factors F (k ) would also vary accordingly.
Whenever this variation is small in comparison with the
separation between resonant screening lengths, i.e. if the
screening length is tuned to the zero-energy resonance, then
this effect might produce a sizable effect. This is actually the
case for values of λ of the order of some few atomic units, in
the lower right section of figure 2, a condition that can be
attained by a combination of low temperatures and/or high
densities where, as shown in figure 6, the resonance condi-
tions where F (0) diverges, are well separated in N and T
(Clauser and Barrachina 2015c). This means that zero-energy
resonances might occur within the plasma and should be
taken into account. On the other hand, the zero-energy reso-
nances might be blurred by plasma inhomogeneities for
combinations of density and temperature in the upper left
section of figure 2. In this case, it would be necessary to
replace the enhancement factor by an average over the range
of variation of λ. In order to estimate this effect, let us assume
that the screening length varies over a range of values
including many zero-energy resonances with equal statistical
weight. We integrate the distortion factor, equation (25),
between two adjacent zero-energy resonances l = n mZ2n

2

and l = ++ n mZ1 2n 1
2( ) ,

òl l
lá ñ =

- l

l

+

+

F k F k
1

d 60H

n n

H

1 n

n 1

( ) ( ) ( )

ò

p
l l

p l

p l p l l
l

=
-

´
- -l

l
+

+

61

mZ

k

k

k k mZ

1

sinh 2

sinh sinh 2
d .

n n1

2 2 2n

n 1

( )

( )
( ) ( ( ) )

As it is demonstrated in a previous article (Garibotti and
Barrachina 1983), this average renders the distortion factor
for a pure Coulomb potential,

á ñ »F k F k . 62H C( ) ( ) ( )

This means that when the screening length varies along a
range of values larger than the separation between resonances,
then the results corresponding to a non-screened potential are
recovered as an average effect. Thus, for certain configura-
tions of density and temperature, as it might be the case in
magnetic confinement systems, it would seem as if the Debye
screening were producing no effect, since the pure Coulomb
case would be recovered as an average over the plasma’s
inhomogeneities.

10. Conclusions

In this article we have investigated the occurrence of zero-
energy resonances in atomic processes within a plasma. We
showed that this type of resonances might occur for particular
conditions of density and temperature, whenever the relative
energy of a pair of charged particles in the initial or final
states vanishes. We applied this general and analytical
description to the study of two particular atomic transitions,
namely ionization collisions by ion impact and photoioniza-
tion (and radiative recombination) processes. We demon-
strated that the corresponding cross sections show zero-
energy resonances at particular values of the Debye screening
length.

It is important to point out that our theory is not limited to
any of the particular examples considered in sections 7 and 8.
They were chosen for pedagogical reasons and to simplify the
calculation, which in the case studied in section 8 becomes
completely analytical. We were also moved by the possibility
of comparing our results with those by Lin and Ho (2010). In
fact, as described in section 6, zero-energy resonances might
occur in a variety of processes, including direct collisions; and
by the action of virtual states, even in those cases where the
intervening particles cannot form any bonding. This might be
particularly relevant in the upper left corner of figure 2
(Ichimaru 1982), where the Saha equation of state at local
equilibrium (Saha 1920) predicts an increasing proportion of
ionized plasma.

Furthermore, even though we have centered our discus-
sion on how an atomic process can be affected by a Debye
screening, zero-energy resonances might appear in other
atomic processes, and are not limited to a screened electron–

Figure 6.Distortion factor F (k ) evaluated at the k=0 threshold as a
function of the density N (cm−3) and temperature T (keV) for an
electron–proton interaction within a plasma.
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proton interaction or even to any particular choice of the
potential between the intervening particles. For instance, the
same theoretical description might be applied to the self-
consisted average-atom model (see, e.g. Johnson et al 2006,
Faussurier et al 2010, Starrett 2016) which, by including the
plasma interactions in a more rigorous way, might be more
valid than the Debye screening approximation for certain
plasma conditions (Hu et al 2014).

Hence, even though for strongly coupled or quantum
plasmas, the interaction between the acting particles may
differ from the standard Yukawa potential (Shukla and
Eliasson 2008), the appearance of zero-energy resonances is
solely related to the presence of low lying bound or virtual
states.

Independently of the description employed, the upper-left
region of density and temperature in figures 2 and 6 corre-
spond to an agglomeration of zero-energy resonances.
Therefore the zero-energy resonances might be blurred by
inhomogeneities in density and/or temperature; and the cross
section for a pure non-screened potential should be recovered
as an average effect. On the other hand, for particular com-
binations of density and temperature, the zero-energy reso-
nance effects might produce sizable distortions of the cross
sections, even order of magnitude larger than standard esti-
mates. These results show that zero-energy resonances should
not be ignored when studying atomic processes within a
plasma, and their relevance in fusion devices should be taken
into account.
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