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1 Introduction

Quantum impurities and defects play an important role in different areas of theoretical

physics, including condensed matter physics, gauge theories, and string theory. In order

to understand the possible quantum field theories with defects and their dynamics, a key

step is to classify boundary conditions that preserve some conformal invariance in bulk

conformal field theories (CFTs), together with the renormalization group flows between

different boundary conditions.
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The best understood situation arises in two-dimensional CFTs with conformal bound-

aries, which led to the development of boundary CFT (BCFT). This case is especially

interesting, because it arises from spherically symmetric magnetic impurities in metals (as

in the famous Kondo problem [1]) and also describes D-branes in string theory [2]. In a

2d CFT, Cardy found that a conformal boundary corresponds to a boundary state [3].

Affleck and Ludwig defined a g-function in terms of the difference between the thermal

entropy with and without impurity, and used the formalism of boundary states to compute

it [4]. The boundary entropy plays the role of a ground-state degeneracy associated to the

impurity, and these authors conjectured that g decreases under renormalization. A key

result in this direction is the proof of Friedan and Konechny that establishes that g indeed

decreases monotonically along boundary RG flows [5].

A crucial property of the boundary entropy is that its value at a fixed point is in fact

(part of) an entanglement entropy, as shown in [6, 7]. However, this equivalence is not

valid away from fixed points, as it uses the conformal map between the plane and the

cylinder in two dimensions. This raises the important question of whether there exists

an “entropic g-function” that decreases monotonically along boundary RG flows [8], and

whose fixed point values agree with the boundary entropy. Another question is if g can

be defined directly in terms of an entropy. The conformal map of [7] identifies g with a

specific constant term in the entanglement entropy, after subtracting the logarithmically

divergent area term. This subtraction obscures a possible monotonous behavior.

The goal of this work is to prove an entropic g-theorem, namely that there exists a

g-function that decreases monotonically under boundary renormalization, and whose fixed

point values agree with g for BCFTs.1 We will accomplish this by identifying g with a rela-

tive entropy; this is our main result and is presented in section 2. In the remainder of the pa-

per we initiate a broader program of using techniques from quantum information theory to

study boundary RG flows. Specifically, in section 3 we focus on the mutual information and

how it measures correlations between the impurity and bulk degrees of freedom. In order

to illustrate our general results, we introduce in section 4 a new relativistic Kondo model,

which has the nice feature of being Gaussian and yet it leads to a nontrivial boundary RG

flow. Various aspects of quantum entanglement for this theory are analyzed in section 5.

2 The entropic g-theorem from relative entropy

In this section we will study boundary RG flows using the relative entropy. The relative

entropy provides a measure of statistical distance between the states of the system with

different boundary conditions, and we will see that it is closely related to boundary entropy.

Monotonicity of the relative entropy will be used to prove the g-theorem.

After reviewing boundary RG flows in section 2.1, in section 2.2 we explain the connec-

tion between relative and boundary entropy. The relative entropy compares two density

matrices: one corresponds to some arbitrary reference state (which in our case will be

related to UV BCFT) and the other one is the density matrix for the system with relevant

1We would like to mention the previous related work [9], where the authors attempted to prove the

g-theorem using strong subadditivity. The holographic version of the theorem was established in [10].
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boundary flow. The simplest possiblity is to use reduced density matrices for intervals on

the real line. We explore this in section 2.3, finding that the monotonicity properties of the

relative entropy do not allow to prove a g-theorem. The reason is that the relative entropy

distinguishes the different states too much, and this masks the decrease of g under the RG.

This suggests the correct path towards the g-theorem: vary the states in order to mini-

mize the contribution from the modular Hamiltonian, while keeping fixed the entanglement

entropy. This analysis is presented in section 2.4. We show that by working with states on

the null boundary of the causal domain, the contribution from the modular Hamiltonian

becomes a constant, and hence the impurity entropy is given explicitly as (minus) a relative

entropy. We then use this result to prove the entropic g-theorem.

2.1 Boundary RG flows

Let us begin by briefly reviewing the class of RG flows that are studied in this work. The

starting point is a CFT defined on x1 > 0 with a boundary at x1 = 0 which preserves half

of the conformal symmetries — a BCFT. This requires

− iT01(x1 = 0) = T (x1 = 0)− T̄ (x1 = 0) = 0 . (2.1)

A particular case is a CFT with a defect at x1 = 0, which can be folded into a BCFT on

x1 ≥ 0.2

In general the boundary may support localized degrees of freedom that will be coupled

to the fields in the bulk theory. The UV theory, denoted by BCFTUV, is then perturbed

by a set of relevant local operators at the boundary,

S = SBCFTUV
+

∫
dx0 λiφi(x0) . (2.2)

This perturbation can combine operators from the bulk (evaluated at x1 = 0) and/or

quantum-mechanical degrees of freedom from the impurity. The perturbation triggers a

boundary RG flow; we assume that the flow ends at another boundary CFT, denoted by

BCFTIR.

The boundary perturbation preserves time-translation invariance and is local. In this

way, bulk locality is preserved and operators at spatially separated points commute. This

is needed for using the monotonicity of the relative entropy below.

The boundary entropy log g is defined as the term in the thermal entropy that is

independent of the size of the system [4],

S =
cπ

3

L

β
+ log g , (2.3)

where L is the size and β the inverse temperature. At fixed points, log g can be computed as

the overlap between the boundary state that implements the conformal boundary condition

and the vacuum [3]. For a boundary RG flow, Affleck and Ludwig conjectured that

log gUV > log gIR . (2.4)

2The reverse, unfolding a BCFT into a theory defined on the full line, is not possible in general. We

thank E. Witten for pointing this out to us.
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Friedan and Konechny [5] proved nonperturbatively that the boundary entropy decreases

monotonically along the RG flow,

µ
∂ log g

∂µ
≤ 0 , (2.5)

where µ is the RG parameter. It also decreases with temperature, since g = g(βµ) on

dimensional grounds.

At a fixed point, the thermal entropy can be mapped to an entanglement entropy by

a conformal transformation — see e.g. [7]. Concretely, The ground state entanglement

entropy of an interval x1 ∈ [0, r), with one end point attached to the boundary, is given by

S(r) =
c

6
log

r

ε
+ c0 + log g , (2.6)

where ε is a UV cutoff, and c0 is a constant contribution from the bulk that is independent

of the boundary condition.

Therefore, log gUV > log gIR for the constant term on the entanglement entropy of this

interval. However, away from fixed points the entanglement entropy cannot be mapped

to a thermal entropy, and it is not known whether log g(r) defined in (2.6) decreases

monotonically. We will prove that this is indeed the case.

2.2 Boundary entropy from relative entropy

The relative entropy between two density matrices ρ0 and ρ1 of a quantum system is defined

as

Srel(ρ1|ρ0) = tr(ρ1 log ρ1)− tr(ρ1 log ρ0) . (2.7)

In terms of the modular Hamiltonian for ρ0, ρ0 = e−H/tr(e−H), it can be written as

Srel(ρ1|ρ0) = ∆〈H〉 −∆S , (2.8)

where ∆〈H〉 = tr ((ρ1 − ρ0)H), and ∆S = S(ρ1) − S(ρ0) is the difference between the

entanglement entropies of the density matrices.

Let us recall some basic features of the relative entropy.3 For our purpose, the most

relevant property of the relative entropy is that (for a fixed state) it cannot increase when

we restrict to a subsystem. In QFT the reduced density matrix ρV is associated to a region

V and is obtained by tracing over the degrees of freedom in the complement V̄ . In this

case, the relative entropy increases when we increase the size of the region. Some simple

properties of the relative entropy are that Srel(ρ1|ρ0) = 0 when the states are the same,

and Srel(ρ1|ρ0) =∞ if ρ0 is pure and ρ1 6= ρ0.

For the boundary RG flows of section 2.1, the reduced density matrix associated to an

interval x1 ∈ [0, r) is obtained by tracing over the complement, and defines a g-function

S(r) =
c

6
log

r

ε
+ c0 + log g(r) . (2.9)

This boundary entropy interpolates between log gUV for r � Λ−1 and log gIR for r � Λ−1.

Here Λ is the mass scale that characterizes the boundary RG flow. We want to show

g′(r) ≤ 0 , (2.10)

3We refer the reader to [11] for more details.
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and this would imply the entropic version of the g-theorem. Note that even if the theorem

gives a monotonicity g(0) ≥ g(∞) between fixed points, and coincides in this respect with

the result [5], the interpolating function differs from their interpolating function. Indeed,

as emphasized before, the boundary contribution in the thermal entropy does not map

simply into the boundary contribution to the entanglement entropy when the theory is not

conformal.

Let ρ be the reduced density matrix on the spatial interval [0, r). We want to compare

ρ with some appropriately chosen reference state ρ0 in terms of the relative entropy. Since

the boundary RG flow starts from a BCFT in the UV, we choose the reduced density

matrix ρ0 to be that of BCFTUV. A crucial property that motivates this choice is that the

modular Hamiltonian H for an interval including the origin in half space with a conformal

boundary condition is local in the stress tensor, and has the same form as that of a CFT

in an interval. This can be shown by a conformal mapping to a cylinder [7, 12]; see [13]

for a recent discussion.4

Making this choice obtains

Srel(ρ|ρ0) = − log
g(r)

g(0)
+ tr ((ρ− ρ0)HBCFT) . (2.11)

The first term comes from the difference in entanglement entropies between the theory

with boundary RG flow (ρ) and the UV fixed point ρ0; from (2.9) this gives precisely

the change in boundary entropy. This gives the relation between the boundary entropy

and relative entropy, and has the right sign to yield g′(r) < 0 since Srel increases with r.

The second term, however, could be an important obstruction to a g-theorem. It comes

from the difference in expectation values of the modular Hamiltonian between the states

with and without the relevant boundary perturbation. The rest of the section is devoted to

analyzing this contribution. For the simplest setup of states defined on the real line, we will

find that this term increases with r, masking the monotonicity of g. We will then improve

our setup, showing how this term can be made to vanish by defining states on null lines.

2.3 Relative entropy for states on the real line

We have to understand the contribution of the modular Hamiltonian to (2.11). The simplest

possibility is to work with states defined on the real x1 line. In this case, the modular

Hamiltonian for a CFT in half-space with a conformal boundary condition at x1 = 0 is

HBCFT(r) = 2π

∫ r

0
dx1

r2 − x2
1

2r
T00(x1) . (2.12)

This is the generator of a one parameter group of conformal symmetries that map the

x1 = 0 line in itself and keeps the end point of the interval x1 = r, t = 0, fixed. These

global symmetries of the CFT continue to be symmetries of the CFT with conformal

boundary conditions.

It is important that even in presence of a relevant perturbation on the boundary we

must have 〈T00〉 = 0 outside the x1 = 0 line. This follows from tracelessness, conservation,

4We thank J. Cardy for explanations on this point.
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and translation invariance in the time direction, that give

〈T00〉 − 〈T11〉 = 0 ,

∂0〈T00〉 − ∂1〈T10〉 = −∂1〈T10〉 = 0 , (2.13)

∂0〈T01〉 − ∂1〈T11〉 = −∂1〈T11〉 = 0 .

Hence 〈Tµν〉 is constant outside the boundary and has to vanish.

Then 〈T00〉 does not contribute to HBCFT outside the boundary. If this is the whole

contribution to ∆〈HBCFT〉 we would have from (2.11) that the monotonicity of the relative

entropy implies the entropic g-theorem. In particular, −g(r) would be given by the relative

entropy between states with and without the boundary perturbations.

There is still an important aspect to understand: there might be a contribution to

〈T00〉 localized at the boundary. On dimensional grounds, we expect for the variation of

the expectation values with and without the relevant perturbation

∆〈T00〉 = λ2ε1−2∆ δ(x1) + . . . (2.14)

where λ is the relevant boundary coupling in (2.2) with scaling dimension [λ] = 1−∆ > 0,

and ε is a distance cutoff. In other words, the boundary operator φ that deforms the theory

in (2.2) has dimension ∆. Here we have done a perturbative expansion for small λ, so that

ρ and ρ0 are very close to each other; the first perturbative contribution is generically of

order λ2. By a similar power-counting argument, more singular contact terms (proportional

to λ2ε2−2∆δ′(x1) for example) would vanish in the continuum limit ε→ 0. From (2.12) it is

clear that any such localized contribution to 〈T00〉 will produce a contribution to ∆〈HBCFT〉
which is increasing linearly with r, spoiling a proof of the g-theorem. In the free Kondo

model of section 4 we will see that this is indeed the case.

This linear dependence in r implies that the relative entropy distinguishes too much

the states with and without the impurity on the real line. It is clear that in order to be

able to use the relative entropy to capture the RG flow of g(r) we need to choose states

that minimize ∆〈HBCFT〉. This is the problem to which we turn next.

2.4 Proof of the entropic g-theorem

In order to use the monotonicity of the relative entropy to prove the g-theorem, we need

to minimize the contribution from the modular Hamiltonian. The basic idea is that in a

unitary theory the entanglement entropy is the same on any spatial surface that has the

same causal domain of dependence. This evident is in the Heisenberg representation, where

the state is fixed and local operators depend on spacetime. Local operators written in a

given Cauchy surface can in principle be written in any other Cauchy surface using causal

equations of motion. Then, the full operator algebra written in any Cauchy surface will be

the same, and as the state is fixed, the entropy will remain invariant.

The relative entropy for two states in a fixed theory is also independent of Cauchy

surface. However, in the present case, as the vacuum states of the theory with or without

relevant boundary perturbation have different evolution operators, choosing a different

surface corresponds to changing the states by different unitary operators in each case. In

– 6 –
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Figure 1. Different Cauchy surfaces Σ with the same causal domain of dependence D give the

same entanglement entropy S(r).

the Heisenberg representation of the BCFT the conformal vacuum will not change, but

the fundamental state of the theory with the relevant perturbation will evolve with an

additional insertion placed on x1 = 0. As a consequence ∆〈HBCFT〉 will now depend on

the choice of surface. Therefore, we need to vary the Cauchy surface until we eliminate the

large increasing ∆〈HBCFT〉 term in the relative entropy.

This approach is illustrated in figure 1. We want to determine the entanglement

entropy S(r) for a spatial interval x1 ∈ [0, r). This interval defines a causal domain of

dependence D, and because of unitarity S(r) is the same for any other Cauchy surface with

the same D. This applies for both states, since evolution is unitary inside D independently

of the local term in the Hamiltonian at x1 = 0. Hence, ∆S is independent of the chosen

surface Σ.

We want to make ρ as similar as possible to ρ0 in order to minimize the contribu-

tion ∆〈HBCFT〉. The modular Hamiltonian of the BCFT vacuum is proportional to the

generator of conformal transformations that keep the interval fixed. Using the Heisenberg

representation corresponding to the BCFT evolution, it can be written on any Cauchy

surface Σ as a flux of a conserved current

HBCFT =

∫
Σ
ds ηµTµνξ

ν , (2.15)

where η is the unit vector normal to the surface and

ξµ ≡ 2π

2r
(r2 − (x0)2 − (x1)2 , −2x0x1) . (2.16)

We stress again the important point that this current is generally not conserved in the

theory with boundary RG flow, leading to changes in the expectation values of the modular

Hamiltonian for different surfaces.

– 7 –
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Since the expectation values of the stress tensor vanish everywhere except at the im-

purity we need to choose a surface where the coefficient of Tµν in the modular Hamiltonian

vanishes on the line x1 = 0. We accomplish this by working with a state on the null bound-

ary of the causal development; see figure 1. In null coordinates x± = x0 ± x1 this writes

HBCFT = 2π

∫ r

−r
dx+ r2 − x+ 2

2r
T++(x+) . (2.17)

By locality, the defect at x+ = x− = −r can contribute a contact term of the form

〈T++〉 ∼ δ(x+ + r) (2.18)

and similarly for the T−− component. This effect gives a vanishing contribution in (2.17).

This should be contrasted with the situation on the real line, where a delta function

〈T00〉 ∼ δ(x1) already contributes a linear term in r to the modular Hamiltonian (2.12).

We conclude that, by working with a state on the null segment, the contribution from

∆〈H〉 vanishes

Srel(ρ|ρ0) = − log
g(r)

g(0)
. (2.19)

The change in the boundary entropy is then identified as a relative entropy. Note that

with the relative entropy we can measure changes in the boundary entropy, and not the

boundary entropy itself.

In physical terms, the reason that relative entropy is much smaller in the null surface

than in the spatial one is that in this last case we are placing the impurity at the origin

of the interval where the vacuum of the BCFT has an effective low temperature ∼ r−1

as can be read off from the coefficient of T00 in (2.12). As a result the two states are

highly distinguishable, having a large relative entropy. In contrast, the extreme point

of the null Cauchy surface (corresponding to x+ = −r) is a point of an effective high

temperature, as seen from the fact that the coefficients of T++ vanish there in (2.17).

Hence distinguishability is strongly reduced, and will be driven by the change of correlations

outside the impurity, which will be reflected in the change of entanglement entropies.

Finally, in order to use the monotonicity of the relative entropy, we need to vary r but

using the same states defined on the null line. This is implemented as explained in figure 2.

The monotonicity of the relative entropy gives

g′(r) < 0 . (2.20)

This completes our proof of the entropic g-theorem. The relative entropy defines a mono-

tonic g-function, and the total change between the UV and IR boundary CFTs is

Srel(∞)− Srel(0) = log(gUV/gIR) > 0 . (2.21)

This formula is independent of contact terms and establishes a universal relation between

the change in relative entropy and the total running of the boundary entropy.

In this proof of the g-theorem we have compared the density matrix ρ along the RG

flow to the state ρ0 of the UV fixed point. This was used, in particular, to constrain

– 8 –
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Figure 2. Using time-translation invariance, the smaller causal domain of dependence D2 is trans-

lated so that its past null boundary overlaps with that of D1. We then have the same state specified

on the null boundary, and varying r gives an increasing relative entropy.

the form of the contact term divergences in (2.18). While in our context this is the most

natural choice for ρ0, one may wonder what happens if ρ0 is some other reference state.

One possibility along these lines is to use the IR BCFT as the reference. For large enough

r, ρ approaches ρ0 on the null line, and the contributions to ∆〈Tµν〉 are determined by the

leading irrelevant operator that controls the flow towards the IR fixed point. This flow does

not have a well-defined UV limit, and hence other divergences besides (2.18) are allowed.

In particular, at least a contact term proportional to δ′(x+ + r) is required in order to

ensure the positivity of the relative entropy. Unlike the choice of ρ0 as the state of the

UV fixed point, the contribution from ∆〈H〉 will then generically be nonzero and this will

obscure the monotonic behavior of log g(r). Similar remarks apply to other choices of ρ0.

3 Mutual information in quantum impurity systems

In the previous section we related the boundary entropy to the relative entropy, and proved

an entropic g-theorem. We now explore another measure from quantum information theory,

the mutual information. In QFT, the mutual information between regions A and B is given

in terms of the entanglement entropy by

I(A,B) = S(A) + S(B)− S(A ∪B) . (3.1)

Mutual information is always positive and increasing with region size. It has the interpre-

tation of shared information (classical and quantum) between the two regions.

– 9 –
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There are two important motivations for considering the mutual information in the

context of quantum impurity systems. The first motivation is that it provides a measure of

the correlations in the system. In more detail, it is a universal upper bound on correlations5

I(A,B) ≥ (〈OAOB〉 − 〈OA〉〈OB〉)2

2 ‖OA‖2 ‖OB‖2
(3.2)

for bounded operators OA and OB that act on A and B respectively. The second reason is

the connection with the boundary entropy log g.

Our proposal is to study the dynamics of quantum impurity systems in terms of the

mutual information between the impurity (subsystem A above) and an interval of size r in

the bulk (subsystem B). We first discuss in section 3.1 why and how this mutual information

captures correlations between the impurity and bulk degrees of freedom. We then consider

the relation between boundary entropy and mutual information. This is illustrated in

section 3.2 in terms of a toy model of a lattice of spins with bipartite entanglement, where

I(A,B) and log g are related explicitly. Section 3.3 gives a more general discussion of

mutual information in the presence of impurities.

3.1 Mutual information and correlations

Let us analyze the connection between mutual information and correlations. For this, we

consider first a continuum QFT without impurity and argue that generically the mutual

information will vanish when the size of A above goes to zero. We then add the impurity,

contained in A, and discuss how the new correlations between this quantum-mechanical

system and the bulk will manifest themselves in a nontrivial mutual information.

In QFT, the mutual information I(A,B) between two regions will generally go to zero

if A is made to shrink to a point y while keeping B constant. The reason is that all

fixed operators in A whose correlations with operators in B are non zero will eventually

drop out from the algebra of A. In this sense we recall that in order to construct a well

defined operator in the Hilbert space localized in A, we have to smear the field operators,

φA =
∫
dxα(x)φ(x) with a test function α(x) with support in A. Thus, even if φ(y) is

always present in A as we take the limit A → y this is not a bounded operator living in

the algebra of local operators in A.

Let us illustrate how this happens for a CFT in d = 2. Take two intervals A and B

of size a and b respectively, separated by a distance c. Mutual information is conformal

invariant and will be a function I(η) of the cross ratio

η =
ab

(a+ c)(b+ c)
. (3.3)

Then, as we make a→ 0 keeping b, c constant we have η → 0. To evaluate this limit we can

think in another configuration with the same cross ratio, for example taking a′ = b′ = 1,

c′ = 1/
√
η− 1, which diverges as η−1/2 for small η. This is two unit intervals separated by

a large distance. In this case, the mutual information will vanish as

I(η) ∼ η2∆ ∼ a2∆ , (3.4)

5See for example ref. [14].
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where ∆ is the minimum of the scaling dimensions of the theory [15, 16].6

This is consistent with mutual information being an upper bound on correlations. If we

find any bounded operators, normalized to norm one, with non zero connected correlator,

the mutual information cannot be zero. If for a going to zero the mutual information goes

to zero it must be that all correlators (for normalized operators) go to zero. Let us try

with a smeared field φα =
∫
dxφ(x)α(x), constructed with a φ of scaling dimension ∆. φα

is not generally bounded, and this would unfairly give zero to the right hand side of (3.2)

even for fixed finite size intervals. We can circumvent this problem by doing a spectral

decomposition of the operator and using an operator φ̃α that is φα up to some cutoff in the

spectral decomposition. We choose this cutoff such that the correlators of φα with itself

and OB at the separations of interest are well reproduced by φ̃α. We have that

〈0|φ̃αφ̃α|0〉 ≤
∥∥∥φ̃α∥∥∥2

(3.5)

because
∥∥∥φ̃α∥∥∥2

is the supremum of the expectation value of φ̃αφ̃α for all unit vectors in the

Hilbert space. Then, the right hand side of (3.2) for this operator is smaller than(∫
A dxα(x) 〈φ(x)OB〉

)2
2 ‖OB‖2

∫
A dx dy

α(x)α(y)
|x−y|2∆

∼ a2∆ (3.6)

which is compatible with (3.4).

We see that the fact that correlators of fields diverge at short distances is important in

this argument. In fact, if that were not the case, the field at a single point itself would be

a well defined operator in Hilbert space, and mutual information between this point and

another system could have a non zero value. While this is not the case of continuum QFT,

this is clearly the case of an ordinary quantum mechanical degree of freedom (in 0 + 1

dimensions) since all field operators φ(t) are operators in the Hilbert space (as opposed to

operator valued distributions) and have finite correlators 〈φ(t)φ(t′)〉 for t′ → t.

Systems with impurities fall precisely in this category. Then, the mutual information

of a region of the QFT with an interval [0, a) containing the quantum mechanical degrees of

freedom of the boundary theory can have a non trivial limit as a→ 0. Of course, in systems

with no degrees of freedom living at the boundary, the mutual information wouldn’t yield a

useful measure, by our arguments above. However, in order to produce nontrivial boundary

RG flows, we generically expect that such degrees of freedom will be needed, and hence

the mutual information would provide a useful characterization of the dynamics. One way

to diagnose this is to determine if the bulk is pure along the RG; if it is not pure, then

purifying it with a system A we regain the possibility of obtaining a nontrivial mutual

information. A simple example of this situation is illustrated in section 4.

In summary, our proposal is to look at the mutual information

I([0, ε], [ε′, r]) (3.7)

6The case ∆ = 0 corresponds to the free massless scalar, that is not a well defined model — in particular

the zero mode makes the mutual information for any regions infrared divergent.
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where ε is a short cutoff, and can in fact be set to a microscopic distance or just consider

the boundary degrees of freedom. ε′ is another microscopic distance greater than ε. As

we increase r this quantity will increase with r. Possible short distance correlations across

[ε, ε′] will give an overall constant term to the mutual information which will not change

with r. This can be set to zero just using microscopic distances, or a large ratio ε′/ε.

3.2 Impurity valence bond model

To motivate our proposal, and in order to understand how this works out, we consider

a simple spin system with bipartite entanglement. For this case the impurity entropy is

captured directly by the mutual information and is monotonic along boundary RG flows.

A lattice model that is equivalent to the Kondo model in the continuum is a 1d spin

system with nearest and second-nearest neighbor hopping terms, and an impurity in the

first site [17, 18]. The Hamiltonian is

H = J ′(~S1 · ~S2 + J2
~S1 · ~S3) +

N−1∑
j=2

~Sj · ~Sj+1 + J2

N−2∑
j=2

~Sj · ~Sj+2 . (3.8)

The impurity corresponds to the first site with J ′ 6= 1, and all the spins s = 1/2.

The impurity entanglement entropy for a subsystem R with sites j = 1, . . . , r, which

contains the impurity at one end, is defined on the lattice as

log g(r) = S(r, J ′, N)− S(r − 1, J ′ = 1, N − 1) . (3.9)

where S(r, J ′, N) is the entanglement entropy obtained by tracing out over sites r+1, . . . , N ,

and S(r − 1, J ′ = 1, N − 1) is the same quantity but in a system with no impurity — this

is accomplished by setting J ′ = 1 and deleting one site.

Let us instead consider a different quantity: the mutual information between subsystem

A — the impurity at site j = 1 — and subsystem B comprised of sites j = 2, . . . , r. It is

given in terms of the entanglement entropy (EE) by

I(A,B) = S(A) + S(B)− S(A ∪B) . (3.10)

We model the entanglement in the theory in terms of an “impurity valence bond”, as

in [17]. This is the bond that connects the impurity and the other spin in the lattice with

which it forms a singlet. Let’s denote this site by k. This provides a simple intuition for

the impurity entanglement entropy: if the interval R (which contains sites j = 1, . . . , r)

cuts the bond, this gives a log 2 contribution to the EE, while the impurity entanglement

vanishes if the bond is inside R. Then if 1− p is the probability that the impurity valence

bond is cut by R, namely k 6∈ R with probability 1− p, we may write (3.9) as

log g(r) = (1− p(r)) log 2 + p (Sno imp(r − 2)− Sno imp(r − 1)) , (3.11)

where Sno imp is the EE with J ′ = 1. We also assume that N is sufficiently large, such

that the difference in entanglement entropies with N and N − 1 is negligible. This is then
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a simplified picture in terms of a probabilistic distribution of bipartite entanglement. In

particular, in the continuum limit we expect

log g(r) = (1− p(r)) log 2 . (3.12)

We now evaluate the mutual information (3.10) in terms of the impurity valence bond.

First,

S(A) = log 2 = log g(r = 0) (3.13)

is the total impurity entanglement, or the g-function in the UV. The S(B) term gets a

contribution p log 2 from entanglement with the impurity, plus the entanglement with the

rest of the system, i.e.

S(B) = p (log 2 + Sno imp(r − 2)) + (1− p)Sno imp(r − 1) . (3.14)

Here, with probability p the impurity spin is entangled with one of the spins in B, and

then the rest of the spins in B (r − 2 of them) is entangled with the rest of the system as

if there were no impurity. With probability 1 − p the impurity spin is entangled with one

of the spins outside B, and hence the EE for B, which has r − 1 sites, is the EE with a

system of N − 1 spins and no impurity. In the continuum limit, the difference between the

intervals of size r − 1 and r − 2 will be negligible, and hence

S(B) = p(r) log 2 + Sno imp(r) . (3.15)

Similarly, for S(A∪B) with probability p one spin in B is entangled with A and hence the

entanglement with the rest is Sno imp(r−2, N), while with probability 1−p the valence bond

is outside A∪B and the entanglement with the rest of the system is Sno imp(r− 1, N − 1).

Taking the continuum limit obtains

S(A ∪B) = (1− p(r)) log 2 + Sno imp(r) . (3.16)

Notice that S(A ∪B) contains log g(r), while the impurity contribution in S(B) is log 2−
log g(r). This simplification is a consequence of bipartite entanglement and will not occur

in the multipartite case.

Putting these contributions together and writing p(r) in terms of log g(r) obtains, in

the continuum,

I(A,B) = 2 log
g(0)

g(r)
. (3.17)

Since the mutual information is non-increasing under discarding parts of the system, it

follows that
dg

dr
≤ 0 . (3.18)

In other words, the entropic g-function defined in terms of mutual information decreases

monotonically under RG flows in this simplified picture of bipartite entanglement.

While this model is of limited applicability, it serves to illustrate the connection be-

tween mutual information and boundary entropy. We will next study more general systems

allowing for multipartite entanglement.
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3.3 General analysis

We learned from the previous simplified model that the running of the constant term in the

entropy is due to entanglement with an impurity. This impurity has the effect of changing

boundary conditions from a preexisting one in the UV to a different one in the IR. The full

system formed by A, and the line x1 > 0 is pure. As g(0) is the impurity entropy in the

UV, g(∞) measures the residual entropy in the impurity that has not been neutralized by

entanglement with the field as we move to larger r.

The important question that remains is how to generalize this argument to include

multipartite entanglement. In the mutual information we will have, in general

S(A ∪B) = log g(r) + Sno imp(B) . (3.19)

A new quantity, g̃, appears for the EE of B in the presence of the impurity:

S(B) = log g̃(r) + Sno imp(B) , (3.20)

and then

I(A,B) = I(r) = S(A) + log g̃(r)− log g(r) . (3.21)

This must be an increasing function. We know g(r) goes from the conformal value g(0) in

the UV to the one g(∞) in the IR.

The function g̃(r) is determined by the entropy of B. The value of g̃ at the fixed points

can be determined as follows. Mutual information between the impurity and a small B

will be zero since correlations of the impurity are with regions further in the bulk. Hence

I(0) = 0 and

S(A) = log g(0)− log g̃(0) . (3.22)

For large r the entanglement of the impurity with local degrees of freedom at distance r

vanishes and the mutual information stops increasing. Hence I(∞) = 2S(A),

S(A) = log g̃(∞)− log g(∞) . (3.23)

However, for finite nonzero r in general there will be no simple relation between g(r) and

g̃(r). In the previous model based on a probabilistic distribution of bipartite entanglement,

g̃(r) = g(0) − g(r), but we do not expect this to hold in the presence of multipartite

entanglement. We analyze this for the free Kondo model in section 4.

The appearance of the new function g̃(r) does not allow us to establish the monotonicity

of the boundary entropy in terms of the mutual information — only the combination

log g̃(r) − log g(r) has to increase. In fact, this problem is related to what we found for

the relative entropy in section 2. To see this, we recall that the mutual information is a

specific relative entropy,

I(A,B) = Srel(ρAB|ρA ⊗ ρB) , (3.24)

where ρA = trB ρAB, ρB = trA ρAB. We expect this quantity is dependent of the Cauchy

surface. In fact, while g(r) is related to the full entropy of the field coupled to the impurity,

and cannot change with the surface because the evolution is unitary and causal for the full
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system, g̃(r) does change with the surface — unitary evolution followed by partial tracing

over the impurity does not keep the entropy constant. In fact, in section 4 we will find that

for a specific simple model the reference state on the null interval is that of the UV fixed

point, and the mutual information is then the same as the relative entropy of section 2.4.

In this case, log g̃(r) = 0 for all r, and

I(r) = − log g(r) + const . (3.25)

The preceding argument exhibits the state dependence of g̃(r), while g(r) comes from

the EE on the complete system and hence is surface-independent. Nevertheless, it would

be interesting to understand in more detail the relation between g̃(r) and multipartite

entanglement; log g(r) + log g̃(r) might give useful information on “Kondo clouds” and

related observables [19, 20].

4 A free Kondo model

Our task in this work has been to apply quantum information methods to the study of

boundary RG flows in impurity systems, establishing the entropic g-theorem. In the re-

maining of the paper, we present a simple tractable model where we can illustrate our

results. The Kondo model (see e.g. [21–23] for nice reviews and [24, 25] for other works)

would be the ideal example for this, but this model is interacting; computing quantum in-

formation quantities requires then more advanced numerical tools which would go beyond

the scope of our approach.7

Instead, in this section we construct a Gaussian model which reproduces the main

feature of the Kondo model, namely the flow between ‘+’ and ‘−’ boundary conditions for

the bulk fermions. The model is relativistic, though one may also consider a nonrelativistic

version, closer to the Kondo system; this is described in appendix A. It is also worth

noticing that the free fermion model appears as a special limit of the interacting Kondo

problem [26, 27].8 Analytic and numeric calculations of quantum entanglement will be

presented in section 5.

4.1 The model

Consider a two-dimensional Dirac fermion living in the half-space x1 ≥ 0, interacting with

a fermionic Majorana impurity at x1 = 0 — a quantum mechanics degree of freedom:

S =

∫ ∞
−∞

dx0

∫ ∞
0

dx1

(
−iψ̄γµ∂µψ +

i

2
δ(x1)

[
χ̄γ0∂0χ+m1/2(ψ̄χ− χ̄ψ)

])
. (4.1)

The scaling dimensions are [ψ] = 1/2, [χ] = 0, and hence [m] = 1 and we have a relevant

boundary perturbation. We emphasize that χ is a quantum mechanics degree of freedom

and as such it scales differently than the bulk fermion.

7For a recent review of entanglement entropy in interacting impurity systems see [17]. It would be

interesting to calculate mutual information and relative entropy in these systems using DMRG.
8We thank E. Fradkin for pointing out to us this fact .
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To understand the effects of the perturbation, we write the action in components, using

the representation

γ0 =

(
0 1

−1 0

)
, γ1 =

(
0 1

1 0

)
, ψ =

(
ψ∗+
ψ−

)
, χ =

(
η

η∗

)
. (4.2)

We work in signature (−+). Note that γ5 = γ0γ1 = σz, and hence ψ± are the two chiralities

in this basis. For later convenience, we have defined the left-moving component of ψ as

ψ∗+. The resulting action is

S =

∫ ∞
−∞

dx0

∫ ∞
0

dx1

(
iψ+(∂0 − ∂1)ψ∗+ + iψ∗−(∂0 + ∂1)ψ−

+δ(x1)

[
iη∗∂0η −

i

2
m1/2η∗(ψ+ + ψ−) + c.c.

])
. (4.3)

The action is invariant under charge conjugation, as reviewed in appendix B.

In the UV, the boundary mass term is negligible compared to the boundary kinetic

term, and hence we have a free quantum-mechanical fermion χ, decoupled from the bulk

system. Since the bulk lives in the half space, we need to impose a boundary condition

that ensures the vanishing of the boundary term in the action variation. We choose,

ψ+(x0, 0) = ψ−(x0, 0) , (4.4)

consistently with the charge-conjugation symmetry of the theory. This choice is also mo-

tivated by what happens in the interacting single-channel Kondo model; there the two

chiralities come from the two points of the Fermi surface (in the radial problem), and they

obey (4.4) in the UV. We comment on more general boundary conditions in appendix B.

The interaction with the quantum-mechanics degree of freedom η will induce a bound-

ary RG flow in the form of a momentum-dependent reflection factor connecting the left and

right moving bulk fermions. We will analyze this RG flow shortly. In the deep infrared,

the boundary behavior simplifies: we may ignore the kinetic term of the impurity, treating

it as a Lagrange multiplier that imposes

ψ+(x0, 0) = −ψ−(x0, 0) . (4.5)

Our explicit analysis below will verify this. Therefore, the free Kondo model gives an

RG flow between the ‘+’ and ‘−’ boundary conditions. The same happens in fact in the

interacting single-channel Kondo model. Our free model has the nice property of being

completely solvable, and we will determine the RG flow — and various quantities from

quantum information theory — explicitly.

It is also possible to understand the dynamics of the impurity by integrating out the

bulk fermions. This gives rise to an effective action at the boundary,

Seff =

∫
dx0 η

∗∂0η (4.6)

+
m

8

∫
dx0dx

′
0

(
η(x0)G+(x0 − x′0, 0)η(x′0) + η∗(x0)G−(x0 − x′0, 0)η∗(x′0)

)
,
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where G± = (i∂±)−1 are the chiral propagators. At early times (UV), the tree level

term dominates and dim(η) = 0; its propagator is just a constant. At late times (IR),

the dynamics is dominated by the effective contribution from the bulk fermions. Since

G±(t, 0) ∝ 1/t (the Fourier transform of Θ(p0), we obtain a conformal quantum mechanics

with dim(η) = 1/2 and

〈η(x0)η(x′0)〉 ∝ 1

m(x0 − x′0)
. (4.7)

This is to be contrasted with the interacting single-channel Kondo problem, where the

impurity is confined in the IR.

4.2 Lattice version

In order to compute entanglement entropies, let us now put the previous theory on a

lattice. Due to fermion doubling, it is sufficient to consider a one-component bulk fermion

interacting with the impurity:

Llattice = a
∞∑
j=0

(
iψ∗j∂0ψj −

i

2a
(ψ∗jψj+1 − ψ∗j+1ψj)

)
+ iη∗∂0η −

i

2
m1/2(η∗ψ0 + c.c.) . (4.8)

The hopping term comes from discretizing the symmetrized derivative operator i
2ψ
∗∂xψ.

Setting the lattice spacing a = 1, the quadratic kernel becomes

M =


0 i

2m
1/2 0 0 . . .

− i
2m

1/2 0 i
2 0 . . .

0 − i
2 0 i

2 . . .

0 0 − i
2 0 . . .

...
...

...
. . .

 . (4.9)

The first site corresponds to the impurity. Note that for m = 1 we have a lattice with one

more site and no impurity — the quantum mechanics degree of freedom becomes the same

as one of the discretized bulk modes. On the other hand, for m = 0 the impurity decouples

from the lattice system.

Let us first study the spectrum of this theory, in order to determine its relation with

the previous continuum model. Thinking of η as associated to an extra lattice point at

j = −1, we construct Ψj = (η, ψj≥0) and look for eigenvectors

MijΨj(k) = E(k)Ψi(k) . (4.10)

Looking at the sites j ≥ 1, the solutions are combinations of incoming and outgoing waves,

Ψj(k) = ake
ikj + bk(−1)je−ijk (4.11)

with eigenvalues

E(k) = − sin k . (4.12)

The boundary condition chooses a specific combination of the momentum k and π − k,

with degenerate energies. Hence, the different eigenvectors are with −π/2 < k < π/2,
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E = − sin(k). Since we have a different degree of freedom at j = −1, Ψ−1 is not of this

form. Evaluating (4.10) for i = −1 gives

η = Ψ−1 = − i
2

m1/2

sin k
ψ0 . (4.13)

On the other hand M0jΨj = − sin k ψ0 determines

i

2
ψ1 =

( m

4 sin k
− sin k

)
ψ0 ⇒

bk
ak

= R(k) = −1−m− e−2ik

1−m− e2ik
. (4.14)

This gives the reflection coefficient at the wall, relating the left and right moving modes.

In the UV, m→ 0 and

R(k) = e−2ik . (4.15)

This approaches 1 in the continuum limit. On the other hand, in the IR m→∞ and

R(k) = −1 . (4.16)

In terms of the annihilation operators dk of the modes of definite energy k we have

ψj =
∑
k

ψj(k)dk , (4.17)

where ψj(k) is given by (4.11). The knowledge of the spectrum allow us to obtain the exact

correlations functions for the infinite lattice, without the need of imposing an IR cutoff.

This is important to compute the entropies which for a Gaussian state depend only on the

two-point correlators on the region.

As we see from (4.11), the lattice fermion Ψj contains both L and R chiralities. To

isolate the two chiralities we define for j = 0, 2, 4, . . . even, the independent canonical

fermion operators

ψ−(j) =
1√
2

(ψj + ψj+1) , ψ+(j) =
1√
2

(ψj − ψj+1) . (4.18)

In the continuum limit ψ+ will select only the first component of the modes and ψ−
the second one. Hence, using x = 2ja and k → ka, m→ ma, taking the a→ 0 limit, and

properly normalizing the modes, obtains

ψ+(t, x) =

∫
dk√
π
e−ik(t−x) dk ,

ψ−(t, x) =

∫
dk√
π
e−ik(t+x)R(k)dk , (4.19)

with {dk, d†k′} = δ(k − k′), and now k extends from −∞ to ∞. The vacuum state is

dk|0〉 = 0 for k > 0 and d†k|0〉 = 0 for k < 0.

In the continuum limit, we get for the reflection coefficient

R(k) =
1 + im2k
1− im2k

= ei2δ(m/k) . (4.20)
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(Note that R(k) = R∗(−k), which reflects charge conjugation symmetry). Furthermore,

from (4.13), the impurity field is related to the bulk field by

η(E) = − i

2
√
π

m1/2

E
(1 +R(E))dE , (4.21)

where E = k is the energy.

This models illustrates very simply the general discussion in section 2.1 of left and right

movers, and the effect of the boundary in producing a reflection coefficient for the right

movers. We have a nontrivial boundary RG flow, and this is reflected in the momentum

dependence of R(k). For large momentum the phase is 1 and in the IR is goes to −1. We

conclude that the lattice model realizes a boundary RG flow between

ψ+(0) = ψ−(0) (4.22)

in the UV, and

ψ+(0) = −ψ−(0) (4.23)

in the IR.

4.3 Thermal entropy

We now study the free Kondo model at finite temperature, with the aim of obtaining the

thermal boundary entropy. Let us put the system in a box of length L (L/a sites). We

choose the matrix M with N + 1 sites (including the impurity site j = −1, or N without

the first site), with N even, L = Na, and impose the boundary condition

ψj=N (k) = 0 , sin(k(N − 1)− δ(k)) = 0 . (4.24)

We have written the reflection coefficient bk/ak = ei2δ. The eigenvalues are then quantized

as

k(N − 1)− δ(k) = qπ , (4.25)

giving a spectrum that is still symmetric with respect to the origin (as implied by charge

conjugation symmetry), which has N + 1 eigenvalues between −π/2 and π/2 for finite m.

This is not the case in the IR limit m→∞, where the quantization condition (4.25) gives

only N eigenvalues. This missing eigenvalue will translate into a running of the impurity

thermal entropy in the continuum limit of amplitude log 2.

We put the system at inverse temperature β. The entropy per mode at zero chemical

potential is

s(x) = log(2 cosh(x/2))− x/2 th(x/2) , x = βE . (4.26)

This is symmetric around E = 0. In the limit of large L the modes have small separation

∆(k) ∼ π/N = aπ/L (δ is a slowly varying function) and the sum can be approximated by

an integral

S =
∑
k

S(kβ) =
L

π

∫ ∞
−∞

dk s(kβ) +O(1) +O(1/L) =
π

3
TL+O(1) +O(1/L) . (4.27)

The constant term in the limit L→∞ defines the thermal boundary entropy.
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Figure 3. The thermal entropy as a function of βm.

To get the O(1) term we note that the change of each k due to δ is a small number

δ/N = δa/L and we can put in the infinite L limit

∆S =
β

π

∫
dk s′(βk)δ =

1

π

∫
dx s′(x)δ(x, µ) =

1

π

∫
dx s(x)G(x, µ) (4.28)

where µ = βm and

R(x, µ) =
2x+ iµ

2x− iµ
, G(x, µ) =

−idR(x, µ)/dx

2R(x, µ)
=

2µ

µ2 + 4x2
. (4.29)

Note this formula is independent of an overall constant in the reflection coefficient R.

What matters is the relative dephasing as we move k.

For very small µ, the UV fixed point, or large temperature, we have ∆S = log(2), since

G goes to a delta function. For large µ, the infrared, G goes to zero and the constant term

in the entropy vanishes.

To see more clearly the origin of the monotonicity of the running with temperature

(see figure 3) we compute

d∆S

dβ
=

1

βπ

∫
dxxs′(x)G(x, µ) = − 1

βπ

∫
dx

x2

2 cosh2[x/2]
G(x, µ) . (4.30)

R is the reflection coefficient (4.20) and is independent of the temperature. On the other

hand, G depends on β leaving the combination G dx independent of β. Hence, the boundary

entropy decreases monotonically with decreasing temperature (decreases with increasing

beta) because G > 0.

5 Quantum entanglement in the free Kondo model

In this last section we compute various quantities from quantum information theory in the

free Kondo model. Specifically, we focus on the impurity entropy, relative entropy and

mutual information. These calculations serve to illustrate in a simple setup the general

discussion of section 2 and section 3.
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5.1 Modular Hamiltonian for spatial intervals

In section 2.3 we argued that the relative entropy on spatial intervals distinguishes ρ (the

full system with the impurity) and ρ0 too much. The contribution from the modular Hamil-

tonian is expected to grow linearly with the size of the interval, masking the monotonicity of

the boundary entropy. We have checked numerically that the expectation value of the mod-

ular Hamiltonian indeed grows linearly on the lattice free Kondo model. We now explore

another possibility to deal with the contribution of the impurity directly in the continuum,

and our conclusion will be again that on the spatial interval relative entropy is too large.

In order to decouple the localized impurity term in 〈T00〉 and better understand the

different contributions as we approach the boundary, it is useful to regularize around the

boundary, and consider an interval x1 ∈ (δ, r), with δ → 0. It is also convenient to work

with the equivalent theory of a single chiral fermion ψ+ along the full line, by reflecting

ψ+(x1) = ψ−(−x1) for x1 < 0.9 Therefore, we need to calculate the modular Hamiltonian

for a free fermion on a region formed by two intervals,

A = (−r,−δ) ∪ (δ, r) . (5.1)

Now the impurity falls outside of the region and we can assume the stress tensor vanishes

inside A. We have to determine the behavior of ∆〈H〉 as a function of r when δ → 0.

Since the vacuum state is Gaussian for a free Dirac field, the modular Hamiltonian is

quadratic in the field operators

H =

∫
A
dx dy ψ†(x)H(x, y)ψ(y) . (5.2)

The numerical kernel H(x, y) for two intervals was calculated in [28]. This kernel contains

a local term proportional to the derivative of the delta function and non local terms.

The local term of the kernel gives a term proportional to the stress tensor when plugged

in (5.2). The modular Hamiltonian contains also non-local terms, and operators other than

the stress tensor. The total modular Hamiltonian is

H = Hloc +Hnonloc . (5.3)

The local part is (we write x ≡ x1 below)

Hloc = 2π

∫
A
dx f(x)T00(x) , (5.4)

f(x) =
(x2 − δ2)(r2 − x2)

2(r − δ)(x2 + δr)
. (5.5)

For a fixed point x, the local term converges to the one of an interval of size 2r when δ � r,

that is f(x) → (r2 − x2)/(2r).10 However, this regularized expression is insensitive to the

impurity stress tensor, which is localized at x = 0.

9This gives a continuous wavefunction at short distances, since the UV boundary condition imposes

ψ+(0) = ψ−(0).
10Note that f(x) vanishes linearly at the boundaries, where the modular Hamiltonian is “Rindler like”.
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Figure 4. The function u(x) multiplying the non local term for r = 1, δ = 0.4, 0.2, 0.08, in red,

blue and black, respectively.

To write the non-local part define the following global conformal transformation

x̄ = −rδ
x
. (5.6)

This maps one interval into the other. We have

Hnonloc = −πi
∫
A
dxu(x)ψ†+(x)ψ+(x̄) (5.7)

u(x) =
rδ

(r − δ)
(r2 − x2)(x2 − δ2)

x(x2 + rδ)2
.

Only ψ+(x) appears here, as opposed to a full Dirac fermion, because the theory on the

full line contains only a chiral fermion. Note u(x) goes to zero with δ for any fixed x

but develops larger peaks near the origin as δ → 0 (see figure 4). This structure will be

responsible for the linear in r dependence of ∆〈H〉.
The local part of the modular Hamiltonian does not contribute to ∆〈H〉 because the

expectation value of T00 is zero in A. Then we examine the non local term in the limit

of δ → 0. The expectation value of Hnonloc involves the fermion correlator with points

on opposite sides of the impurity, i.e., the two-point function between the left and right

movers in the model defined on x > 0. These differ by the reflection factor Rm(k). The

system without the impurity is obtained for m = 0, so

∆〈H〉 = i

∫ r

δ
dxu(x)

∫ ∞
0

dk (Rm(k)−Rm=0(k))e−ik(x+rδ/x) . (5.8)

Here we used the plane wave solutions of section 4, and the fact that the equal time fermion

correlator in momentum space projects on the positive energy states k < 0. The integral

over x is dominated by the behavior of u(x) near the maximum x ∼ (δ/r)1/2r, and hence
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it is sufficient to approximate the reflection factors by their UV behavior (equivalently, by

an expansion around m = 0). As shown in appendix C, this leads to

∆〈H〉 ∼ mr log(m(rδ)1/2) . (5.9)

This shows the linear dependence in r for the expectation value of the modular Hamil-

tonian. It also exhibits a logarithmic divergence (consistent with (2.14)) as the cutoff δ

is removed — the two-interval result does not converge to the single-interval answer. It

is associated to UV modes localized near the impurity, which contribute to the entangle-

ment. A related phenomenon occurs in the simpler case of nonrelativistic fermions with

a finite range potential, where the (inverse) vacuum overlap between the perturbed and

unperturbed states scales as a power of the volume [29].11

5.2 Kondo model on the null line

Let us now consider the Kondo model on null segments; the setup is shown in figure 5. In

this chiral model, the nontrivial two-point functions on null segments are the same as in

the theory without impurity because only one chirality contributes. As a result, ∆〈H〉 = 0.

The lattice calculations cannot be done at time t = 0 by keeping only the combination

ψj + ψj+1 in the algebra, which in the continuum limit is proportional to ψ+(x). This is

because a large, volume increasing entropy will be generated by non vanishing entanglement

with the other components ψj − ψj+1. This entanglement is not present in the continuum

fields. In other words, the spatial lattice is a bad regularization to make calculations on

the null line.

However, we can do calculations directly on the null line in the continuum limit in the

present case. The correlators for a null interval have the form of a kernel

C =

(
1/2 〈ηψ†+(x)〉

〈ηψ†+(y)〉∗ C0(x, y)

)
(5.10)

where we have used 〈ηη†〉 = 1/2, and C0(x, y) = 〈ψ+(x)ψ†+(y)〉 coincides with the corre-

sponding correlator in the free Dirac model without impurity. The impurity establishes

correlators with the field without changing the correlator that the chiral field has with itself

in the bulk without impurity. It is interesting to note this would not have been possible if

the state of the field had been pure, since a pure state cannot have correlations with exte-

rior systems. It is the reduction to the half line that allows correlations with the impurity.

The effect of the impurity will be just to slightly purify (by a log(2) amount) the field state

in the half line.

The correlator of η and ψ+ follows from (4.21), and reads

〈ηψ†+(x)〉 =

∫ ∞
0

dE

2π

(
− i

2

m1/2

E

)
(1 +R(E))e−iEx =

im1/2

2π
emx/2Ei(−mx/2) , (5.11)

where Ei(x) is the exponential integral function Ei(x) = −
∫∞
−x dt e

−t/t.

11This is known as Anderson’s orthogonality catastrophe. We thank the referee for pointing this out to us.
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Figure 5. In the model the two chiralities on the half plane can be unfolded into a single chirality

on the whole plane. Since the evolution is unitary, the entanglement entropy for the blue segment

is the same as for the red segment, as well as on the black segment of length 2r that touches the

impurity at its left endpoint.

The kernel C0(x, y) in an interval (0, r) can be diagonalized [28], with eigenfunctions

and eigenvalues ∫ r

0
dy C0(x, y)ψs(y) = λsψs(x) , (5.12)

where

λs =
1

2
(1 + th(πs)) , (5.13)

ψs(x) =
r1/2

(2π)1/2(x(r − x))1/2
e−i log(x/(r−x)) .

The eigenfunctions are normalized with respect to the parameter s ∈ (−∞,∞)∫ r

0
dxψs(x)ψ∗s′(x) = δ(s− s′) . (5.14)

Using this basis we can rewrite the correlator as

C =

(
1/2 a(s,mr)

a∗(s,mr) diag(λs)

)
(5.15)

where

a(s,mr) =

∫ r

0
dxψs(x)〈ηψ†+(x)〉 =

∫ mr

0
dz

i(mr)1/2

(2π)3/2

ez/2Ei(−z/2)

z1/2(mr − z)1/2
e−is log z

mr−z . (5.16)
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Figure 6. log(g) as a function of mr computed analytically in the null interval (Blue) using (5.22)

and on the spatial interval (Red) using a lattice regularization.

Now we compute the relative entropy of the state determined by this correlator and

the UV fixed point m = 0. This is a decoupled state ρ0 = ρ0
F ⊗ ρ0

imp, where ρ0
F is the

density matrix of the fermion system without impurity. Note that the state ρ reduced to

algebra of the impurity, or to the field, exactly coincides with ρ0. Hence ∆H = 0. We have

Srel = −∆S = S(ρ0
F ) + S(ρimp)− S(ρ) = I(imp, F ) , (5.17)

which coincides with the mutual information between the impurity and bulk system on the

null line.

To evaluate this we use the expression

S(r) = − tr (C logC + (1− C) log(1− C)) (5.18)

for the entropy of a free fermion in terms of the correlator (5.15). It is convenient to write

this entropy as an integral expression in terms of determinants [28],

S = 2

∫ ∞
1

dλ
log det(λ−1/2(1 + (λ− 1)C))

(λ− 1)2
. (5.19)

In the basis of expression (5.15) this determinant has a simple form as can be seen expanding

it by the first column. For a matrix of the form

N =

(
a ~b
~b∗ diag(ci)

)
(5.20)

we have

det(N) = det(c)

(
a−

∑
i

|bi|2

ci

)
. (5.21)
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Using this we see the entropy of the unperturbed field decouples in (5.19) and we get

the exact analytic expression for the function log g(r) = S(ρ(2r)) − S(ρ0
F (2r)). We have

to use entropies for the interval in null coordinate of a size 2R since this is the one that is

unitarily mapped to a spatial interval os size r in the half place, see figure 5. We have

log g(r) = 2

∫ ∞
1

dλ
1

(λ− 1)2
(5.22)

× log

(
1

2
(λ1/2 + λ−1/2)− (λ− 1)2

λ1/2

∫ ∞
−∞

ds
|a(s, 2mr)|2

1 + 1
2(λ− 1)(1 + th(πs))

)
.

The integrals can be exactly evaluated for mr → 0 and mr → ∞ giving log(2) and 0

respectively, as expected. For intermediate values, a numerical evaluation of the integral

shows that the result on the null line coincides with the continuum limit of g(r) evaluated

on the lattice on spatial intervals (see figure 6).

Figure 6 shows the numerical evaluation of g(r). We compare the results on the null

line coming from the numerical integration of (5.22) and the results on a spatial interval.

We calculate entanglement entropies numerically for the lattice model of section 4.2, take

the continuum limit and use (5.18). The boundary entropy log g is defined on the lattice

as the difference of entanglement entropy for the system with impurity (the η field of

section 4.2) and without impurity; see (3.9) for an alternative definition.

We have done the numerical calculations using two different methods and checked their

agreement. First, we use a finite lattice, diagonalize the Hamiltonian and then compute

the fermion correlators Cij restricted to the interval of interest. In this manuscript we used

lattices from 2000 sites up to 8000 sites. The other method is to work on an infinite lattice,

and use the wavefunctions obtained in section 4.2 to calculate the equal time correlators

Cij = −
∫ π/2

0

dk

2π
ψ†i (k)ψj(k) . (5.23)

This uses the fact that the correlator in momentum space at t = 0 is a projector on positive-

energy states. More details of this procedure for free fields may be found in e.g. [30].

The relative entropy given by (2.19) reads

Srel = log(g(0)/g(r)) , (5.24)

and is indeed positive and increasing. Here we have checked that ∆〈H〉 = 0 for our free

model.

5.3 Mutual information in the free Kondo model

Finally, we evaluate the mutual information in the free Kondo model. This will characterize

the correlations between the impurity and bulk systems studied in section 3.1 as well as

the function g̃(r) obtained in section 3.3.

The numerical result for the mutual information I(A,B) is presented in the left panel

of figure 7, with A the interval [0, ε], containing the impurity and B = [ε′, r]. The mutual
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Figure 7. Left: mutual information between the impurity and bulk fermions as a function of mr.

For large r, I(r)→ 2 log 2 = 1.386 . . ., twice the value of the total impurity entropy (shown in red).

Right: mutual information between the impurity and a far-away interval of fixed size. In particular

for this plot we chose as region B the interval [mx,mx+ 10].

information starts at zero, and then grows with the size of the interval; it asymptotes to

2 log 2 for large r. It is very well approximated by

I(r) ≈ 1.388− 0.98

r
+

1.01

r2
. (5.25)

The asymptotic value is ∼ 2 log 2, twice the value of the total impurity entropy, in agree-

ment with the previous discussion. The subleading powers of r encode information about

correlators in the theory, as we discuss shortly. We see that our proposal for the mutual in-

formation indeed captures the entanglement between boundary and bulk, and is free of UV

divergences. The mutual information in this case reflects the boundary RG flow between

the + boundary condition for mr � 1, and the − boundary condition for mr � 1.

Next, we may also use the mutual information to characterize the boundary-bulk

correlations, as argued in section 3.1. For this, let A be an infinitesimal interval containing

the impurity, and choose B as an interval of fixed size, at a distance x from the origin.

In the limit of large x, the twist operators that implement the cuts in the EE may be

approximated by local QFT operators, and hence we expect I(x) ≈ 1
|x|2∆ with ∆ the

smallest operator dimension that contributes to the OPE of the twist operators [16]. We

plot this quantity in the right panel of figure 7.

This result is very well fitted by c0 + c1/x + c2/x
2, and hence the leading correlator

that contributes to the mutual information has 2∆ = 1. This is the behavior we expect

from the correlation (5.11) between the impurity and bulk fermions,

〈η(t)ψ+(x, t)〉 =

∫ ∞
0

dE

2π
η(E)ψ+(E, x)→ 1

m1/2|x|
. (5.26)

This also reflects the fact that the physical dimension of η in the IR is ∆ = 1/2, while in

the UV we had ∆ = 0; see (4.6). The mutual information nicely captures this flow.

Finally, we compare the functions g(r) and g̃(r), defined as discussed in section 3.3,

− log g(r) = S(A ∪B)− Sno imp(B)

− log g̃(r) = S(B)− Sno imp(B) . (5.27)
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Figure 8. Left: log g̃ as a function of mr . Right: log 2− log g − log g̃ as a function of mr.

The left hand side of figure 8 shows how log g̃ approaches 0 for small values of r and

asymptotes to log 2 as r →∞. The behavior of log g was given before in figure 6. We also

checked that the combination log 2 + log g̃(r)− log g(r) - given in (3.21) - coincides within

numerical precision with I(A,B), a magnitude with a well-defined continuum limit.

It is also interesting to consider the magnitude log 2 − log g − log g̃, as a way of char-

acterizing the Kondo cloud. This is zero for the probabilistic model presented in sec-

tion 3.2. As we can see from the right hand side of figure 8, in the free model the quantity

log 2 − log g − log g̃ approaches zero for r → 0, ∞, but has a nontrivial profile for finite

values of r. The plot has a maximum around mr ≈ 0.5, which agrees with the expectation

that the Kondo cloud should be of order mr ≈ 1. As a possible future direction, it would be

interesting to find a well defined continuum information theory quantity that characterizes

the Kondo cloud.

6 Conclusions and future directions

In this work we proved that the boundary entropy of BCFTs is a relative entropy, and that

it decreases under boundary RG flows. This is the first monotonicity theorem where we

have a quantum information understanding of RG flow. Here we see the decrease on g(r) as

a result of increased distinguishability between the state with the boundary perturbation

and the UV CFT vacuum towards the IR, as we allow more low energy operators to be used

to discriminate between these two states. The effect of the boundary RG flow is to change

correlations and increase distinguishability. We can also rephrase this saying that the state

ρ of the CFT with boundary RG flow looses information about the UV fixed point as we

go towards the IR, that is, it is less able to faithfully reproduce the UV CFT vacuum.

More generally, we argued that methods from quantum information theory provide a

valuable understanding of boundary RG flows. Besides the relative entropy, we focused

on the mutual information between the impurity and bulk degrees of freedom, and how it

encodes correlations. We illustrated these results in terms of a new solvable Kondo model

of relativistic free fermions.
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We would finally want to discuss some future directions suggested by these results. We

have seen that working in the null basis provides important simplifications, and it will be

interesting to see how this works out for other quantum information measures in the pres-

ence of impurities. Our methods may also have applications to C-theorems. It would also

be important to try to generalize our approach to higher dimensions and different defects.

Recent work in higher dimensions includes [31, 32]. Moreover, it would be interesting to

explore the connection with holographic results on defect entropy [9, 10, 33–35]. Finally,

if a physical realization of our free Kondo model is possible, this would provide a system

where measures of quantum information quantities may be easy to perform, in particular,

the role of multipartite entanglement and the Kondo cloud could be further clarified.
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A Nonrelativistic Kondo model

There is a nonrelativistic model which is closer in spirit to the original Kondo problem, and

which reduces at low energies to the previous relativistic setup. Consider a nonrelativistic

fermion in d spatial dimensions at finite density, interacting with a fermionic impurity at

x = 0:

L =

∫
ddx ψ†

(
i∂t +

∇2

2m
− µF

)
ψ + δd(x)

(
η∗i∂tη +m1/2(ηψ + c.c.)

)
. (A.1)

As in the original Kondo model, the spherical symmetry implies that this can be reduced

to a one-dimensional problem along the radial direction r > 0, with the impurity located

at r = 0:

L =

∫ ∞
0

dr ψ†
(
i∂t +

1

2m

d2

dr2
− µF

)
ψ + δ(r)

(
η∗i∂tη +m1/2(ηψ + c.c.)

)
. (A.2)

Due to the Fermi surface at k2
F /(2m) = µF , the nonrelativistic fermion describes two

chiralities,

ψ±(x) =

∫ Λ

−Λ
dk e±ikrψ(k + kF ) , (A.3)

where Λ is a momentum cutoff. At half-filling, kF = π
2 Λ, and this model reduces to

the previous relativistic theory. This can be seen by discretizing (A.1) on a lattice with

a = 1/Λ, which yields a dispersion relation ε(k) = − cos(ka). All negative energy states

here are occupied, and form the Fermi surface with Fermi momentum |kF | = π/(2a).

– 29 –



J
H
E
P
1
0
(
2
0
1
6
)
1
4
0

B Fermion boundary conditions

This appendix discusses in more detail the consistent boundary conditions of the fermion

theory with boundary. This analysis is well-known, but we have found it useful to include

it here for completeness.

Since the bulk lives in the half space, a consistent boundary condition comes from

imposing the vanishing of the boundary term in the action variation:

δSbdry =

∫
dx0 i(ψ+δψ

∗
+ − ψ∗−δψ−)

∣∣∣
x1=0

⇒ ψ+δψ
∗
+ = ψ∗−δψ−

∣∣∣
x1=0

. (B.1)

Therefore, the set of consistent boundary conditions are

ψ+(x0, 0) = e2πiνψ−(x0, 0) . (B.2)

Hence the bulk degree of freedom is a single chiral fermion: the right-mover is determined

in terms of the left mover due to the reflection condition on the wall at x1 = 0.

The Dirac Hamiltonian H = iγ0γ1∂1 is hermitean for any real ν. To see this, evaluate

the hermiticity condition in the half-line for wavefunctions ψ1, ψ2∫ ∞
0

dx1ψ
†
2(x)iγ0γ1∂1ψ1(x) =

∫ ∞
0

dx1(iγ0γ1∂1ψ2(x))† ψ1(x) . (B.3)

This requires the vanishing of the boundary term,

ψ†2γ
5ψ1

∣∣∣
x=0

= 0 , (B.4)

where we used γ0γ1 = γ5 = σz. Writing the fermion wave-functions as ψ = (ψ+, ψ−),

obtains

ψ†+ψ+ = ψ†−ψ− ⇒ ψ+(0) = e2πiνψ−(0) . (B.5)

Hence this set of boundary conditions preserves the Hermiticity of the operator in the

half-line. It can further be checked that these boundary conditions impose T01 = 0 on the

line x1 = 0, and are conformal invariant boundary conditions.

For a Majorana fermion in 1+1 dimensions, only ν = 0 and ν = 1/2 are allowed. These

are the + and − boundary conditions used in this work, also known as the Ramond and

Neveu-Schwarz boundary conditions in the context of string theory. For a Dirac fermion,

any real ν is also allowed. Only ν = 0 , 1/2 preserve charge conjugation symmetry, which

exchanges ψ+ → ±ψ−.12

Although in this work we have restricted to ν = 0 , 1/2, we note that other values of ν

can be achieved in the lattice model by turning on a chemical potential at the impurity. For

instance, adding terms to the Lagrangian of the form µχ̄γ0χ, or a delta-function coupling

between the bulk and impurity fermions, δ(x1)µχ̄γ0ψ(x) leads to boundary RG flows with

nontrivial ν. We hope to study these more general RG flows in the future.

12Recall that in two dimensions charge-conjugation acts on a Dirac fermion as ψC(x) = γ1ψ∗(x) or

ψC(x) = γ5γ1ψ∗(x). In components, this gives ψ+ → ±ψ−, i.e. the two independent fermion creation

operators are exchanged. The impurity fermion χ satisfies the Majorana condition χ∗ = Cχ.
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C Calculation of the modular Hamiltonian

This appendix presents the calculation of the modular Hamiltonian for two intervals,

∆〈H〉 = i

∫ r

δ
dxu(x)

∫ ∞
0

dk (Rm(k)−Rm=0(k))e−ik(x+rδ/x) . (C.1)

We want to evaluate this quantity in the limit δ/r → 0.

Let us first simplify the integral over x. Working with dimensionless variables x̃ =

x/r, δ̃ = δ/r, k̃ = kr, m̃ = mr, we have∫ r

δ
dxu(x) e−ik(x+rδ/x) = r

∫ 1

δ̃
dx̃ u(x̃) e−ik̃(x̃+δ̃/x̃) . (C.2)

The function u(x̃) has a maximum at x̃ ∼ δ̃1/2. In particular, in the limit δ̃ → 0, the

maximum is located at x̃0 = (δ̃/3)1/2. This suggests changing variables to x̃ = δ̃1/2y.

Taking now the limit δ̃ → 0 obtains∫ r

δ
dxu(x) e−ik(x+rδ/x) ≈ r

∫ δ̃−1/2

δ̃1/2

dy
y

(1 + y2)2
e−ik̃δ̃

1/2(y+1/y) . (C.3)

Plugging this into the modular Hamiltonian obtains

∆〈H〉 = 2i

∫ δ̃−1/2

δ̃1/2

dy
y

(1 + y2)2

∫ ∞
0

dk̃
1

1 + 2ik̃/m̃
e−ik̃δ̃

1/2(y+1/y) . (C.4)

Now we perform the integral over k̃ in terms of the exponential integral function,

finding

∆〈H〉 = −2m̃

∫ δ̃−1/2

δ̃1/2

dy
y

(1 + y2)2
e

1
2
m̃δ̃1/2(y+1/y) Ei

(
−1

2
m̃δ̃1/2(y + 1/y)

)
. (C.5)

The remaining integral over y may be performed numerically, and exhibits a logarithmic

divergence in m̃δ̃1/2. We conclude that

∆〈H〉 ∝ m̃ log(m̃δ̃1/2) , (C.6)

reproducing the result used in the main text.
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