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Universidad Nacional de La Plata, Argentina

Abstract

The equation of state of nuclear matter is strongly affected by the presence of a magnetic field.

Here we study the equilibrium configuration of asymmetric nuclear matter for a wide range of

densities, isospin composition, temperatures and magnetic fields. Special attention is paid to the

low density and low temperature domain, where a thermodynamical instability exists. Neglecting

fluctuations of the Coulomb force, a coexistence of phases is found under such conditions, even

for extreme magnetic intensities. We describe the nuclear interaction by using the non–relativistic

Skyrme potential model within a Hartree–Fock approach. We found that the coexistence of phases

modifies the equilibrium configuration, masking most of the manifestations of the spin polarized

matter. However, the compressibility and the magnetic susceptibility show clear signals of this

fact. Thermal effects are significative for both quantities, mainly out of the coexistence region.
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I. INTRODUCTION

The dense nuclear matter under magnetic fields has been intensively studied (see [1] and

references therein), particularly in relation to astrophysical issues. Investigations of the

neutron star structure [2] as well as the cooling of magnetized stars [3–5] need the equation

of state for magnetized matter as an important input. The presence of very intense magnetic

fields in compact stellar objects has been proposed, based on the observational evidence of

periodic or irregular radiation from localized sources. According to the energy released and

the periodicity of the episodes, these objects have been classified as pulsars, soft gamma ray

repeaters and anomalous X-ray pulsars. They have been associated with different stages of

the evolution of neutron stars. On the star surface the magnetic field could reach values

1014 − 1015 G, as in the case of magnetars and it is expected a growth of several orders of

magnitude in its dense interior.

Recent investigations [6–8] have pointed out that matter created in heavy ion collisions

could be subject to very strong magnetic fields. As a consequence the particle produc-

tion would exhibit a distinguishable anisotropy. A preferential emission of charged particles

along the direction of the magnetic field is predicted in [6] for noncentral heavy ion col-

lisions, due to magnetic intensities eB ∼ 102 MeV. Improved calculations taking care of

the mass distribution of the colliding ions [7], does not modify essentially the magnitude of

the produced fields. Furthermore, the numerical simulations performed by [8] predict larger

values eB ∼ m2

π ∼ 2× 104 MeV2.

The effects of magnetic fields on a dense nuclear environment have been described using

different models [9–25]. For instance, covariant field theoretical models have been used to

study the role of the magnetic field on hyperonic matter [11, 12], instabilities at subsaturation

densities [13, 14], magnetization of stellar matter [17], saturation properties of symmetric

matter [18] and the symmetry energy [19]. Non-relativistic models have also been used,

in the effective interactions of [20–22] or the microscopic models used in the variational

calculations of [24, 25]. A comparison of neutron matter results, using different models was

presented in [23].

It is a well known fact that the nuclear environment experiences thermodynamical insta-

bilities at subnuclear densities and low temperatures. Evidence of this phenomenon can be

found in the isospin distillation effect for heavy ion collisions [26]. These instabilities give
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rise to a coexistence of phases if the surface tension is low enough. A more complex scenario

is obtained when an external magnetic field is added, since there is a competition among

two opposite trends. On one hand the magnetic force induces a globally ordered state with

aligned spins. On the other hand the nuclear interaction favors the coexistence of phases

where two states of different densities and spin polarizations are combined in order to lower

the free energy.

In the present work we explore the possibility of a coexistence of phases for nuclear matter

under strong magnetic fields, taking as variables the nuclear density, the isospin composition

of matter, and the temperature T < 10 MeV. The possible fields of applications, such as

those mentioned before, show a complex scenario where the detailed physical mechanisms

are not easy to understand because there is a superposition of effects which can combine to

give very different manifestations. Therefore, we aim to present here some of the variables

appearing in realistic situations, emphasizing the role of each of these factors, and to under-

stand how they interact in a specific environment. Special attention is paid to the relevant

quantities associated with them, as the spin polarization, the isothermal compressibility and

the magnetic susceptibility. With this purpose in mind we have analyzed a wide range of

isospin composition and we have also reached the extreme value B = 1019 G for the external

magnetic field. This selection emphasizes the effects of these variables, which under certain

conditions can appear weakened, or hidden by another factors.

The Skyrme model [27–30] is appropriate to describe the nuclear interaction under the

conditions of interest. This is a non-relativistic effective model where the in–medium nuclear

force is simulated by a density dependent potential. It was successfully used to describe

atomic nuclei as well as nuclear matter properties.

This article is organized as follows. We review the Skyrme model for nuclear matter under

an external magnetic field in the next section, a brief resume of the Gibbs construction for

the coexistence of phases is presented in Section III, the results are shown and discussed in

Section IV. A final summary and the main conclusions are given in Section V.

II. SPIN POLARIZED NUCLEAR MATTER IN THE SKYRME MODEL

The Skyrme model is an effective formulation of the nuclear interaction which has been

employed profusely in the literature [29]. It consists of a basic Hamiltonian with contact
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nucleon-nucleon potentials including density dependent coefficients,

vSky(r1, r2) = t0(1 + x0 Pσ)δ(r1 − r2) +
1

2
t1(1 + x1 Pσ)

[

←

q
2

δ(r1 − r2)+
→

q
2

δ(r1 − r2)

]

+ t2(1 + x2 Pσ)
←

q ·δ(r1 − r2)
→

q +
1

6
t3(1 + x3 Pσ)δ(r1 − r2)n

σ((r1 + r2)/2)

+ iW0(σ1 + σ2)·
←

q ×δ(r1 − r2)
→

q

where σk represent the Pauli matrices for spin, Pσ = (1 + σ1 · σ2)/2 is the spin exchange

operator, q = −i(∇1−∇2)/2 is the relative momentum operator and n is the total baryonic

density.

Note that throughout this article we use units such that c = 1, ~ = 1.

The interaction–parameters are fixed to cover a variety of applications such as exotic nuclei

or stellar matter. Using the Hartree-Fock approximation, one can find an energy density

functional, which is a convenient way to study thermodynamical properties of the system.

We are particularly interested in the contributions coming from terms containing time

reversal-odd densities and currents, since they are active when spin states are not symmet-

rically occupied. A derivation of these terms can be found in [30]. We assume the magnetic

field has not dynamics, that is, it behaves as an external field. There is a direct coupling

between nucleons and the magnetic field, due to their intrinsic magnetic moments. This

implies an additional term −µNχaB to the single particle spectra of the standard Skyrme

model, where µN is the Bohr magneton and the Lande factors χa take account of the anoma-

lous magnetic moments. They take the values χ1 = 2.793 and χ2 = −1.913 for protons and

neutrons, respectively.

Furthermore, the magnetic field induce a quantization of the energy spectra of charged par-

ticles [31]. In the case of a uniform field, the corresponding Schrödinger equation exhibits

quantized eigenvalues, associated with the motion in directions orthogonal to the applied

field. They are oscillator-like levels, depending on a discrete quantum number in the form

(j + 1/2)ω, with ω = eB/m the cyclotron frequency of the particle. We can summarize the

effects of a uniform magnetic field over the spectra of nucleons by

ε1sj(pz) =
p2z

2m∗
1s

+
1

8
v1s + µNB(2j + 1− sχ1), (1)

ε2s(p) =
p2

2m∗
2s

+
1

8
v2s − µNBsχ2. (2)

The first two terms in the r.h.s of these equations, are the common results for the Skyrme
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model, which now have an implicit dependence on the field B. The spin index s = 1 (s = −1)

denotes a spin–up (spin–down) projection, the effective nucleon mass m∗as is defined by

1

m∗as
=

1

m
+

1

4
n (b0 − b2wIa) +

1

4
s
∑

b

(b1 + IaIbb3) Wb (3)

with m the degenerate nucleon mass in vacuum, w = (n2 − n1)/n is the isospin asymme-

try fraction, with n1, n2 standing for the particle number density of protons and neutrons

respectively. Note that n = n1 + n2. Since the spin states are not symmetrically occupied,

one can define for each isotopic component the number density of particles with a given spin

polarization na s. The spin asymmetry density Wa gives a measure of the spin polarization

Wa =
∑

s s na s, clearly na =
∑

s na s. We have defined Ia = 1, (−1) for protons (neutrons).

In Eqs. (1) and (2) we have used the single particle Skyrme potential energy

vas = (a0 − a2wIa)n+
∑

s′c

(b0 + IaIcb2)Kcs′ + s
∑

c

(a1 + a3IaIc)Wc +

+s
∑

s′c

s′(b1 + b3IaIc)Kcs′. (4)

The expressions for the kinetic energy density Kas will be presented below. The Eqs. (1)–(4)

have been written in terms of a set of density dependent coefficients a0 − a3 and b0 − b3,

which are related to the standard parameters of the Skyrme model by,

a0 = 6t0 + t3n
σ,

b0 = [3t1 + t2(5 + 4x2)]/2

a1 = −2t0(1− 2x0)− t3(1− 2x3)n
σ/3

b1 = [t2(1 + 2x2)− t1(1− 2x1)]/2

a2 = −2t0(1 + 2x0)− t3(1 + 2x3)n
σ/3

b2 = [t2(1 + 2x2)− t1(1 + 2x1)]/2

a3 = −2t0 − t3n
σ/3

b3 = (t2 − t1)/2

We assume baryonic and isospin number conservation, therefore independent chemical poten-

tial µa can be assigned to protons and neutrons. The corresponding distribution functions

fas(T, p) = [1 + exp(εas(p)− µa)/T ]
−1 are the Fermi occupation number for a particle at

temperature T , with momentum p and isospin and spin projections a and s, respectively.
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Now we show explicit expressions for the density of particles with a given spin polar-

ization, the kinetic energy and the isospin asymmetry densities, separately for protons and

neutrons

n1s =
eB

(2π)2

∑

j

∫

∞

−∞

dpz f1sj(T, pz) (5)

W1 =
eB

(2π)2

∑

s,j

s

∫

∞

−∞

dpz f1sj(T, pz) (6)

K1s =
eB

(2π)2

∑

j

∫

∞

−∞

dpz p
2

zf1sj(T, pz) (7)

n2s =
1

(2π)3

∫

d3p f2s(T, p) (8)

W2 =
∑

s

s

(2π)3

∫

d3p f2s(T, p) (9)

K2s =
1

(2π)3

∫

d3p p2f2s(T, p) (10)

For the proton related quantities, we have taken into account that, assuming B along

the z-axis, each eigenstate spreads over a bounded region of area 2πeB in the px − py plane.

The component pz is not bounded and varies continuously. Therefore, the contribution of a

charged particle to macroscopic quantities per unit volume has been evaluated by means of

the replacement
∫

d3p/(2π)3 → eB
∫

dpz/(2π)
2.

The energy density can be split into two terms,

E = ESkm + µNB (2L+ n1 − χ1W1 − χ2W2) , (11)

one of them depends on B. The remaining one is similar to the common contribution of

the Skyrme model ESkm in a Hartree-Fock approach, but now it depends implicitly on the

magnetic intensity

ESkm =
∑

a,s

Kas

2m∗as
+

1
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a1

(

∑

a

Wa

)2

+ a3

(

∑

a

IaWa

)2

+ (a0 + a2w
2) n2



 . (12)

In Eq. (11) we used,

L =
eB

(2π)2

∑

s,j

j

∫

∞

−∞

dpz f1sj(T, pz). (13)
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For completeness we also show the expression for the entropy density S in the quasi-

particle approach,

S = S1 + S2,

S1 = −
eB

(2π)2

∑

s,j

∫

∞

−∞

dpz [f1sj ln (f1sj) + (1− f1sj) ln (1− f1sj)] ,

S2 = −
∑

s

1

(2π)3

∫

d3p [f2s ln (f2s) + (1− f2s) ln (1− f2s)]

The entropy is needed to build up the free energy F = E − TS and the pressure P =
∑

a µana − F . The magnetization of the system M is evaluated in terms of the grand

canonical potential Ω(µk, T, V ) according to [32],

M =
1

V

(

∂Ω

∂B

)

µ,T,V

. (14)

For the system considered, we have Ω = −P V . As expected, it can be decomposed into

proton and neutron contributions M = M1 +M2. Finally, the standard relations are used

for the isothermal compressibility K and magnetic susceptibility χ,

K = −
1

V

(

∂V

∂P

)

N1,N2,T,B

χa =

(

∂Ma

∂B

)

N,T,V

Note that in our scheme we were able to develop analytical expressions for the isothermal

compressibility and magnetic susceptibility. This gives us some confidence in the evalua-

tion of these magnitudes, as for instance, the susceptibility for low temperatures has fast

variations with the density.

In our approach both proton and neutron numbers are conserved separately, therefore

the states of polarization of each component are also independent. The global polarization

is determined by the condition of minimum free energy F . This criterium differs from that

in [22], where the Legendre transformed potential F −MB was used.

The equilibrium state has a variable spin configuration, depending on n, w, T and B.

As will be shown, in the low temperature and low density domain the coexistence of phases

imposes a state with a lower degree of polarization than the case which does not consider

the phase transition.
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III. COEXISTENCE OF PHASES IN NUCLEAR MATTER

The nuclear interaction gives rise to instabilities in a dense infinite medium at low tem-

peratures. If the Coulomb interaction is taken into account and its fluctuations are included,

a nucleation process can be found.

Under the hypothesis assumed in the present work, the system evolves through a succession

of equilibrium states, where it decomposes spontaneously into two phases of different density

and isospin composition. This phenomenon has been classified as a non–congruent phase

transition [33] since there are two conserved charges, i.e. proton and neutron numbers. Its

importance in the study of the in–medium nuclear interaction has been emphasized in recent

investigations [34].

These two coexisting phases, distinguished in the following by superindices a and b, have

different numbers of proton and neutrons. However they are subject to the thermodynamical

equilibrium conditions,

P (Na
1
, Na

2
, T, V a, B) = P (N b

1
, N b

2
, T, V b, B), (15)

µ1(N
a
1
, Na

2
, T, V a, B) = µ1(N

b
1
, N b

2
, T, V b, B), (16)

µ2(N
a
1
, Na

2
, T, V a, B) = µ2(N

b
1
, N b

2
, T, V b, B), (17)

Furthermore, each phase contributes to every intensive additive physical quantity, such as

the densities of energy, entropy, etc. Thus, the free energy per unit volume and the density

number of nucleons for the whole system can be written as

F(N1, N2, T, V, B) = (1− λ)F(Na
1
, Na

2
, T, V a, B) + λF(N b

1
, N b

2
, T, V b, B),

nk = (1− λ)na
k + λnb

k, k = 1, 2

where the coefficient λ can be interpreted as the fraction of the partial volume occupied by

the state b, hence it is bounded by 0 ≤ λ ≤ 1.

In Fig. 1 it is shown how this procedure, commonly known as the Gibbs construction,

works for the pressure and the spin asymmetry quotient of each component Wk/nk. The

general features of this figure will be discussed in the next section.

Following the standard thermodynamical definitions, the magnetization per unit volume,

the magnetic susceptibility and the isothermal compressibility within the coexistence region
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can be evaluated as

M = (1− λ)Ma + λMb, (18)

χk = (1− λ)χa
k + λχb

k, k = 1, 2 (19)

K =
(wa − wb)

[

λKb + (1− λ)Ka
]

na nb

n [w (nb − na) + wana − wbnb]
, (20)

where na, b, wa, b are the total density of particles and the isospin asymmetry fraction in each

phase. The partial contributions to the magnetization Ma, b, the susceptibility χa, b
k and the

compressibility Ka, b are evaluated in the same way as for a pure single phase.

IV. RESULTS AND DISCUSSION

For the Skyrme model the SLy4 parametrization is used, for which t0 = −2488.91 MeV

fm3, t1 = 486.82 MeV fm5, t2 = −546.39 MeV fm5, t3 = 13777 MeV fm7/2, x0 = 0.834, x1 =

−0.344, x2 = −1, x3 = 1.354, σ = 1/6 [28]. The saturation density, binding energy,

incompressibility and symmetry energy are n0 = 0.159 fm−3, EB = −15.97 MeV, K0 = 229.9

MeV and ES = 32 MeV, respectively. Another significative quantity is the in-medium

nucleon mass at the saturation density, for which m∗/m = 0.694 is obtained.

In first place we discuss the effects of the Gibbs construction on the pressure and the

spin asymmetry coefficient W/n. These results are shown in Fig. 1, for B = 1018 G and

T = 5 MeV, which is representative for most of the cases studied in this work. The Gibbs

construction is shown in dashed lines and replaces, within the coexistence region (CR),

the plain results of the model described in Section II. In panel (a) it is shown that the

CR includes the instability region where the pressure decreases with density. The Gibbs

construction instead, produces a rather linear increasing pressure. The density domain of

the CR is reduced and eventually vanishes, by increasing the isospin asymmetry w, as well as

the temperature (not shown in this figure). For certain values of temperature and magnetic

intensity, as for example B = 1018 G, T = 10 MeV, the CR disappears for asymmetries

above a typical value w0 < 1. In these cases and for w ≃ w0, a retrograde phase transition

takes place. This means that the transition starts and ends at states of similar density and

isospin composition, but in between an admixture with states of very different conditions

is developed. We illustrate this phenomenon by including afterwards the case B = 1018 G,

T = 10 MeV, w = 0.8.
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In the panel (b) of the same figure, we show the spin asymmetry. It can be seen that

protons and neutrons are highly polarized at very low densities and they depolarize progres-

sively as the density grows. The coexistence of phases induces an equilibrium state with a

significantly reduced degree of polarization, due to the admixture with a higher density and

weaker polarization state. For higher magnetic intensities, such as B = 1019 G, the same

mechanism causes the frustration of the total neutron magnetization, but it is not able to

destroy the magnetic saturation of the proton, as will be discussed subsequently.

The behavior of the pressure as a function of the density for several temperatures and

isospin asymmetries is shown in Fig. 2 for B = 1018 G and Fig. 3 for B = 1019 G. The

points where a sudden change of slope occurs, correspond to an endpoint of the CR. They do

not appear for some particular cases at T = 10 MeV, because the coexistence does not exist

for B = 1019 G and w = 0.8 (Fig. 3b), whereas a retrograde transition goes on for w = 0.8,

B = 1018 G (Fig. 2b), as explained above. For a given magnetic intensity, thermal effects

are more important for lower densities. Furthermore, an increase of the magnetic intensity

at constant temperature induces an evident increment of the pressure for n/n0 . 1, but the

opposite trend is observed for n/n0 > 1. It must be pointed out that the Gibbs construction

eliminates all the instabilities for the range of densities and temperatures studied here. In

particular there are no regions where the pressure decreases with the density.

The density dependence of the spin asymmetry fraction is shown in Fig. 4 for T = 5,

several values of w, B = 1018 G (Fig. 4a) and B = 1019 G (Fig. 4b). Thermal variations are

of no relevance for this quantity. For the lower field intensity, the proton relative polarization

is enhanced as w decreases, whereas for the neutrons there is only a weak dependence on

the isospin composition. For B = 1019 G, the proton component is completely polarized for

all the range of n and w. The effect of the medium polarization is emphasized in this case,

as can be seen in the dependence on w of the neutron spin asymmetry for n/n0 > 0.75.

For a fixed total density n, the neutron component is completely polarized for w = 0 and is

progressively depolarized as w increases. This is a consequence of the dynamical coupling

of protons and neutrons (see Eqs. (1)-(4)). It must be pointed out that both components,

but specially protons in a high w sample, tend to recover a high degree of polarization at

densities n/n0 > 1.5. This feature can be a manifestation of the abnormal spontaneous

magnetization described by the Skyrme model at extreme densities.

Results for the free energy per volume F as a function of the density, are shown in Fig. 5
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(B = 1018 G) and Fig. 6 (B = 1019 G). At relatively low densities the kinetic energy and

the repulsion between nucleons are small, while the effect of the magnetic field becomes the

dominant one. For medium and high densities the repulsive character of the nucleon-nucleon

interaction and the kinetic energy dominate over the magnetic field and the system increases

its energy. This is clearly depicted in Fig. 5, whereas for B = 1019 G in Fig. 6, only the

w = 0.8 case fits this description. For other values of w one should go to higher densities to

verify this behavior. From both figures we can see that the addition of protons makes the

system to be more bound and so does the increase of the magnetic field. Thermal effects are

weak, as opposite contributions tend to cancel each other: the kinetic term increases with

T , while the entropy contribution does the opposite.

The magnetic susceptibility characterizes the response of the system to the external field

and gives a measure of the energy required to produce a net spin alignment in the direction

of the field. We have found that this quantity at moderate field intensities, is sensitive to

thermal variations, hence we devote Figs. 7-9 to give a more detailed description of the

density dependence of χ. For all the cases shown, there is a low density regime where the

system has an almost saturated magnetization (see Fig. 4), therefore the magnetic response

is nearly zero. As it was previously discussed, in most cases the coexistence of phases

frustrates the total magnetization and consequently enhances the magnetic response within

the CR. This fact can be distinguished by an approximately linear increase, with a small

slope, of the susceptibility as a function of the total density.

The magnetic susceptibility shows a complex dependence on the population of the Landau

levels. Therefore, in order to clarify the discussion afterwards, it is worth to make some

general considerations about this relationship. In first place it must be pointed out that the

population of the Landau levels decreases with both B and w, but it increases with both

n and T . However, the distribution function becomes smoother as the temperature grows,

erasing eventually effects due to the progressive occupation of different Landau levels. In

second place, when very high levels are occupied, further changes in the quantum number

j has only imperceptible consequences on the susceptibility. Finally, the proton component

generally shows a diamagnetic behavior, but it turns to be paramagnetic when the statistical

occupation is peaked at the lowest Landau level j = 0.

Now we focus on the susceptibility for protons in the lower panel of Fig. 7, where the case

of B = 1018 G and T = 1 MeV, is illustrated. For increasing densities, the susceptibility
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changes from a linear response to an oscillatory behavior. The linear response turns out from

the Gibbs construction, while the oscillatory behavior is a consequence of the population of

the Landau levels. Note that in the evaluation of the partial contributions χa, b
k in Eq. (19),

the Landau levels also play a role. However, the narrow range of variation of the densities

na and nb allows the linear behavior for the susceptibility. For w = 0 and w = 0.4 the

system is diamagnetic, while for w = 0.8 it is mainly paramagnetic due to the fact that only

the lowest Landau levels are accessible. In the upper panel of the same figure, the neutron

susceptibility is depicted. An important change in the scale is observed. The neutron

susceptibility is always paramagnetic and also has a linear behavior for low densities which

changes to oscillatory as the density grows. Even though neutrons do not have discrete

levels, they are influenced by the dynamical coupling among protons and neutrons (see Eqs.

(1)– (3)). For the case w = 0.8 a sudden decrease at n/n0 ≈ 1.7, is observed due to a change

in the spin configuration of the system.

A small increase of the temperature, keeping fixed the magnetic intensity, destroys the

oscillations at high densities. See Fig. 8 for B = 1018 G, T = 5 MeV. The magnetic response

of protons becomes almost linear for the full range of densities. Two ingredients contribute

to these results: the distribution function becomes smoother as the temperature grows and

the statistical occupation of the Landau levels increase, being this last effect the dominant

one.

For the two figures just described, there is a noticeable difference of magnitude between

the susceptibility of protons and neutrons. The proton component is significantly more

reactive to changes of the magnetic intensity. The effects of changing the magnetic intensity

by keeping fixed the temperature are exposed in Fig. 9, where we present the results for

B = 1019 G, T = 5 MeV. A dramatic change of scale is apparent for both components, but

specially for protons. This fact is coherent with the saturation of proton spin alignment

(see Fig. 4b), as a consequence the proton component experiences a change of regime

from diamagnetic to paramagnetic. In contrast, neutrons which only have a paramagnetic

channel, are completely blocked when the saturation of spin alignment is reached. Hence

we have χ2 = 0, as for w = 0. Note that for B = 1019 G, the statistical occupation of the

Landau level is strongly dominated by j = 0, which explains the paramagnetic behavior of

the proton susceptibility.

In Figs. 10 and 11, the isothermal compressibility is presented as a function of the density
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for B = 1018 G and B = 1019 G, respectively. In both figures we show results for T = 1,

5 and 10 MeV and isospin asymmetries w = 0, 0.4 and 0.8. For all the cases shown, there

is a clear difference between the CR and the domain of higher densities. In the last case,

we found the typical behavior of an almost incompressible fluid with a slightly decreasing

compressibility. Here the variation of temperature and isospin composition have weak effects,

but they become appreciable for B = 1019 G. An exceptional behavior is found for B = 1019,

w = 0, T = 1 MeV, where a local maximum can be seen around n/n0
∼= 1.9. It seems to be

a feature of the model used and deserves a further investigation.

Within the CR, the compressibility decreases strongly for very low densities and becomes

increasing for moderately higher values. As a consequence a local maximum of K arises

at the extreme point of the CR. This description applies strictly to the lowest temperature

shown here, T = 1 MeV. As T is increased, the effect becomes less pronounced, but is still

perceptible for B = 1019 G, whereas it is completely missed for B = 1018 G.

As the last matter of analysis we present in Fig. 12 the phase diagram for a fixed value

B = 1019 G. Here the closed curves correspond to the isothermal contour of the CR, for both

the P−y (Fig. 12a) and n−y (Fig. 12b) planes. The CR for a given temperature is enclosed

by the corresponding curve. In the upper panel for each curve there is a maximum value

for the pressure, at the left and below that pressure lies the lower density gaseous phase

and, at the right the higher density liquid phase. Above that pressure a continuous passage

from one phase to another occurs. As the temperature grows the area within the contour

is reduced and eventually collapse to the critical point. Note that at very low pressures

it is necessary to include states with a small proton excess in order to complete the phase

diagram.

V. CONCLUSIONS

In this work we have addressed the properties of asymmetric nuclear matter under the

action of very strong magnetic fields , temperatures below 10 MeV and densities up to

twice the saturation density. For the nuclear interaction we have used the non–relativistic

Skyrme potential model (SLy4 parametrization) within a Hartree–Fock approximation. We

have paid special attention to the low–density and low–temperature domain, where the

nuclear interaction gives rise to instabilities, commonly associated with a liquid-gas phase

13



transition. If the Coulomb force is not included, the equilibrium state of the system separates

spontaneously into coexisting phases. This phase transition was studied in detail in the

past [33, 34] and it has received renewed attention recently in connection with astrophysical

investigations [35] and also in heavy–ion collisions, where the liquid–gas instabilities are

related to the formation of fragments occurring in finite nuclear systems [26].

Here we introduce an external magnetic field as a new parameter which modifies the

properties of the coexisting phases. We propose and analyze the spin polarization, the mag-

netic susceptibility and the isothermal compressibility as physical quantities that reveal the

changes in the global configuration as well as in the internal composition of the equilibrium

state. A related investigation, but restricted to neutron matter, has been presented recently

in [23]. There, a comparison of the predictions of very different models was made, which

give us some confidence about the common features and warn us about possible singularities

of the model chosen.

To obtain the physical equation of state, we have implemented the so called Gibbs con-

struction, which is the appropriate procedure when there are multiple conserved charges.

Referring to the spin polarization, it is higher for very low densities. Neutrons are in

general less polarized than protons. At extreme intensities (B = 1019 G) the effect of the

medium polarization is emphasized, due to the dynamical coupling of protons and neutrons

(see Eqs. (1)-(4)) the relative magnetization of the neutrons is enhanced by increasing the

proton fraction. The spin asymmetry depends weakly on the temperature, while it is strongly

affected by the magnetic field. The spontaneous separation into independent phases reduces

the degree of polarization for both protons and neutrons. This can be understood because

for a given total density within the CR, one of such phases has a greater partial density and

a lower polarization. This is the reason why neutrons do not reach the magnetic saturation

at medium densities under the strongest intensity considered here.

The energy per volume shows that the addition of protons makes the system more bound.

And so happens for increasing the magnetic field. At variance, the dependence with tem-

perature is rather small.

The magnetic susceptibility is the most sensitive quantity, as it shows a strong dependence

on the isospin asymmetry, the temperature and the magnetic intensity. For protons these

dependencies manifest through the population of the Landau levels, which also reflects in

the neutron susceptibility due to the dynamical coupling generated by the Skyrme model.

14



The susceptibility in the CR is almost linear.

The isothermal compressibility at very low temperature offers a clear manifestation of the

changes in the phase diagram. Out the CR the results corresponds to an almost incompress-

ible fluid, decreasing slowly with density and showing a small dependence on w, T and B.

Within the CR, the compressibility changes from steeply decreasing at very low densities,

to moderately increasing. In such a way a local maximum appears at the end of the CR.

This behavior is attenuated by increasing the temperature.

An overview of the general phase diagram shows that the coexistence of phases exists for

all the range of magnetic intensities of physical interest. The critical temperature lies above

T = 10 MeV. An increase of the magnetic field has multiple consequences, on one hand

it produces an enhancement of the range of pressures involved, while does not modify the

density domain. Furthermore the range of isospin asymmetries supported is reduced and for

the higher w the system evolves through a retrograde phase transition.

It is worthwhile to mention that most of this conclusions become evident because we used

an extreme magnetic intensity. For weaker fields, effects such as the temperature-polarization

antagonism or the synergistic combination of neutron excess and spin polarization, are still

active but they manifest diffusely.
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FIG. 1: Details of the Gibbs construction for B = 1018 G at T = 5 MeV and several isospin asymmetries.

Panel (a) shows the pressure as a function of the density and panel (b) the spin asymmetry fraction as a

function of the density. In the later case, the upper family of curves corresponds to the proton. Dashed

lines correspond to the Gibbs construction. 18
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FIG. 8: The same as Fig. 7, but for T = 5 MeV.
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FIG. 9: The same as Fig. 7, but for B = 1019 G and T = 5 MeV.
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