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The analytic structure of the S-matrix of singular quantum mechanics is examined
within a multichannel framework, with primary focus on its dependence with respect
to a parameter (Ω) that determines the boundary conditions. Specifically, a character-
ization is given in terms of salient mathematical and physical properties governing its
behavior. These properties involve unitarity and associated current-conserving Wron-
skian relations, time-reversal invariance, and Blaschke factorization. The approach
leads to an interpretation of effective nonunitary solutions in singular quantum me-
chanics and their determination from the unitary family. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4921174]

I. INTRODUCTION

Singular potentials are known to pose notoriously subtle difficulties that call for an extension of
the rules of ordinary quantum mechanics. Some of the outstanding problematic features of singular
quantum mechanics (SQM) were addressed in the pioneering work of Ref. 1 and in the early liter-
ature reviewed in Refs. 2 and 3. These features can be ultimately traced to an indeterminacy in the
boundary conditions.4 More recent general frameworks were proposed in Ref. 5 using polydromy
properties6 and in Ref. 7 within a general multichannel framework. In addition, significant progress
has been made for specific problems related to the renormalization of the inverse square potential
(ISP)8–11 and contact interactions,12 their associated conformal symmetry13–15 and anomaly,16,17 and
other cases of SQM renormalization.18

In this paper, we reexamine the generic form of the S-matrix for SQM and shed light on the
existence of an intriguing connection between the unitary and nonunitary solutions. A particular
form of this connection can be found in the pioneering work of Ref. 19, where it was pointed out
that, while the basic results of Ref. 1 focus on the unitary but nonunique solutions of SQM, the
path-integral treatment of Ref. 20 for the ISP generates a distinct and unique nonunitary solution
with perfect absorption. Thus, in Ref. 19, an average expression at the level of Green’s functions
is used to relate particular cases of unitary and nonunitary solutions. Subsequently, it was pointed
out21 that a similar result can be obtained for the S-matrix of the two-dimensional ISP: an average of
unitary solutions coincides with the solution for perfect absorption.

In essence, we display the existence of a network of relations supported on current-conservation
equations or concomitant unitarity of an appropriately defined S-matrix. We implement our pro-
posal within our recently developed general multichannel framework7 that not only includes the
ISP in any number of dimensions but also applies to more singular potentials. Thus, we address
broad analytic properties of the S-matrix that can be derived from general principles—determining,
among other things, the functional Blaschke-type form of the S-matrix,22–24 in addition to other
related mathematical properties.

The remainder of this paper is organized as follows. In Sec. II, we outline the basic defini-
tions and setup of the multichannel SQM framework. Section III is the core of the paper, with an
examination of the analytic properties of the S-matrix vis-à-vis its boundary value indeterminacy.

0022-2488/2015/56(6)/062105/7/$30.00 56, 062105-1 © 2015 AIP Publishing LLC
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Section IV explores the unitary-nonunitary connection arising from the S-matrix structure. The
conclusions are summarized in Sec. V.

II. SQM: MULTICHANNEL FRAMEWORK AND SETUP OF THE PROBLEM

Following Ref. 7, we consider a quantum-mechanical problem or equivalent system described
by a Schrödinger-type equation, i.e., the normal invariant form of the generic linear second-order
differential equation that can be obtained via a Liouville transformation,25


d2

dr2 + J(r)


u(r) = 0 . (1)

In Eq. (1), for a broad range of physical applications, one can rewrite the normal invariant25 as
J(r) = k2 − V (r) − (l + ν)2 − 1/4


/r2, with parameters l and ν (usually associated with angular

momentum and spatial dimensionality) to be adjusted for each physical or mathematical application
(details can be found in Refs. 7 and 11, where a class of anisotropic potentials is also subsumed in
this formulation).

In addition to an irregular singularity at infinity, we assume the existence of a singular point at a
finite location that we take to be r = 0, with behavior

J(r) ∼ −V (r) ∼ λ r−p (2)

for r ∼ 0, where

• p = 2, with a regular singularity. This marginally singular case is known as the ISP, defining
long-range conformal quantum mechanics (CQM).
• p > 2, with an irregular singularity. This properly singular case yields the family of strongly

singular power-law potentials.

Thus, dominant contribution (2) in the neighborhood of the origin defines the all-important power-
law class of potentials in SQM. Moreover, with minor adjustments, our problem could be general-
ized to include additional singular points, as well as logarithmic behavior near the singularities.

Let us consider the set of solutions Bsing =


u+(r),u−(r)


with outgoing/ingoing wave-like

behavior near the singularity at r = 0. This solution set serves as a fundamental basis for the
two-dimensional solution space. Thus, it conveys information regarding the singular point as a
generalized form of the solutions proposed in Ref. 26 for the inverse quartic potential. Some explicit
expressions are shown below.

In addition, the singular point at infinity involves another set of solutions with outgoing/ingoing

wave-like behavior as r ∼ ∞, Basymp =


u1(r), u2(r)


, and which are motivated by the determination

of physical observables via the asymptotic S-matrix Sasymp (see below). Explicitly,

u1,2(r) (r→∞)∼ 1
√

k
e∓iπ/4 e±ikr , (3)

where (i) the chosen phases are adopted for comparison with asymptotic expansions of Hankel
functions and (ii) the normalization is enforced with the WKB amplitude factor k−1/2, which is
re-evaluated in Sec. III from Wronskian properties. Correspondingly, the linear relation between the
two bases, with the associated resolutions of u(r),

u(r) = C(+)u+(r) + C(−)u−(r) = C(1)u1(r) + C(2)u2(r) , (4)

provides a formal solution to the most general problem of SQM with one finite singular point,
as sketched in Fig. 1. In summary, the connection between the bases Bsing and Basymp constitutes
a two-channel framework, where each “channel” is associated with a singular point (with one
finite singular point and the second singular point located at infinity)—generalizations to multiple
singularities are possible as a multichannel setup,7 as will be further discussed elsewhere.

In particular, it is convenient to rewrite the distinct sides of Eq. (4) as

u(r) ∝ Ω u+(r) + u−(r) (5)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  163.10.1.42 On:

Thu, 23 Jun 2016 13:57:19



062105-3 Camblong et al. J. Math. Phys. 56, 062105 (2015)

FIG. 1. The multichannel framework can be visualized as a connector between two domains, each involving a singular point:
the asymptotic domain (r ∼∞), with outgoing/ingoing basis functions u1 and u2, and the near-singularity domain (r ∼ 0),
with outgoing/ingoing basis functions u+ and u−.

and

u(r) ∝ Ŝasymp u1(r) + u2(r) . (6)

Here, with the use of the proportionality symbol, the ratio

Ω =
C(+)

C(−) (7)

provides a “singularity parameter” related to the indeterminacy of the boundary conditions at the
finite singular point. Thus, Ω specifies an auxiliary “boundary condition,” i.e., it gauges the relative
probability amplitudes of outgoing (emission) to ingoing (absorption) waves in the neighborhood of
r = 0. Similarly, we fix the normalization for the point at infinity with

Sasymp = eiπ(l+ν) Ŝasymp , (8)

in terms of the reduced matrix elements Ŝasymp and the l- and d-dependent phase factors. Equa-
tions (6) and (8) yield the S-matrix from which the physical observables are extracted. In addition,
by the way they are constructed as outgoing/ingoing waves, the basis functions satisfy

[u1(r)]∗ = u2(r), (9)
[u+(r)]∗ = u−(r) , (10)

for r ∈ R.
For the sake of completeness, we provide explicit expressions for the dominant behavior of the

“singularity basis,”7

u±(r) (r→0)∼




r p/4

λ1/4 exp

∓2 i λ1/2 r−(p/2−1)

(p − 2)


for p > 2 , (11)
r
Θ

exp [±iΘ ln (µr)] =


r
Θ

( µ r )±i Θ for p = 2 . (12)

Here, the normalization is also enforced with the WKB amplitude factor (kWKB)−1/2, see again
further details in Sec. III. Moreover, the arbitrary floating inverse length µ for the regular singular
case p = 2, which is mandatory by its asymptotic conformal invariance, arises from the integration
constant in the WKB solution or via dimensional homogeneity in the associated Cauchy-Euler
differential equation. However, for the irregular singular case p > 2, the integration constant in the
exponent only appears at a higher order in the asymptotic expansion with respect to 1/r; specif-
ically, the Bessel-function solutions of Eq. (1) as r → 0, u/

√
r ∝ H (1,2)

−1/n

(
−2
√
λ r−n/2/n

)
, where

n = p − 2 > 0, combined with the asymptotics of Hankel functions, provide the correct outgo-
ing/incoming behavior of Eq. (11). In addition, the conformal case p = 2 includes the Langer
correction27 corresponding to the critical coupling λ = 1/4, with shifted square-root coupling con-
stant Θ2 ≡ λ − 1/4; in this case, for particular instances of nonrelativistic quantum mechanics, the
angular momentum is merged with the marginally singular p = 2 term at the same order, lead-
ing to an effective interaction coupling—but this does not occur for quantum fields in black hole
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backgrounds and other relativistic applications.7,11,16,17 Parenthetically, when the potential has a
long-range tail for r ∼ ∞ given by V (r) ∼ −λr−δ, the asymptotic behavior involves an extra phase

in the form
√

k u1,2(r) (r→∞)∼ e∓iπ/4 e±ikr e±iλr
1−δ/2k(1−δ) which can be similarly derived by WKB

integration for the irregular singular point at infinity.7

III. ANALYTIC STRUCTURE OF THE S-MATRIX

For the remainder of this paper, we will write the reduced asymptotic S-matrix, defined by
Eq. (6), as Ŝ ≡ Ŝasymp. The S-matrix of physical interest follows from Eq. (8). From Sec. II, the
existence of a complex function

Ŝ = Ŝ(Ω)
of the variable Ω relies on the singular nature of the potential via Eqs. (5) and (6). Specifically, the
boundary condition indeterminacy at the finite singular point (e.g., the origin) is described by the
arbitrary parameterΩ that represents the ratio of the amplitude coefficients for the required outgoing
and ingoing waves at the singularity. By the nature of the solutions, Ω is generically a complex
number.

In addition, Ŝ(Ω) is a meromorphic function, as follows constructively from the definition of
the “parameters” Ŝ and Ω in the scattering process. In effect, the linear relationship between the
coefficients (C(+),C(−)) and (C(1),C(2)), or between the corresponding bases, as displayed by Eq. (4),
implies a fractional linear transformation for the relationship between Ŝ and Ω. Thus, properties of
Möbius functions can be used to further understand this formalism.7 By contrast, in this paper, we
reverse the logic and focus on the basic principles that ultimately generate this remarkable analytic
structure of the S-matrix for singular potentials.

The central results we address below are based on the analytic structure of the S-matrix that
relies on Blaschke factorization. For our current purposes, some language, properties, and theo-
rems of Blaschke products are in order. Let D = {Ω ∈ C : |Ω| < 1} and D = {Ω ∈ C : |Ω| ≤ 1}
be the open and closed unit disks in the complex plane, respectively, and the boundary T =
{Ω ∈ C : |Ω| = 1} = ∂D be the unit circle. Then,22,23

Let F(z) be a holomorphic function on D that can be extended to a continuous
function on D. If F is a mapping of the unit disk D to itself that preserves the
disk boundary T (i.e., |F | = 1 if |z | = 1), then F admits a finite Blaschke product
factorization,

F(z) = ζ
n
j=1

*
,

z − z j
1 − z∗j z

+
-
, (13)

where ζ is a phase factor (|ζ | = 1) independent of z and z j are the zeros of F(z) in D.

For the case when a bounded analytic function satisfies the conditions above on the open disk
D, Carathéodory’s theorem yields a possibly infinite factorization with an appropriate behavior of
the given sequence of zeros.24 In the finite case above, the number n is the degree, deg F, of the
mapping.

Specifically, for our generic treatment of SQM, the mapping Ŝ(Ω) is indeed restricted to
the closed unit disk, D, i.e., |S| ≤ 1 iff |Ω| ≤ 1. This property can be established directly from
“conserved currents” (with the usual probabilistic interpretation in the particular case of quantum
mechanics proper applications) as described by Wronskian properties of pairs of solutions of the
governing differential equation. In effect, from the Wronskian W [ψ1,ψ2] of any two solutions
of Eq. (1) (and/or their complex conjugates, which are also solutions) and through the defini-
tion J[u] = W [u∗,u]/i of conserved currents, it follows that J[u±] = ±2 and similarly J[u1,2] = ±2
(guaranteed by the WKB normalization). More generally, the form J[u, v] = W [u∗, v]/i is conjugate-
symmetric sesquilinear, J[u,λ1v1 + λ2v2] = λ1J[u, v1] + λ2J[u, v2] and (J[u, v])∗ = J[v,u], and further
satisfies (J[u, v])∗ = −J[u∗, v∗]. Then, from these definitions, one can derive all the relevant current-
conservation relations, including explicit identities for reflection and transmission coefficients.
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Moreover, the Hermitian quadratic form J[u] ≡ J[u,u] is an SU(1,1) inner product in the specific
sense that J[u∗] = −J[u], leading to J[λ1u + λ2u∗] = �|λ1|2 − |λ2|2� J[u]; thus, for wave function (4)
that is the general solution to Eq. (1),

1
2

J[u] = |C(1)|2 − |C(2)|2 = |C(+)|2 − |C(−)|2 . (14)

This implies that
�
Ŝ
�2 − 1 =

|Ω|2 − 1
 |C(−)/C(2)|2, whence

sgn (J) = sgn
�

Ŝ
�2 − 1


= sgn

|Ω|2 − 1

. (15)

Therefore,
�
Ŝ
�
≤ 1 iff |Ω| ≤ 1 (with one-to-one correspondence of the equal signs), so that from the

ensuing map Ŝ(Ω), one concludes that Ŝ(Ω) admits Blaschke factorization (13), with z ≡ Ω and
F ≡ Ŝ, up to a global phase.

The characterization of the form of the asymptotic S-matrix concludes with the restriction to
a single Blaschke factor, which is due to the existence of a unique zero Ω1 = R∗ for the S-matrix
(except for |R | = 1; see below). This property can be established from general arguments, as fol-
lows. First, from the generic framework of Sec. II, one can depict the zeros and poles of the
S-matrix using Fig. 1. In effect, the zero of Ŝ occurs when the building block u1 is suppressed.
Second, define the solutions ǔ1 and ǔ−, with modified normalizations adapted to the standard 1D
scattering problem,

ǔ1 =



u+ + Ru− for r ∼ 0
T u1 for r ∼ ∞

, (16)

ǔ− =



u2 + R ′u1 for r ∼ ∞
T ′u− for r ∼ 0

, (17)

where (R,T ) and (R ′,T ′) are, respectively, the right-moving and left-moving reflection and trans-
mission amplitude coefficients. Third, by time-reversal invariance (given by the complex conju-
gate and reversal of the arrows in Fig. 1), we can see that this amounts to ǔ∗1 = (T u1)∗ = T ∗u2,
where Eq. (9) was used—this effectively suppresses u1 and selects the zero of Ŝ; thus, ǔ∗1 =[u+]∗ + R∗[u−]∗ = u− + R∗u+, leading to

Ω1 = Ω|zero of Ŝ = R
∗ (18)

[by comparison against Eq. (5)]. Fourth, from the physical bound |R | ≤ 1, which is established
through |R |2 + |T |2 = 1 via Wronskian relations (see below), it follows that

for |R | < 1, there is a unique zeroΩ1 = R∗ of the S-matrix, withΩ1 ∈ D. (19)

So far, we have only established that Ω1 ∈ D, but a zero on the unit circle T = ∂D is to be re-
jected, as shown below. Fifth, by comparison against Eq. (13), one can explicitly write the reduced
S-matrix as a single Blaschke factor times a global phase,

Ŝ = ∆
Ω − R∗

R Ω − 1
. (20)

Sixth, regarding the general Blaschke-factor of Eq. (20), when |R | = 1, the S-matrix is trivial with
respect to Ω, in the sense that it is restricted to the unit circle, |Ŝ| = 1 and Ω-independent, as can
be easily verified (this is a general property of the Blaschke factors); thus, in that case, being a con-
stant, Ŝ has neither zeros nor poles—incidentally, there is no contradiction herein because T = 0
when |R | = 1, and the asymptotic form of Eq. (16) becomes degenerate, failing to produce an actual
zero of Ŝ. Finally, in Eq. (20), it is also possible to identify the global phase as

∆ = − T
T ∗
=
R ′

R∗
, (21)

from the following general arguments: (i) ∆ = R ′/R∗ from Ŝ(Ω = 0) = R ′ (i.e., the correspond-
ing S-matrix is the left-moving reflection coefficient); (ii) by means of a Wronskian relation, the
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Stokes’ reciprocity relation T R∗ + T ∗R ′ = 0 is established. Parenthetically, a network of Wron-
skian relations W

�
ǔ∗1, ǔ1

�
, W

�
ǔ∗−, ǔ−

�
, W

�
ǔ∗1, ǔ−

�
, and W

�
ǔ1, ǔ−

�
implies the following four conditions:

|R |2 + |T |2 = 1, |R ′|2 + |T ′|2 = 1, R∗T ′ + T ∗R ′ = 0, and T ′ = T (with the last two being used in
the above argument).

It should be noticed that various particular cases of Eq. (20) have appeared in the literature in
Refs. 28–30 (for Ω = 0) and in Ref. 31 (for Ω = 0 and Ω = ∞), while the general form has been
derived by other techniques in Refs. 5–7.

As a corollary of relations (19)–(21),

the function Ŝ(Ω) is analytic in the closed unit circle D, i.e., it is a meromorphic
function with no poles for |Ω| ≤ 1.

This is simply due to the fact that the unique purported pole is located at Ω2 = 1/R, as shown
by the Blaschke factor—but this location of Ω2 could also be established independently by a
similar subset of arguments, via the suppression of the building block u2 combined with Eq. (16)
leading to ǔ1 = u+ + Ru− (i.e., Ω given by the explicit ratio Ω2 = 1/R). Thus, by a reversal of
the reflection-coefficient bound discussed above, |Ω2| = |1/R | = 1/|Ω1| ≥ 1; in addition, the trivial
case |R | = 1 can be dealt with separately [as established in the argument following Eq. (20)], thus
leading to Ŝ being a constant (Ω-independent) of modulus one, so that the stricter condition |Ω2| > 1
is enforced.

Incidentally, the S-matrix of Eq. (20), being a single Blaschke factor, defines a well-known
Möbius transformation Ŝ(Ω) that is an automorphism of the unit disk.32

IV. DETERMINATION OF NONUNITARY SOLUTIONS FROM THE WHOLE FAMILY
OF UNITARY SOLUTIONS

The general properties discussed in Sec. III for the two-channel case (with one singularity other
than asymptotic infinity) yield a holomorphic function Ŝ(Ω) with a unique zero at Ω1 = R∗. Fur-
thermore, the scattering bound |R | ≤ 1 (familiar restriction on the reflection coefficients) leads to a
location of the corresponding pole outside the unit disk D, so that the function Ŝ(Ω) is guaranteed to
be analytic in D (i.e., |Ω| ≤ 1).

As a result, Cauchy’s integral formula32 implies the following “average characterization” of
nonunitary solutions for all the cases with absorption due to a singular potential,

Ŝ(Ω) = 1
2πi


T

dΩ′
Ŝ(Ω′)
Ω′ −Ω

, (22)

where T = ∂D is the unit circle consisting of the whole family of unitary S-matrix values, i.e., the
whole family of solutions to Eq. (1) with “elastic” or self-adjoint boundary conditions. This
amounts to Ω′ = eiχ, where χ ∈ R is a phase specifying the generic self-adjoint condition. The
one-to-one correspondence of the conditions |Ω′| = 1 and |S(Ω′)| = |Ŝ(Ω′)| = 1 can be seen from
Eq. (15). With this notation, and going back to the primitive form of asymptotic S-matrix (8) by
reintroducing the required phase factors (whenever appropriate), Eq. (22) can be rewritten in the
suggestive form

S(Ω) =
 2π

0

dχ
2π

S(Ω′ = eiχ)
1 −Ω e−iχ

. (23)

Equation (23) is an ensemble average with a nonuniform (shifted) weight of the whole family
of unitary S-matrices. Therefore, we have established the general identity relating unitary and
nonunitary solutions for |Ω| < 1, i.e., all the cases that exhibit net absorption.

The particular case of “perfect absorption,”Ω = 0, involves a symmetric ensemble average with
uniform weight, i.e.,

S(Ω = 0) =
 2π

0

dχ
2π

S(Ω′ = eiχ) , (24)
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which corresponds to the particular case considered in Refs. 19 and 21. It is also noteworthy that
this is equal to the left-moving reflection coefficient: Ŝ(Ω = 0) = R ′ [see Eqs. (20) and (21)]. Our
present work shows that this result is not accidental but the logical consequence of general phys-
ical principles applied to the S-matrix—following a similar methodology to the S-matrix approach
in field theory. Remarkably, this is a generic property of SQM (either conformal or an irregular
singularity): while singular potentials support this analytic “structure,” the distinct case (not tackled
herein) of absorption by complex (optical) potentials generally does not.

V. CONCLUSIONS

We have shown that, given the existence of a singular problem (in the sense of SQM), a
basic set of general principles: linearity, unitarity of the multichannel S-matrix with the related
network of current-conservation statements (encoded by reflection and transmission coefficients),
and time-reversal symmetry allow the complete determination of the analytic structure of the
asymptotic S-matrix of SQM with respect to the parameter Ω that specifies boundary conditions.
This analytic structure involves Möbius transformations of the Blaschke-factor type associated with
the unit disk. Due to its generality, this approach also provides the rationale to predict and explain
the intriguing average relationship between unitary and nonunitary solutions at the level of the
asymptotic S-matrix.
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