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1 Introduction

The Skenderis and van Rees (SvR) prescription [1, 2] allows the calculation in real time

of n-point correlation functions of local CFT operator O using the gauge/gravity corre-

spondence. It can be understood as an extension of the GKPW prescription which in the

supergravity approximation can be summarized as [3, 4]

〈 e−
∫
∂H O φE 〉 ≡ e−S0

E [φE ] . (1.1)

The integration over ∂H in the lhs, giving the generating functional for O correlation

functions, suggests the well known statement that the Euclidean CFT lives in the boundary

of the bulk H (hyperbolic or Euclidean AdS) space shown in figure 1a. S0
E [φE ] on the r.h.s.

is the on-shell action for the bulk field Φ, dual to O, having φE as boundary condition on

the conformal boundary ∂H. The bulk field boundary condition φE acts as the source for

the dual CFT operator O.

A generalization of (1.1) to real time situations requires the specification of both the

initial and final states in addition to the boundary condition φL on the timelike boundary

(see figure 1b) [5, 6]. In their original work SvR gave a prescription for building out the

CFT vacuum state, both as initial and final states, in terms of boundary conditions for the

bulk fields on a manifold constructed out by gluing Lorentzian and Euclidean sections (see
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Figure 1. (a) Euclidean AdS (hyperbolic space) and the insertion of a source at its conformal

boundary. (b) Lorentzian AdS with a source at its boundary. We also depict the initial and final

wave functions.
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Figure 2. (a) In-Out contour in complex t-plane appropriate for scattering problems showing a

temporal evolution ∆T = T+ − T−. (b) SvR geometry dual to In-Out QFT contour obtained by

gluing together Lorentzian ML and Euclidean M± AdS sections. We explicitly depict the gluing

surfaces Σ±. On the bottom we show the glued geometry and a generic smooth configuration on

the spacetime.
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figure 2b). From a QFT perspective one could envisage, at zero temperature, computing

either scattering amplitudes or expectation values. The appropriate formalism for these

problems goes under the name of Schwinger-Keldysh and involve contours in the complex t-

plane known as In-Out or In-In respectively [7–9]. For scattering problems, the appropriate

contour is shown in figure 2(a), the prescription given by SvR yields

〈0| e−i
∫
∂rML

OφL |0〉 ≡ eiS0
L[φL;φΣ− ,φΣ+ ]−S0

−[0;φΣ− ]−S0
+[0;φΣ+ ] . (1.2)

The l.h.s. gives the generating function of time ordered correlation functions of O in a

Lorentzian CFT that lives in the timelike conformal boundary ∂rML of the bulk spacetime.

In the rhs, S0
L[φL;φΣ− , φΣ+ ] is the Lorentzian on-shell action for a bulk field ΦL which takes

boundary values φΣ± on the spacelike boundaries Σ± ≡ ∂tML and φL over ∂rML. The

exponents S0
±[0;φΣ± ] are the bulk field on shell actions on the Euclidean sections M± for

boundary values φ± = 0 on ∂rM± and φΣ± on Σ± .

It is worth noticing that (1.2) implicitly assumes the bulk fields, and its conjugated

momenta, to be continuous through the Σ± gluing surfaces. These conditions follows

from a complete quantum treatment: continuity of the fields is implicit in every path

integral treatment, which also requires the integration of the r.h.s. of (1.2) over all possible

configurations φΣ± . In a semi-classical approximation, the leading contribution arising

from minimizing the (complex) on shell action with respect to the boundary conditions

φΣ± leads to continuity of momenta.

In their original proposal, Skenderis and van-Rees have stressed that their prescription

was in line with the Hartle-Hawking construction [10], which as we will review below, is

implicitly assumed and plays a crucial role in prescribing the initial/final wave functionals

for the ground state of the gravity side. Thus, one of the motivations for the present work

is to learn from the AdS/CFT setup how this construction is generalized to compute wave

functions of excited states in (quantum) gravity.

The authors suggested in [1] that in order to describe non-vacuum states, one should

consider turning on boundary conditions over ∂rM±, but they didn’t explore this idea any

further. In this paper, we pursue a two-fold purpose: on the one hand we verify explicitly

this claim, and on a second hand we characterize the properties of the (AdS/)CFT states

constructed by this prescription. Non trivial boundary conditions φ± 6= 0 will be turned

on in the conformal boundaries ∂rM±. As a result we will confirm the SvR claim and, in

addition, the computation will show that the resulting excitations correspond to coherent

states. For previous work regarding excited states in Lorentzian signature see [11–21].

This article is organized as follows. In section 2 the SvR proposal is revised, while

in section 3 the SvR claim is generalized for excited states and, arguing consistency with

other well known prescriptions existing in the literature [14], it is argued that the initial

and final states can be considered coherent in a AdS Fock space representation. In section 4

non vanishing boundary conditions are imposed in the Euclidean regions of the spacetime

shown in figure 2, and the main calculations carried out. Finally, in section 4.6 we check

that our final results are consistent with our claim on coherent states. Concluding remarks

are collected in section 5, where we stress what this result learns us on generalizing the HH

construction of quantum gravity states in arbitrary spacetime asymptotics.
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2 Review of the SvR construction

For a free field Φ on a (asymptotically) AdS Euclidean spacetime ME , the GKPW pre-

scription [3, 4] beyond the semi-classical gravity approximation reads

〈 e−
∫
∂ME

O φE 〉 ≡ 〈0|e−
∫
∂ME

OφE |0〉 = Z[φE ] ≡
∫

[DΦ]φEe
−SE [Φ] , (2.1)

where [DΦ]φE denotes that the functional integral should be computed over configurations

which satisfy Φ = φE on the conformal boundary ofME . Thus, the natural generalization

of this formula to Lorentzian AdS spacetime involves vacuum wave functionals Ψ0 as

〈0|T [e
−i

∫
∂rML

OφL ] |0〉 =
∑
φΣ±

(Ψ0[φΣ+ ] )∗ Z[φL;φΣ− , φΣ+ ] Ψ0[φΣ− ] . (2.2)

The partition function in (2.1) turns into the Feynman’s path integral for the transition

amplitude from an initial condition φΣ− to a final condition φΣ+ at (spacelike) surfaces

Σ− and Σ+ respectively of the Lorentzian AdS cylinder ML shown in figure 2b,. In the

Lorentzian setup φL denotes the (asymptotic) boundary condition for Φ at the timelike

boundary

Z[φL;φΣ− , φΣ+ ] ≡
∫ φΣ+

φΣ−

[DΦ]φL e
iSL[Φ]. (2.3)

The problem with this formula is that a priori, one does not have a precise prescription for

the values of φΣ± , nor the form of the initial/final states described by the wave functionals

Ψ0[φΣ± ] on the Σ± surfaces. Thus, the crucial steps of the SvR construction are: firstly

to identify the CFT vacuum |0〉 with the wave functional of the fundamental state in the

bulk theory

|0〉 ⇔ Ψ0[φΣ− ] ≡ 〈φΣ− |Ψ0 〉 ,

where it is implicitly assumed that φΣ± on the spacelike surfaces Σ± constitutes a (config-

uration) basis for the Hilbert space of the second-quantized bulk scalar field, so that the

identity can be expressed as1 ∑
φΣ±

|φΣ± 〉〈φΣ± | = 1 . (2.4)

The r.h.s. of (2.2) can therefore be rewritten as∑
φΣ±

(
Ψ0[φΣ+ ]

)∗Z[φL;φΣ− , φΣ+ ] Ψ0[φΣ− ] = 〈Ψ0 | U [T−, T+]φL |Ψ
0〉 ,

where U is the real-time evolution operator of the bulk theory. Secondly, they use the

Hartle-Hawking (HH) prescription for vacuum wave functionals [10]

Ψ0[φΣ− ] ≡
∫ φΣ−

0
[DΦ]0 e

−S−[Φ] . (2.5)

1More precisely, |φΣ±〉 are eigenstates of the field operator Φ.
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Figure 3. In standard global coordinates, the point τ = ±∞ is mapped to the origin of the

conformal boundary of M±.

This functional integral is computed summing over the field configurations on a half of

Euclidean AdS: M− (see figure 2b and figure 3).

Skenderis and Van Rees have defined this Euclidean path integral with timelike bound-

aries, like AdS, considering decaying field configurations at the asymptotic (radial) con-

formal boundary, and so the vacuum state is prepared at the asymptotic boundary by im-

posing vanishing boundary conditions. This is denoted by the [DΦ]0, where the subindex

0 instructs to sum over field configurations with vanishing boundary conditions on S− ≡
∂rM− − {τ = −∞}, and the 0 in the lower limit of the (path) integral denotes the value

of the field configuration at (Euclidean) infinite past Φ(τ = −∞) (see figure 3). Moreover,

SvR have also claimed that excited wave functionals would be obtained by imposing non-

vanishing boundary conditions on the asymptotic Euclidean boundary [1]. Their suggestion

for an excited wave functional can be expressed as

Ψφ− [φΣ− ] ≡
∫ φΣ−

0
[DΦ]φ− e

−S−[Φ] . (2.6)

Here the non-trivial smooth function φ− stands for the value of Φ at S−, and in what

follows the value of Φ at the poles τ = ±∞ is set to zero, motivated by the fact that in

ordinary QFT this value only affects the normalization of the wave function.

Finally, plugging expression (2.3) and (2.5) into (2.2), results in

〈0|T [e
−i

∫
∂rML

O φL ]|0〉 =
∑
φ

Σ±

(∫ 0

φ
Σ+

[DΦ]0 e
−S+[Φ]

)(∫ φ
Σ+

φ
Σ−

[DΦ]φLe
iSL[Φ]

)(∫ φ
Σ−

0

[DΦ]0 e
−S−[Φ]

)
.

(2.7)

Notice that the integration is taken over three intervals with different signatures, and

therefore, the full action turns out to be a complex-valued functional of the fields, and the
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r.h.s. of (2.7) can be written as single path integral over field configurations on an AdS

manifold with both Lorentzian and Euclidean pieces as shown in figure 2 b.

Performing a saddle-point approximation for each interval, one obtains

〈0|T [e
−i

∫
∂rML

O φL ]|0〉 =
∑
φΣ±

e−S
0
−[0;φΣ− ]+iS0

L[φL;φΣ− ,φΣ+ ]−S0
+[0;φΣ+ ] . (2.8)

The SvR prescription (1.2) is recovered upon performing a second saddle point approx-

imation which consists in finding the term with maximal contribution to the φΣ± sum.

Minimizing the complex action w.r.t. the field values on the gluing surfaces, results in

δ (−S0
± + iS0

L)

δφΣ±
= π± + iπL = 0 . (2.9)

For a free scalar field, this equation sets the continuity of the normal derivative of the

field through the gluing surfaces Σ± [2], which completes the SvR prescription. The SvR

proposal (2.6) for excited states is precisely the statement that we are going to investigate

in the forthcoming sections.

3 Excited Ψφ± states

We now turn to show that the (bulk) wave functionals with a smooth boundary condition

φ− defined in (2.6) are in fact excited CFT states precisely given by

|Ψφ−〉 = e
−

∫
∂rM−

O φ− |0〉 , (3.1)

provided that φ− = 0 at τ = −∞.

For completely arbitrary initial/final states, the prescription (2.2) reads

〈Ψf |T [e
−i

∫
∂rML

O φL ]|Ψi〉 =
∑
φΣ±

(Ψf [φΣ+ ])∗ Z[φL;φΣ− , φΣ+ ] Ψi[φΣ− ] . (3.2)

Now, let us split the Lorentzian AdS cilinder in figure 2, whose global time coordinate

belongs to the interval [T− , T+] ⊂ R in two piecesML =M′L∪M̃ joined by the space-like

hypersurface Σ̃ at T̃ (T− ≤ T̃ ≤ T+). The non trivial boundary condition on its conformal

(radial) boundary φL also splits accordingly: {φ′L, φ̃}. Let us also consider |Ψφ−〉 ≡ |0〉,
and keep the final state |Ψf 〉 arbitrary. The corresponding geometry is shown in figure 4,

where no geometric dual is associated to the final state |Ψf 〉.
According to the prescription (2.7), expression (3.2) now takes the form

〈Ψf |T [e
−i

∫
∂rM′L

O φ′L −i
∫
∂rM̃O φ̃]|0〉 = (3.3)

=
∑

φΣ̃,φΣ±

(Ψf [φΣ+ ])∗

(∫ φΣ+

φΣ̃

[DΦ]φ′Le
iSL[Φ]

)(∫ φΣ̃

φΣ−

[DΦ]φ̃ e
iS̃[Φ]

)(∫ φΣ−

0
[DΦ]0 e

−S−[Φ]

)
,

where φΣ̃ denotes the value of the field on Σ̃.

– 6 –
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Figure 4. The manifold shown can be interpreted as taking figure 2 and splitting it the Lorentzian

piece, and also removing M+ since in principle, the final state Ψf is not necessarily expressed as

any (Euclidean) path integral.

Now, the key step is to consider a Wick rotation t → −iτ only in the piece M̃. One

can then interpret the whole M̃∪M− as describing the initial state; in fact, this manifold

is completely diffeomorphic to M− (a half of Euclidean AdS, H). Then, expression (3.3)

becomes

〈Ψf |T [e
−i

∫
∂rM′L

O φ′L −
∫
∂rM̃

O φ̃
]|0〉 =

∑
φ

Σ+ ,φΣ̃

(Ψf [φΣ+ ])∗
(∫ φ

Σ+

φ
Σ̃

[DΦ]φ′
L
eiSL[Φ]

)(∫ φ
Σ̃

0

[DΦ]φ̃ e
−S[Φ]

)
.

Finally, taking the limit |T+ − T̃ | → 0, the real time region M′L squeezes out, and the

surfaces Σ̃ and Σ+ coincide, such that φΣ+ = φΣ̃. Thus, the previous equation becomes

〈Ψf |e−
∫
∂rM̃O φ̃|0〉 =

∑
φΣ+

(Ψf [φΣ+ ])∗
(∫ φΣ+

0
[DΦ]φ̃ e

−S[Φ]

)
. (3.4)

Since this holds for any state |Ψf 〉 at the Hilbert space, and recalling (2.4), the initial state

can be identified with the ket

|Ψφ−〉 ≡ e−
∫
∂rM̃O φ̃|0〉 = e

−
∫
∂r(M̃∪M−)O φ− |0〉 = e

−
∫
S−
O φ− |0〉 , (3.5)

where we have redefined S− ≡ ∂r(M̃ ∪ M−) − {τ = −∞}, and define φ− as 0 over

(−∞ , T−), and φ̃ as [T− , T̃ ). Notice that T− can be chosen arbitrarily close to −∞.

Result (3.5) explicitly shows the relation between the form of the excited state and the

boundary conditions φ− on ∂rM−. In fact, expanding the above exponential in a Taylor

series about the origin of ∂rM−, a combination of primary operators and their descendants

arise that act on the vacuum and create CFT excited states.

On the other hand, the projection of the state in the bulk configuration basis is given

by the expression within the parenthesis on the r.h.s. of the equation (3.4), which agrees

with the proposal (2.6). This remarkably generalizes the HH method to asymptotically AdS

spacetimes, since it allows to define and evaluate (at least perturbatively on the gravity

– 7 –



J
H
E
P
0
2
(
2
0
1
6
)
1
7
1

side) the wave functional for a family of excited states of the theory characterized by the

(radial) boundary data. In fact, we are going to argue below that these excitations shall

correspond to coherent states. In a forthcoming paper, this aspect and its consequences in

quantum gravity will be explored more in depth.

3.1 Quantum coherence from other prescriptions

One of our claims in the present work is that, the states (3.5) prescribed by the SvR frame-

work, correspond to coherent ones as represented in the gravity/AdS Hilbert space. The

following sections will be devoted to compute time ordered correlation functions between

excited states following SvR, and check this statement holographically. Nevertheless if one

takes into account other prescriptions for AdS/CFT existing in the literature, and claims

consistency with the SvR formalism, this hypothesis can be easily argued. So in particular,

let us briefly recall the recipe [14, 15], referred to as BDHM. Essentially, if r ∈ [0,∞) stands

for the global radial coordinate, one canonically quantizes the bulk scalar fields and then

identifies the dual CFT operator with the product r∆ Φ near the asymptotic boundary,

with ∆ = d/2 +
√
d2/4 +m2, m the field Φ mass and d the CFT dimension.

Consider a classical real scalar field Φ on ML in global coordinates (t, r,Ω), where Ω

stands for the angular coordinates in AdSd+1 with boundary condition φL = 0 on ∂rML.

It is well known that the general solutions are

Φ(t, r,Ω) =
∑
k

(
a∗kf

∗
k (t, r,Ω) + akfk(t, r,Ω)

)
,

where fk(t, r,Ω) stands for the positive frequency normalizable modes, fixed such that

satisfy the orthonormality relations

(fk , fk′) = δkk′ ,

where k schematically denotes all the numbers that label a particular positive-frequency

solution and ( , ) is the Klein-Gordon product on AdSd+1. Thus, the coefficients a∗k,

and ak can be promoted to operators by canonical quantization as [11]

Φ̂(t, r,Ω) =
∑
k

(
â†kf

∗
k (t, r,Ω) + âkfk(t, r,Ω)

)
.

Therefore, the BDHM prescription identifies the dual CFT operators as [14, 22]

Ô(t,Ω) ≡ lim
r→∞

r∆ Φ̂(t, r,Ω) =
∑
k

â†kF
∗
k (t,Ω) + âkFk(t,Ω) , (3.6)

which defines a basis of functions on the conformal boundary

Fk(t,Ω) ≡ lim
r→∞

r∆fk(t, r,Ω) = Nk e
−iωktYk(Ω) . (3.7)

Here Yk(Ω) stand for the spherical harmonics on Sd−1, and Nk are numeric factors.2

2For instance, for AdS2+1 in global coordinates one finds

Fnl(t, ϕ) =

√
Γ[∆ + n+ |l|]Γ[∆ + n]

n!(Γ[∆])2Γ[n+ |l|+ 1]

1√
2π
e−iωnlt+ilϕ =⇒ Nnl =

√
Γ[∆ + n+ |l|]Γ[∆ + n]

n!(Γ[∆])2Γ[n+ |l|+ 1]
. (3.8)

– 8 –
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Figure 5. The configuration considered in figure 2b becomes an Euclidean AdS space when the

Lorentzian cilinder M length is set to zero.

Finally, if we demand consistency of (3.5) with (3.6), we conclude that the SvR

state (3.5) is coherent and can be written as

|Ψφ−〉 ∝ e
∑
k λ
−
k â
†
k |0〉 , (3.9)

where

λ±k = −
∫
∂rM−

dτdΩF ∗k (−iτ,Ω)φ±(τ,Ω) , (3.10)

which requires the analytical extension of the functions (3.7) to

F ∗k (−iτ,Ω) = Nk e
ωkτ Yk(Ω) .

This is what will be checked in the following sections through explicit holographic SvR com-

putations of one- and two-points correlation functions. In fact, since coherent states (3.9)

are eigenstates of the annihilation operators

âk|Ψφ±〉 = λ±k |Ψ
φ±〉 ,

we are able to compute the eigenvalues λ±k and then construct the state (3.9) explicitly.

Precisely, by virtue of (3.6) and (3.9), we can notice the following useful relation

〈Ψφ+ |O(t,Ω)|Ψφ−〉
〈Ψφ+ |Ψφ−〉

=
∑
k

(λ+
k )∗ F ∗k (t,Ω) + λ−k Fk(t,Ω) , (3.11)

which will allow us to identify the eigenvalues computed holographically and to test this

construction.

Let us end this section by stressing that expression (3.6) results from the fact that we

are considering a free theory on the bulk, which according to the AdS/CFT dictionary,

implicitly assumes the large N limit (see ref. [14] for a more detailed discussion).

3.2 The inner product between asymptotic states in the SvR prescription,

and first holographic check of coherence

Noticeably, the SvR prescription allows to compute the inner product between arbitrary

initial/final states. In fact, if one squeezes the Lorentzian manifoldML by taking the limit

– 9 –
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|T+−T−| → 0 in (3.2), one obtain a remarkable holographic formula for the inner product

of (in/out) CFT-states

〈Ψφ+ |Ψφ−〉 =
∑
φΣ

(
Ψφ+ [φΣ]

)∗
Ψφ− [φΣ] = ZE [φ−, φ+] , (3.12)

where φΣ is the value of Φ on a hypersurface surface Σ embedded into Euclidean AdS, that

intersects the boundary at the equator that divides the Sd sphere into two hemispheres

∂rM±, and φ± denotes the respective boundary values, as shown in figure 5. In the saddle

point approximation (3.12) reads

〈Ψφ+ |Ψφ−〉 = e−S
0
E [φ+,φ−] = e

−
∫
∂rM−

√
|γr|φ− nµ∇µΦ(φ±)−

∫
∂rM+

√
|γr|φ+ nµ∇µΦ(φ±)

.

Then, using the well known result [3, 4], we find and holographic expression for the inner

product

〈Ψφ+ |Ψφ−〉 = e−S
0
E [φ+,φ−] = e−

∫
Sd

dx
∫
Sd

dy φ(x)G(x,y)φ(y) (3.13)

= e
−
{∫
S−

∫
S−

φ−(x)G(x,y)φ−(y)+
∫
S+

∫
S+

dxdy φ+(x)G(x,y)φ+(y)+ 2
∫
S−

∫
S+

dxdy φ−(x)G(x,y)φ+(y)
}
,

where G is the boundary-to-boundary Green function defined in [4], φ is defined on the

(open) intervals S− ≡ (−∞, 0) × Sd−1 and S+ ≡ (0,∞) × Sd−1 by the smooth functions

{φ−(x) , φ+(x)} respectively, and the points x, y are parameterized by coordinates (τ,Ω) ∈
IR×Sd−1. Then, one can use this formula in particular to compute the norm of states (3.1),

which in principle are not normalized. However we shall first define the corresponding

(conjugate) dual 〈Ψφ− |. Since the two hemispheres S± are diffeomorphic, one can extend

the definition of functions (and operators) into each other through the dualization map3

φ?±(τ,Ω) ≡ φ±(−τ,Ω). (3.14)

This is the standard conjugation prescription in Euclidean CFT theories [24], where, in the

setup known as radial quantization, the “radius” r = e−τ maps to r−1 = eτ (and τ 7→ −τ).

The norm of an arbitrary state, say |Ψφ−〉, is therefore given by

〈Ψφ− |Ψφ−〉 = ‖Ψφ−‖2 = e−S
0
E [φ?−,φ−] , (3.15)

where, using (3.14)

S0
E [φ?−, φ−] =

∫ 0

−∞
dτ

∫ 0

−∞
dτ ′ φ−(τ)G(τ, τ ′)φ−(τ ′) +

∫ ∞
0

dτ

∫ ∞
0

dτ ′ φ−(−τ)G(τ, τ ′)φ−(−τ ′)

+ 2

∫ 0

−∞
dτ

∫ ∞
0

dτ ′ φ−(τ)G(τ, τ ′)φ−(−τ ′)

3Therefore, expressions as (3.12) should be interpreted as(
Ψφ+(φ)

)∗
≡ Ψφ?

+(φ).
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= 2

∫ 0

−∞
dτ

∫ 0

−∞
dτ ′ φ−(τ)G(τ, τ ′)φ−(τ ′)+2

∫ 0

−∞
dτ

∫ ∞
0

dτ ′ φ−(τ)G(τ, τ ′)φ−(−τ ′) .

The integrals on the angular variables Ω,Ω′ are implicit to simplify the notation. To find

this result we have also used the properties of the boundary-to-boundary Green function

G(−τ,−τ ′) = G(τ, τ ′) and G(τ, τ ′) = G(τ ′, τ).

So therefore, the inner product between two normalized excited states defined within

the SvR formulae reads

〈Ψφ+
N |Ψ

φ−
N 〉 =

1

‖Ψφ+‖‖Ψφ−‖
e−S

0
E [φ+,φ−] = e−(S0

E [φ+,φ−]− 1
2
S0
E [φ+,φ?+]− 1

2
S0
E [φ?−,φ−]) , (3.16)

where the exponent

S0
E [φ+, φ−]− 1

2
S0
E [φ+, φ

?
+]− 1

2
S0
E [φ?−, φ−] =

= 2

∫ 0

−∞
dτ

∫ ∞
0

dτ ′

(
φ−(τ)G(τ, τ ′)φ+(τ ′)− 1

2
φ+(τ)G(τ, τ ′)φ+(−τ ′)− 1

2
φ−(τ)G(τ, τ ′)φ−(−τ ′)

)
,

can be regrouped as

−
∫ 0

−∞
dτ

∫ ∞
0

dτ ′ (φ−(τ)− φ+(−τ)) G(τ, τ ′)
(
φ−(−τ ′)− φ+(τ ′)

)
=

=

∫ 0

−∞
dτ

∫ 0

∞
dτ ′

(
φ−(τ)− φ?+(τ)

)
G(τ, τ ′)

(
φ−(τ ′)− φ?+(τ ′)

)?
. (3.17)

This expression can be written as
(
(φ− − φ?+) , (φ− − φ?+ )

)
= |φ− − φ?+|2 if we define the

inner product

(φ1 , φ2) ≡
∫ 0

−∞
dτ

∫ 0

∞
dτ ′ φ1(τ)G(τ, τ ′)φ?2(τ ′) , (3.18)

on the space of functions C ≡ {φ± , φ1 , φ2 , . . . } defined on one of the hemispheres −∞ <

τ < 0 that parameterize the CFT states. Note that this product is given by a non-

degenerate metric on this space of functions, whose matrix elements are given by the

(boundary-to-boundary) two points function. Let us observe that in the second line

of (3.17) we have written the integral in a symmetric way, on the interval (∞, 0)×Sd−1 in

place of S+, which properly expresses the integration as ordered from the (north) pole to

the boundary of S+ (equator).

This result constitutes the first holographic check of our claim on the coherence of the

in/out states in the SvR proposal, since the product of two (normalized) states can indeed

be written in terms of the norm, induced by a scalar product on the space of states as

〈Ψφ+
N |Ψ

φ−
N 〉 = e−|φ−−φ

?
+|2 . (3.19)

Reinserting the 1/GN ∼ N2 factor in front of the sugra scalar action (3.13), one finds that

the Gaussian width in (3.19) is controlled by N . It is immediate to see that the r.h.s.

of (3.19) becomes localized in C as N →∞, as expected for (semi-)classical states.

Although in this paper we work with real scalar fields, let us finally comment that

for complex ones φ ≡ φR + iφI , the action decouples into two independent terms and the
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derivation above follows straightforwardly for each component field, such that regroups as

a sum of two terms as (3.17) for each component,(
(φR− − (φR+)?) , (φR− − (φR+)? )

)
+
(
(φI− − (φI+)?) , (φI− − (φI+)? )

)
, (3.20)

with the inner product ( , ) rule as given in (3.18) and the rule (3.14) assumed separately

for both φR/I . Thus, the final result can be written as

〈Ψφ+
N |Ψ

φ−
N 〉 = e−(|φR−−φR?+ |2 + |φI−−φI?+ |2) . (3.21)

Therefore, for the space of complex fields defined on S− the product (3.18) can naturally

be generalized to

(φ1 , φ2) ≡
∫ 0

−∞
dτ

∫ 0

∞
dτ ′ φ1(τ)G(τ, τ ′) (φ?2(τ ′))∗ , (3.22)

where ()∗ stands for the standard complex conjugation operation.

4 Expectation values of local operators

In this section we generalize the SvR computation [1] to the case of excited states ob-

tained by turning on boundary conditions in the Euclidean sections as discussed before

(see figure 2). Our aim is to characterize the excited state.

We will work with the simplest model, a real massive scalar field Φ in AdSd+1, and

for the ease of computations we will consider the semiclassical approximation and d = 2.

This setup allows to compute correlation functions of dual local scalar operator O with

conformal dimension ∆ = d/2 +
√
d2/4 +m2, with m being the mass, in terms of classical

bulk solutions.

At the formal level the scalar field action

S[Φ] = −1

2

∫
C
dt

∫
drdϕ

√
|g|
(
∂µΦ∂µΦ +m2Φ

)
, (4.1)

is defined over the contour C on the complex t-plane shown in figure 2a [1] (see [23]

for related work). Without loss of generality we can take T± ≡ ±T . Calling Φ−(τ) ≡
Φ(−T − iτ), with τ ∈ (−∞, 0] the field on the left vertical piece, ΦL(t) ≡ Φ(t), t ∈ [−T, T ]

the field on the horizontal piece and Φ+(τ) ≡ Φ(T − iτ), τ ∈ [0,∞) the field on the right

vertical piece, equation (4.1) becomes

S = iS− + SL + iS+ ,

where

S± = +
1

2

∫
M±

dxd+1
√
|g|
(
∂µΦ±∂

µΦ± +m2Φ2
±
)

= −1

2

∫
M±

dxd+1
√
|g| Φ±

(
�−m2

)
Φ±

– 12 –
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+
1

2

∫
∂rM±

dxd
√
|γr| Φ±n

µ
r ∂µΦ± +

1

2

∫
Σ±

dxd
√
|γΣ | Φ±n

µ
Σ
∂µΦ± , (4.2)

and

SL = −1

2

∫
ML

dxd+1
√
|g|
(
∂µΦL∂

µΦL +m2Φ2
L

)
= +

1

2

∫
ML

dxd+1
√
|g| ΦL

(
�−m2

)
ΦL −

1

2

∫
∂rML

dxd
√
|γr| ΦLn

µ
r ∂µΦL

− 1

2

∫
Σ+

dxd
√
|γΣ | ΦLn

µ
Σ∂µΦL −

1

2

∫
Σ−

dxd
√
|γΣ | ΦLn

µ
Σ∂µΦL . (4.3)

In these expressions an integration by parts led to boundary terms involving outer normal

vectors to the bulk nµ. These terms are of two distinct types: conformal boundaries denoted

either by r or ∂r (boundaries at infinity) and Σ-type spacelike boundaries as shown in

figure 2b.4 Finally, γr and γΣ are the induced metric determinants over the corresponding

surfaces, and �φ ≡ (
√
|g|)−1∂µ(

√
|g|gµν∂νφ) is the standard scalar Laplacian.

The task is to find a smooth classical solution to (4.1) with φ±, φL 6= 0. In order to find

such configuration, as explained in section 2, we will solve the appropriate field equation

on each section and impose continuity of Φ and its conjugated momentum at t = ±T .

Explicitly, we shall demand

Φ−(r, 0, ϕ) = ΦL(r,−T, ϕ) , ΦL(r, T, ϕ) = Φ+(r, 0, ϕ) , (4.4)

∂τΦ−(r, τ, ϕ)
∣∣∣
τ=0

= −i∂tΦL(r, t, ϕ)
∣∣∣
t=−T

, −i∂tΦL(r, t, ϕ)
∣∣∣
t=T

= ∂τΦ+(r, τ, ϕ)
∣∣∣
τ=0

.

As it is standard [3], the problem must be regularized by imposing the boundary conditions

φ±, φL at a finite radial cut-off R, at the end the limit R→∞ is taken.

4.1 Solution over ML

For the Lorentzian region we write the AdS metric in global coordinates as (setting the

AdS radius R =1)

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dϕ2 .

Plugging the ansatz ΦL(r, t, ϕ) ∝ e−iωt+ilϕ f(ω, l, r) with l ∈ Z, into the Klein Gordon

(KG) equation following from (4.3) gives(
1

r
∂r

(
r(1 + r2)∂r

)
+

ω2

1 + r2
− l2

r2
−m2

)
f(ω, l, r) = 0 .

The regular solution to this equation is

f(ω, l, r) = (1 + r2)
√
ω2/2 r|l| 2F1

(√
ω2 + |l|+ ∆

2
,

√
ω2 + |l| −∆ + 2

2
; 1 + |l|;−r2

)
,

4A possible boundary contribution arising from Σ hypersurfaces at τ → ±∞ in (4.2) is absent since, as

discussed in section 2, the boundary conditions turn off at these points.
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where 2F1(a, b; c;x) is Gauss hypergeometric function. A general solution to the KG equa-

tion can be obtained as

ΦL(r, t, ϕ) =
∑
l∈Z

∫
dω cωl e

−iωt+ilϕf(ω, l, r) . (4.5)

The regularized boundary condition to be imposed is

ΦL(R, t, ϕ) = R∆−2φL(t, ϕ). (4.6)

From (4.5) and (4.6) one obtains

cωl =
R∆−2

4π2

∫
dt′dϕ′eiωt

′−ilϕ′ φL(t′, ϕ′)

f(ω, l, R)
.

Inserting this expression in (4.5) one finds

ΦL(r, t, ϕ) =
R∆−2

4π2

∑
l∈Z

∫
dωdt′dϕ′e−iω(t−t′)+il(ϕ−ϕ′)φL(t′, ϕ′)

f(ω, l, r)

f(ω, l, R)
. (4.7)

Notice that this expression is ill defined since f(ω, l, R) = 0 for ω = ±ωRnl such that

ωRnl ≡ ωnl + ε(R) , (4.8)

where ωnl = 2n + |l| + ∆, (n = 0, 1, 2, . . .), and ε(R) ∼ o(1/R2∆−2). Modes (4.8) become

the standard Dirichlet AdS normalizable modes in the R → ∞ limit. Following [1] we

give meaning to (4.7) by choosing the Feynman path on the complex ω-plane as shown

in figure 6a. As a consequence the general solution to the KG equation satisfying (4.6) is

given by

ΦL(r, t, ϕ) =
R∆−2

4π2

∑
l∈Z

∫
F
dωdt′dϕ′e−iω(t−t′)+il(ϕ−ϕ′)φL(t′, ϕ′)

f(ω, l, r)

f(ω, l, R)

+
∑
n∈N
l∈Z

(
L+
nl e
−iωRnlt + L−nl e

+iωRnlt
)
eilϕgnl(r) , (4.9)

where the L±nl coefficients will be determined once we impose boundary conditions (4.4) at

Σ±-hypersurfaces (see (4.20)), and

gnl(r) ≡ f(±ωRnl, l, r) . (4.10)

4.2 Solutions over M±

The Euclidean sections solutions follow straightforwardly from the Lorentzian ones. For

concreteness, consider the action (4.2) and metric on M+. Writing the metric as

ds2 = (1 + r2)dτ2 +
dr2

1 + r2
+ r2dϕ2 , τ ∈ [0,∞) (4.11)
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–

Σ

+
Σ

(a)


–M

+M

(b)

Figure 6. (a) Feynman path F in the complex ω-plane chosen to define (4.9). Σ± indicate the

appropriate contour one should choose near each hypersurface to compute the integral by residues.

(b) ω-plane location of zeroes of f(−iω, l, R) appearing in (4.15). M± represent the appropriate

integration path for residues computation.

and separating variables as

Φ+(r, τ, ϕ) ∝ e+iωτ+ilϕ h(ω, l, r) , (4.12)

one readily finds that

h(ω, l, r) = f(−iω, l, r). (4.13)

Writing the general to solution to the KG equation as

Φ+(r, τ, ϕ) =
∑
l∈Z

∫
dω dωl e

iωτ+ilϕf(−iω, l, r) ,

and imposing

Φ+(R, τ, ϕ) = R∆−2φ+(τ, ϕ), (4.14)

one finds

Φ+(r, τ, ϕ) =
R∆−2

4π2

∑
l∈Z

∫
dωdτ ′dϕ′eiω(τ−τ ′)+il(ϕ−ϕ′)φ+(τ ′, ϕ′)

f(−iω, l, r)
f(−iω, l, R)

. (4.15)

In the Euclidean case the ω-integral is well defined and the poles of the integrand lie on

the imaginary axis as shown in figure 6b.

As pointed out in [1], considering the imaginary frequencies ω = ±iωRnl in (4.12) yields,

using (4.10) and (4.13),

Φ+(r, τ, ϕ) ∝ e∓ωRnlτ+ilϕ gnl(r) .
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Since τ ∈ [0,∞) for M+ one immediately notices that a linear combination of the e−ω
R
nlτ

modes could be added to (4.15).5 Therefore, the solution to the KG equation over M+

satisfying (4.14) is

Φ+(r, τ, ϕ)=
R∆−2

4π2

∑
l∈Z

∫
dωdτ ′dϕ′eiω(τ−τ ′)+il(ϕ−ϕ′)φ+(τ ′, ϕ′)

f(−iω, l, r)
f(−iω, l, R)

+
∑
n∈N
l∈Z

E+
nl e
−ωR

nl
(τ+iT )+ilϕgnl(r) .

(4.16)

The solution over M− can be found in a similar fashion and reads

Φ−(r, τ, ϕ) =
R∆−2

4π2

∑
l∈Z

∫
dωdτ ′dϕ′eiω(τ−τ ′)+il(ϕ−ϕ′)φ−(τ ′, ϕ′)

f(−iω, l, r)
f(−iω, l, R)

+
∑
n∈N
l∈Z

E−nl e
ωR
nl

(τ−iT )+ilϕgnl(r) .

(4.17)

The E±nl coefficients will be determined by the set of equations (4.4) (see (4.20)). The

existence of normalizable modes in Euclidean signature is a consequence of M± being a

half of the hyperbolic space, containing either τ = ∞ or τ = −∞, but not both. In the

following we will consider non-trivial Euclidean boundary conditions vanishing smoothly

as τ → ±∞ and near Σ± as required by the SvR prescription [2]. The e−iω
R
nlT phases

in (4.16)–(4.17) are convenient for the contour C.

4.3 Matching the solutions

In order to perform the matching (4.4) the asymptotic behavior of (4.9), (4.16) and (4.17)

around Σ± is needed. These expressions can be easily computed by residues since the

sources vanish smoothly near the space-like boundaries [1, 2]. Closing the ω-integrals

appropriately as shown in figure 6 one finds

Φ+(r, τ, ϕ) ∼
∑
nl

(
E+
nl e
−ωRnl(τ+iT ) +R∆−2ResRnl φ+;n(−l)e

ωRnl(τ+iT )
)
eilϕgnl(r), τ ∼ 0

Φ−(r, τ, ϕ) ∼
∑
nl

(
E−nl e

ωRnl(τ−iT ) +R∆−2ResRnl φ−;n(−l)e
−ωRnl(τ−iT )

)
eilϕgnl(r), τ ∼ 0

ΦL(r, t, ϕ) ∼
∑
nl

((
L+
nl + iR∆−2ResRnlφ

∗
L;nl

)
e−iω

R
nlt + L−nle

iωRnlt

)
eilϕgnl(r), t ∼ T

ΦL(r, t, ϕ) ∼
∑
nl

(
L+
nle
−iωRnlt +

(
L−nl + iR∆−2ResRnl φL;n(−l)

)
eiω

R
nlt

)
eilϕgnl(r), t ∼ −T

where in the first two lines

φ+;nl ≡
1

2π

∫ ∞
0

dτdϕ e−ω
R
nl

(τ+iT )+ilϕ φ+(τ, ϕ) , φ−;nl ≡
1

2π

∫ 0

−∞
dτdϕ e+ωR

nl
(τ−iT )+ilϕ φ−(τ, ϕ) , (4.18)

and for the Lorentzian piece

φL;nl ≡
1

2π

∫ T

−T
dtdϕ e−iω

R
nlt+ilϕ φL(t, ϕ) .

The residues ResRnl are defined encircling the points ω = −ωRnl in a counterclockwise sense

ResRnl ≡
1

2πi

∮
ω=−ωR

nl

dω

f(ω, l, R)
. (4.19)

5The converse happens for M−.
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From the orthogonality of eilϕ and gnl(r), equations (4.4) yield

L±nl = R∆−2ResRnl φ∓;n(−l) ,

E+
nl = R∆−2ResRnl

(
iφ∗L;nl + φ−;n(−l)

)
,

E−nl = R∆−2ResRnl

(
iφL;n(−l) + φ+;n(−l)

)
. (4.20)

These equations generalize the expressions found in [1] and reduce to them upon setting

φ±(τ, ϕ) = 0. It is worth noticing that Euclidean boundary conditions turn on normalizable

modes in the Lorentzian section. We will show below that the R∆−2 factors in (4.20) ensures

a smooth R→∞ limit.

4.4 On shell action

In the present section the R → ∞ limit is performed. The on shell evaluation of (4.1)

results in a boundary term that takes the form

S0 = −1

2
lim
R→∞

[ ∫
∂rM

dt dϕ
√
|γr|Φnµr ∂µΦ

]
r=R

(4.21)

= −1

2
lim
R→∞

[∫
dϕ (1 + r2)R∆−2

(
−i
∫ 0

−∞
dτ φ− r∂rΦ− +

∫ T

−T
dt φL r∂rΦL − i

∫ ∞
0

dτ φ+ r∂rΦ+

)]
r=R

,

where Φ(R, t, ϕ) = R∆−2 φ(t, ϕ) has been used. The three terms in (4.21) have identical

radial behavior. Taking the Lorentzian piece for concreteness, we now show that an ex-

pansion in R � 1 picks contributions from both φL and L±nl terms in (4.9). The leading

behavior of the radial derivative in (4.21) is

(1+r2)R∆−2 (r∂rΦL) ∼ R∆

(
R∆−2φL

r∂rf(ω, l, r)

f(ω, l, R)
+ L±nl r∂rgnl(r)

)
, R� 1 . (4.22)

The contribution from the first term in (4.22) is the standard one. From the r � 1

expansion of f

f(ω, l, r) ∼ A(ω, l)r∆−2 +B(ω, l)r−∆, (4.23)

where

A(ω, l) ≡ Γ(∆− 1)Γ(|l|+ 1)

Γ
(

1
2(|l|+ ∆− ω)

)
Γ
(

1
2(|l|+ ∆ + ω)

) ,
B(ω, l) =

Γ(1−∆)Γ(|l|+ 1)

Γ
(

1
2(|l| −∆− ω + 2)

)
Γ
(

1
2(|l| −∆ + ω + 2)

) ,
one finds, to leading order in R,

R∆−2 r∂rf(ω, l, r)

f(ω, l, R)

∣∣∣∣∣
r=R

∼ S[l, R]− 2(∆− 1)R−∆B(ω, l)

A(ω, l)
(1 + o(R−2)) . (4.24)

The first term S[l, R] being a regular series in l is disregarded since, giving contact terms

in configuration space, it can be subtracted by adequate counter-terms.
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The gnl(r) expansion for r ∼ R� 1 is

gnl(r) ∼ A(ωRnl, l) r
∆−2 +B(ωRnl, l) r

−∆ ,

with ωRnl given by (4.8) so that gnl(R) = 0. Thus, to leading order in R one has A(ωRnl, l) ∼
−B(ωRnl, l)R

−2∆+2 which inserted above gives

gnl(r) ∼ −B(ωRnl, l)R
−∆

(( r
R

)∆−2
−
( r
R

)−∆
)
.

With this expression at hand, on can readily see that to leading order in R, the second

term in (4.22) is

L±nl r∂rgnl(r)
∣∣∣
r=R
∼ −2(∆− 1)R−∆BnlResnlφ∓;n(−l)(1 + o(R−2)) , (4.25)

where the R dependence found in (4.20) was taken into account and using (4.19)

Bnl ≡ lim
R→∞

B(ωRnl, l) , Resnl ≡ lim
R→∞

R∆−2ResRnl =
1

2πi

∮
ω=−ωnl

dω
1

A(ω, l)
.

Inserting (4.24) and (4.25) into (4.22) results schematically in a finite piece given by

lim
R→∞

(1 + r2)R∆−2 r∂rΦL ∼ −2(∆− 1)

(
B(ω, l)

A(ω, l)
φL + BnlResnl φ±

)
.

Carrying out similar calculations for the remaining pieces, the on-shell action becomes

S0 = (∆− 1)

(∑
l

∫
F
dω φL(ω, l)φ∗L(ω, l)

B(ω, l)

A(ω, l)
(4.26)

+ 2
∑
nl

∫
dtdϕφL(t, ϕ)

(
φ+;nl e

iωnlt−ilϕ + φ−;n(−l) e
−iωnlt+ilϕ

)
BnlResnl

− i
∑
l

∫
dω (φ+(ω, l)φ∗+(ω, l) + φ−(ω, l)φ∗−(ω, l))

B(−iω, l)
A(−iω, l) − 4πi

∑
nl

φ+;nlφ−;n(−l) BnlResnl

)
,

where

φ+(ω, l) ≡ 1

2π

∫ ∞
0

dτdϕ eiωτ+ilϕ φ+(τ, ϕ) , φ−(ω, l) ≡ 1

2π

∫ 0

−∞
dτdϕ eiωτ+ilϕ φ−(τ, ϕ) ,

φL(ω, l) ≡ 1

2π

∫ T

−T
dtdϕ e−iωt+ilϕ φL(τ, ϕ) ,

and

BnlResnl =
2 (−1)n Γ[1−∆] Γ[n+ |l|+ ∆]

n! (n+ |l|)! Γ[1− n−∆] Γ[∆− 1]
= 2(∆− 1)

Γ[∆ + n+ |l|]Γ[∆ + n]

n!(Γ[∆])2Γ[n+ |l|+ 1]
. (4.27)

Notice that (4.27) is positive for all nl, which can be readily seen from the r.h.s.

4.5 Inner product and n-point correlation functions between excited states

In the present section we devote to analyze the outcomes of (4.26). We will evaluate the

inner product between excited states and the 1,2-pt correlation functions.
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Inner product: as a consistency check, we will calculate the inner product from (4.26),

the result will match with [3, 4]. The inner product between excited states can be computed

by collapsing the Lorentzian piece, taking ∆T → 0, in the absence of Lorentzian sources.

This amounts to consider just the third line in (4.26).6 Explicitly one finds

ln〈Ψφ+ |Ψφ−〉 = lim
∆T→0

iS0

= (∆− 1)

(∑
l

∫
dω (φ+(ω, l)φ∗+(ω, l) + φ−(ω, l)φ∗−(ω, l))

B(−iω, l)
A(−iω, l) + 4π

∑
nl

φ+;nlφ−;n(−l)BnlResnl

)

= (∆− 1)
∑
l

∫
dω
(
φ+(ω, l)φ∗+(ω, l) + φ−(ω, l)φ∗−(ω, l) + 2φ+(ω, l)φ∗−(ω, l)

)B(−iω, l)
A(−iω, l)

=
1

2

∫
dτ dϕ dτ ′ dϕ′

(
φ+(τ, ϕ) + φ−(τ, ϕ)

)
P(τ, τ ′, ϕ, ϕ′)

(
φ+(τ ′, ϕ′) + φ−(τ ′, ϕ′)

)
, (4.28)

where in the second line we have turned a sum over residues into an integral over ω and in

the third line we have defined

P(τ, τ ′, ϕ, ϕ′) ≡ ∆− 1

2π2

∑
l∈Z

∫
dω eiω(τ−τ ′)+il(ϕ−ϕ′)B(−iω, l)

A(−iω, l)

=
(∆− 1)2

2∆−1π

(
cosh(τ − τ ′)− cos(ϕ− ϕ′)

)−∆
, (4.29)

which is the Euclidean 2-pt function on the cylinder, recovering GKPW [4]. Expres-

sion (4.28) is the explicit form of (3.13) with P ≡ −G when Euclidean AdS is parametrized

as (4.11).

1-pt correlation function: the second line in (4.26) is the relevant one for computing

the 1-pt function. The first derivative of (4.26) with respect to the Lorentzian source in

the φL → 0 limits yields

〈Ψφ+ |O(t, ϕ)|Ψφ−〉
〈Ψφ+ |Ψφ−〉

= − δS0

δφL(t, ϕ)

∣∣∣∣∣
φL=0

(4.30)

= −2(∆− 1)
∑
nl

BnlResnl

(
φ+;nl e

iωnlt−ilϕ + φ−;n(−l) e
−iωnlt+ilϕ

)
.

This non-zero result arises from considering non-zero boundary conditions φ± in the Eu-

clidean sections.

One could also notice that if we consider identical initial and final states in (4.30)

(φ+ ≡ φ?−) in the T → 0 limit, being O Hermitean, the result (4.30) should be real. This

condition yields

(φ+;nl)
∗ = φ−;n(−l) ,

or equivalently, from (4.18), one finds

φ+(τ, ϕ) = φ−(−τ, ϕ) ,

which remarkably agrees with the Euclidean dual conjugate prescription given in (3.14).

6Notice that the T dependence in (4.18) disappears in this limit.
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Connected 2-pt function: only the first line in (4.26) is relevant for the second deriva-

tive with respect to φL. This gives the time ordered 2-point connected correlator, yielding

〈Ψφ+ |T [O(t, ϕ)O(t′, ϕ′)]|Ψφ−〉
〈Ψφ+ |Ψφ−〉

∣∣∣∣∣
c

≡ −i δ2S0

δφL(t, ϕ)δφL(t′, ϕ′)

∣∣∣∣∣
φL=0

(4.31)

=
∆− 1

2π2i

∑
l∈Z

∫
F
dω e−iω(t−t′)+il(ϕ−ϕ′) B(ω, l)

A(ω, l)

=
(∆− 1)2

2∆−1π

(
cos((t− t′)(1− iε))− cos(ϕ− ϕ′)

)−∆
.

which is independent of the boundary conditions φ±. This, perhaps unexpected result, will

be explained in the next section.

4.6 Checking the coherent character of the initial/final states

In section 3.1 we have shown that assuming (3.6) and considering states of the form (3.1),

the 1-pt function (3.11) is linear in φ±. Moreover, an explicit expression for λ±k can be

written down using (3.8) and (3.10).

On the other hand, using only the SvR prescription we computed the 1-pt func-

tion (4.30) that, compared to expression (3.11), gives

λ±nl ≡ −
√

2π
√

2(∆− 1)BnlResnl φ±;n(∓l) . (4.32)

It is now straightforward to check from (3.8) and (4.27) that

Nnl =

√
BnlResnl
2(∆− 1)

,

such that (4.30) remarkably coincide with the expression (3.11) up to a normalization factor

which just rescales the operator.

In a similar fashion one could consider (3.1) and (3.6) and compute the inner prod-

uct (4.28) and the 2-pt function (4.31) finding that they also match with our results. The

independence of (4.31) on φ± can be better understood from the definition of the connected

2-point function

〈Ψφ+ |T [O(t, ϕ)O(t′, ϕ′)]|Ψφ−〉
〈Ψφ+ |Ψφ−〉

∣∣∣∣∣
c

≡ 〈Ψ
φ+ |T [O(t, ϕ)O(t′, ϕ′)]|Ψφ−〉

〈Ψφ+ |Ψφ−〉

− 〈Ψ
φ+ |O(t, ϕ)|Ψφ−〉
〈Ψφ+ |Ψφ−〉

〈Ψφ+ |O(t′, ϕ′)|Ψφ−〉
〈Ψφ+ |Ψφ−〉

.

One can see that the φ± dependence cancels out between the first and second terms in the

r.h.s.

Every result so far is consistent with the claim that the excited states (3.1), built by

turning on Euclidean boundary conditions φ± in the SvR prescription satisfy

ânl |Ψφ−〉 =
(
−
√

2π
√

2(∆− 1)BnlResnl φ−;n(−l)

)
|Ψφ−〉 , (4.33)
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〈Ψφ+ | â†nl = 〈Ψφ+ |
(
−
√

2π
√

2(∆− 1)BnlResnl φ+;nl

)
, (4.34)

which define |Ψφ±〉 as coherent states. Therefore, the states (3.1) can be explicitly written

in the bulk Hilbert (-Fock) space HAdS as

|Ψφ±〉 = e
∑
nl 2π(∆−1)BnlResnlφ±;n(l)φ±;n(−l)e−

∑
nl

√
4π(∆−1)BnlResnl φ±;n(∓l)â

†
nl |0〉 , (4.35)

in agreement with our expectations.

5 Concluding remarks

Through explicit holographic computations we have probed the Skenderis and van Rees

proposal for excited states. We computed the time ordered 1- and 2-point functions in

arbitrary states and have also found a noticeable expression to calculate the inner product

between them, which can be easily computed in the semi-classical approximation. The

results support the hypothesis that the states built out by turning on Euclidean boundary

conditions are coherent states. This could have also been argued by demanding consistency

with other holographic recipes [14, 15, 22].

This scenario gives a more precise insight on the nature of the CFT-states that shall

be associated to semiclassical gravity configurations in the large N -limit, i.e, states where

the spacetime geometry and the bulk fields behave classically. Our results are also in line

with previous observations done in the AdS/CFT literature [13, 19, 20].

We have also learned that asymptotic boundary conditions play a crucial role when

defining excited states in the Euclidean path integral description of the wave functionals.

The outcome of our computations is that the HH construction [10] can be generalized to

excited states in (quantum) gravity through the formula (2.6), which properly generalized

to include the gravitational degrees of freedom reads

Ψφ−,h− [φΣ− , hΣ− ] ≡
∫ (φΣ− , hΣ− )

(0 , h0)
[DΦ]φ− [D(g,M−)]h− e

−S−[Φ,g]−SEH [g] .

The measure [D(g,M−)]h− stands for the d + 1-dimensional spaces M− that fit into the

boundaries Σ− ∪ S−, endowed with Riemannian metrics g. They induce d-dimensional

metrics hΣ− , h− on the respective boundaries, as usual in Euclidean Quantum Gravity [10].

While hΣ− can be arbitrary fixed, h− shall be defined as a suitable deformation of the

conformal structure induced by Euclidean AdS on the asymptotic boundary h0, provided

the deformation vanishes in the limit τ → −∞.

In spacetimes with no asymptotic boundary, more investigation is required but this

observation suggest that this generalization could come up by inserting suitable extra

boundaries in the Euclidean manifolds where one sums over. This idea will be explored in

depth in a future work.
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