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Li and Luo [Phys. Rev. A 78 (2008) 024303] discovered a remarkable relation between discord
and entanglement. It establishes that all separable states can be obtained via reduction of a

classically-correlated state \living" in a space of larger dimension. Starting from this result, we

discuss here an optimal classical extension of separable states and explore this notion for low-

dimensional systems. We ¯nd that the larger the dimension of the classical extension, the larger
the discord in the original separable state. Further, we analyze separable states of maximum

discord in C2 � C2 and their associated classical extensions showing that, from the reduction of

a classical state in ðC2 � C3Þ � C2, one can obtain a separable state of maximum discord in

C2 � C2.

Keywords: Quantum correlations; quantum discord; entanglement and separability.

1. Introduction

Entanglement and discord are known to be quantum resources for implementing

information-computation protocols (ICPs) with a higher e±ciency than that

attainable via classical resources (for a complete review see Refs. 1 and 2 and refer-

ences therein). The entanglement usefulness for such protocols has been extensively

documented. As for discord's, one can cite, for instance, Refs. 3–12, although some

*Corresponding author.

International Journal of Quantum Information
Vol. 13, No. 2 (2015) 1550015 (18 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S021974991550015X

1550015-1

http://dx.doi.org/10.1142/S021974991550015X


controversy arises regarding its ICP-necessity.13–15 It is clear, however, that entan-

glement and discord capture di®erent features of the quantum world. Discord cap-

tures the fact that all classical states must be information-wise accessible to local

observers. Thus, it is accepted that the dichotomy classical/non-classical can be

treated in similar fashion as that regarding discord/no-discord. For a bipartite sys-

tem, one associates a Hilbert space HAB ¼ HA �HB. A system's state is represented

by a positive semi-de¯nite, hermitic operator of trace unity acting on HAB. If f�A
i g

and f�B
i g are complete projective measurements over HA and HB, respectively,

then2,16

. If �AB ¼ P
ipi�

A
i � �B

i , the state is classical-quantum (CQ): There exists a basis

in A for which the locally accessible information is maximal and, for an external

observer, such information can be obtained without perturbing the composite

system;

. If �AB ¼ P
i;jpij�

A
i � �B

j , the state is classical-classical (CC): The locally acces-

sible information is maximal for A and B, can be obtained without perturbing the

composite system.

In analogous fashion, one de¯nes quantum-classical (QC) states via interchange of A

and B. We will generally speak of classical states when referring to any of these three

sub-types. Moreover, we will speak of the set CC of classical-classical states, the set CQ
(QC) of classical-quantum (quantum-classical) states, and the set S of separable

states.

From the above de¯nitions, one easily ascertains that, even if the sets CC and CQ
are included within the convex S, neither CC nor CQ (or QC) constitute a convex set

by themselves. Precisely, this lack of convexity implies the existence of classical states

that, via mixing amongst themselves, may give rise to non-classical states, endowed

with discord.17 This fact underlies the link between separability and classicality

observed by Li and Luo17: A bipartite state is separable i® it can be obtained as the

reduction of a CS of larger dimension, respecting the original bipartition. This as-

sertion is the source of the present investigation.

Herefrom, we speak of CS when referring to CQ states. Thus, given a bipartite

state �ab, with �a :¼ trb½�ab� and �b :¼ tra½�ab�, we compute the discord18

�að�abÞ :¼ Ið�abÞ � Cð�abÞ; ð1Þ
where

Ið�abÞ :¼ Sð�aÞ þ Sð�bÞ � Sð�abÞ; ð2Þ
is the quantum mutual information of the bipartite state and

Cð�abÞ :¼ Sð�bÞ � min
fM a

i g
Sð�bj�aÞ ð3Þ
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is the corresponding classical information for that state. Sð�Þ is von Neumann's en-

tropy (logarithms of basis 2) and fMa
i g a set of positive operators representing a

generalized measurement over Ha. Sð�bj�aÞ :¼ Sð�abÞ � Sð�aÞ is the conditional

quantum entropy.

In Sec. 2, we shall introduce and adapt the Li–Luo's relation between separa-

bility and classicality to our present needs. We introduce in Sec. 3 the notion of

optimum classical extension for separable states as that of smallest dimensionality.

In Sec. 4, we will show that, for low-dimensionality separable states (C2 � C2), it is

possible to ¯nd classical extensions that improve on the ones in Ref. 17 Some

explicit examples will be given. In Sec. 5, we discuss the existence of separable

states with maximum discord in arbitrary dimensions and consider their relation

with the notions of: (i) mutually unbiased basis and (ii) generalized measurements

that are both symmetric and informationally complete. Some conclusions are

drawn in Sec. 6.

2. Separability Versus Classicality: Li–Luo's relation

Monogamy is a fundamental feature of entanglement. Given a multipartite system, if

two of its parties are maximally entangled, then they cannot be entangled with a

third party. Given a composite state �AB, with fAig and fBjg parts of A and B,

respectively, a monogamous entanglement measure E is such that19,20

EðA : BÞ �
X
i;j

EðAi : BjÞ; ð4Þ

where Eðx : yÞ yields the entanglement between x and y, E � 0. It follows from (4)

that, given �AB not entangled, none of its reductions will exhibit entanglement, i.e.,

EðA : BÞ ¼ 0 ) EðAi : BjÞ ¼ 0 8 i; j: ð5Þ

Reciprocally, an entangled state �AiBj can not be extended to a non-entangled one

�AB. The vocable extension will be the subject of the precise de¯nition 1 below.

In general, discord does not obey inequalities of the type (4).21–24 Li and Luo

showed that any bipartite separable state can be extended to a CC state in a space of

larger dimension17 (Fig. 1). They studied the \separable!classical–classical" ex-

tension. We, instead, are here interested in the separable!classical-quantum ex-

tension. The following theorem explains just how to ¯nd the desired extension17:

Theorem 1. A bipartite state �ab is separable in Hab ¼ Ha �Hb i® there exists a

CQ state �Ab in HAb ¼ HA �Hb, with HA ¼ Ha �H �a such that

�ab ¼ tr�a½�Ab�: ð6Þ
Here,H �a is an auxiliary Hilbert space for party a, while tr�a is the partial trace overH �a.

Classical extension of quantum-correlated separable states
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Proof. The demonstration is adapted from Ref. 17 We start with an arbitrary

separable state

�ab ¼
XK
k¼1

pk�
a
k � � b

k: ð7Þ

Each �a
k can be expanded in its eigen-basis fj�kuig so that (7) can be cast as

�ab ¼
X
k

X
u

pkakuP
a
ku � � b

k; ð8Þ

where we de¯ne P a
ku :¼ j�kuih�kuj. Our extension demands consideration of an

auxiliary system �a, de¯ned in H �a ¼ CK, such that fjkig, with k ¼ 1; 2; . . . ;K an

orthonormal basis of CK. Then,

f�A
ku :¼ jkihkj � P a

kug; ð9Þ
is an orthogonal set of HA :¼ H �a �Ha. Extension to a complete projective

measurement in the extended space is feasible. De¯ne the extended state (in

ðCK �HaÞ �Hb)

�Ab :¼
X
k;u

pkaku�
A
ku � � b

k; ð10Þ

a CQ state with respect to the partition ðA; bÞ. From its reduction, one gets the

separable state �ab. Accordingly,

tr�a½�Ab� ¼
X
k;u

pkakuP
a
ku � � b

kv ¼ �ab; ð11Þ

as we wished to show.

Fig. 1. A separable state can always be obtained as the reduction of a classically correlated state em-

bedded in a space of larger dimension. Li–Luo's extension algorithm provides the manner in which to

determine the classical extension of any given separable state.
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This classical-extension construction-process will be called, either Li–Luo's ex-

tension or Li–Luo's algorithm (LLA). Some observations are in order.

. Our extension depends on the separable decomposition of the original state

(see (7)). The party one wishes to make classical is extended using an ancilla in CK,

with K the number of terms in the decomposition. Luo et al. want instead a CC

state which needs two ancillae (one per party) in CK.

. Extending party b does not change its classical nature when \observed" from a

(with a local measurement on a). The b-extension does not modify the CQ char-

acter of the bipartite system. Conversely, assume the existence of a classical

extension !aB in HaB ¼ Ha �HB, with HB :¼ Hb �H�b , compatible with a given

separable state �ab. In such a case, we can write

!aB ¼
X
m;n

�mn�
a
m � !B

n ; ð12Þ

and tracing over the ancilla we obtain the classical state �ab ¼ P
m;n�mn�

a
m � ! b

n,

with !b :¼ tr�b ½!B�. Thus, �ab can not be an arbitrary separable state (it is classical).

. The LLA does not entangle the ancilla with the original system, that is, a with �a.

Actually, from (9) and (10), it follows that

�a�a ¼ trb½�Ab� ¼
X
k

pk�
a
k � jkihkj; ð13Þ

is the separable state from A. More general classical extensions (see De¯nition 1 in

Sec. 3) in which �a is entangled with a are possible. They would limit, though, the

a–b correlation-capacity.

. The LLA is such that the ¯nal state does not exhibit any discord with respect to

the ancilla: ��að�a : �Þ ¼ 0.

. Given a classical state, any reduction that preserves the bipartition gives rise to a

separable state. Corollary: it is impossible to ¯nd a classical extension of an

entangled state.

The statements above imply that LLA cannot be unique, except for special sep-

arable states: those whose convex decomposition of product states is itself unique,

which happens for pure states. Since separable pure states are product states, they

are of no interest for us here.

A relevant question is whether one can ¯nd an optimal classical extension of a

given separable state, where the vocable `optimal' refers to some extremal criterion.

One could de¯ne it, for instance, as being the classical extension of smallest dimen-

sion. We will tackle this issue with greater precision below and study the relation

between optimality of the classical extension of separable states and their quantum

correlations.

Classical extension of quantum-correlated separable states
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3. Optimal Extension from Separable State to Classical State

Given a bipartite separable state �ab inHab ¼ Ha �Hb, it is always possible to ¯nd a

decomposition of the form25–27

�ab ¼
X‘
k¼1

pkjakihakj � jbkihbkj; ð14Þ

where rk½�ab� � ‘ � ðrk½�ab�Þ2. Here, ‘ is the states's cardinality or length and

represents the least number of product states needed for the purpose. Equation (14) is

the optimum decomposition of �ab. For separable states in C2 � C2, one can always

¯nd a decomposition of the type (14) with ‘ ¼ maxfrk½�ab�; rk½ð�abÞTb�g � 4, where

ð�abÞTb is the partial transpose of �ab.28

It is noteworthy that there are other possible decomposition schemes for bipar-

tite states, even in the case of non-separable states. Luo and Sun showed the

equivalency of several non-broadcasting theorems using a particular form of

bipartite decomposition.29

Let us introduce some useful de¯nitions:

De¯nition 1. Given the bipartite separable state �ab in Ha �Hb, we say that �AB

in HA �HB is a classical extension of �ab if

tr�a;�b ½�AB� ¼ �ab; ð15Þ

and �AB is classical. The partial trace is taken over H �a and H�b , the extensions of �ab,

with HA ¼ Ha �H �a and HB ¼ Hb �H�b .

Here, we could distinguish three possible extensions: from separable states to CC,

CQ or QC states, respectively. As previously stated, we will be interested in CQ-

extensions. Our following results, though, could be easily generalized to QC-or CC-

extensions.

De¯nition 2. Given �ab separable in Ha �Hb, we say that �AB in HA �HB is the

optimal classical extension of �ab if: (a) �AB is a classical extension of �ab; and (b) for

any other classical extension !A 0B 0
in HA 0 �HB 0

, dim½HA 0 �HB 0 � � dim½HA �HB�.
In general, the best Li–Luo's extension is that made from the optimum decom-

position: then the ancilla is C‘, with ‘ the length of the state to be extended. How-

ever, our De¯nition 2 opens the door to possible extensions not foreseen by the LLA,

since it makes no reference to any particular way of determining the extension. We

may have, for instance, extensions that entangle a with �a. Alternatively, one may

think of extensions that exhibit discord with respect to the ancilla (i.e., ��að�a : �Þ 6¼ 0).

None of them are contemplated in the LLA. Consequently, applying LLA to the

optimum decomposition does not guarantee an optimal classical extension. Since we

lack a closed formula for the optimum decomposition of arbitrary separable states, we

cannot ¯nd neither the best Li–Luo's extension for arbitrary states, nor even less the
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optimal classical extension. We show below, however, how to set dimensionality

bounds to our extensions.

3.1. Bounds for optimal extension

Theorem 1 says something regarding the dimensionality of the optimal classical

extension. Since rk½�ab� � ‘ � rk½�ab�2, using the optimum decomposition, Li–Luo's

algorithm yields a classical extension for which the ancilla's dimension is

dLuo
�a :¼ dim½C‘� ¼ ‘, so that rk½�ab� � dLuo

�a � rk½�ab�2. The optimal classical exten-

sion might improve on Li–Luo's, in which case dopt
�a < dLuo

�a . Regarding our ancilla's

dimension and with regards to bipartite separable states, the next proposition

establishes a general lower bound.

Proposition 1. Let �ab be separable in Ha �Hb, with length ‘, and consider the

classical extension �Ab in ðHa �H �aÞ �Hb, as in De¯nition 1. Then, the ancilla's

dimension obeys

d�a � dfðda; db; ‘Þe ð16Þ
where dx :¼ dim½Hx� and dye ¼ minfn 2 Zjy � ng. The function fðda; db; ‘Þ is the

only positive root of the quadratic polynomial P2ðxÞ :¼ c2x
2 þ c1xþ c0, with c2 :¼ d2

a,

c1 :¼ daðd2
b � 1Þ and c0 :¼ ‘ð3� 2da � 2dbÞ.

Proof. Let ‘ stand for the length of �ab (see Eq. (14)), this separable state can be

expressed via

�ab ¼
X‘
k¼1

pkP
a
k � P b

k ; ð17Þ

with fP a
k g1�k�‘ and fP b

kg1�k�‘ projector-sets of rank one in Ha and Hb, respectively.

The number of independent real parameters needed for this state's determination is

‘� 1þ ‘ð2da þ 2db � 4Þ: ð18Þ
This is obtained as follows. The set fpkg1�k�‘ with the condition

P
kpk ¼ 1 is

determined with ‘� 1 quantities. For each pure state P a
k , one needs 2da � 2 real

parameters similar for P b
k . Additionally, given the classical state �Ab, we can cast it as

�Ab ¼
XdA
m¼1

qm�
A
m � � b

m; ð19Þ

with f�A
mg a basis of rank one orthogonal projectors in HA, and f� b

mg a set of states

inHb. The indexm ranges between 1 and dA ¼ dad�a. Accordingly, the set fqmg yields
dA � 1 independent real parameters. The set f�A

mg yields dAð2dA � 2Þ real

parameters and we need to discount the dAðdA � 1Þ restrictions imposed by the

commutation rules ½�A
m;�

A
n � ¼ 0, with m > n. Note that there are only 1

2 dAðdA � 1Þ
di®erent commutation rules, but each complex equation ½�A

m;�
A
n � ¼ 0 counts as two

Classical extension of quantum-correlated separable states
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real constraints. In conclusion, f�A
mg1�m�dA has dAðdA � 1Þ independent real

parameters. Another way to see that dAðdA � 1Þ is the correct amount of independent

real parameters is to take f�A
mg as the rows of a unitary matrix in CdA�dA . Such a

matrix has d2
A independent real parameters, but we must subtract dA arbitrary

independent phases, yielding the correct answer.

Also, each � b
m is an arbitrary state of b that is cast as � b

m ¼ P
s�

ðmÞ
s �

bðmÞ
s and is

determined by db � 1þ dbðdb � 1Þ independent real parameters. Finally, the state

�Ab is determined by

d 2
A þ ðd2

b � 1ÞdA � 1 ð20Þ
real parameters. The CQ state �Ab requires a number of parameters greater or

equal (Eq. (20)) to that for �ab (Eq. (18)). One ends up with the above indicated

bound for d�a.

The following observations are in order.

. The minimum of our bound on d�a (16) is always smaller than ‘. If dmin
�a :¼

dfðda; db; ‘Þe is the minimum of (16) for given da, db and ‘, and dopt
�a is the unknown

theoretical minimum for d�a, then dmin
�a � dopt

�a � ‘ ¼ dLuo
�a .

. fðda; db; ‘Þ grows monotonously with ‘, for all ‘ � 1 and da; db � 1. Thus, the

condition rk½�ab� � ‘ � rk½�ab�2 establishes both a minimum and a maximum to

the bound of the proposition,

dfðda; db; rabÞe � dmin
�a � dfðda; db; r2abÞe; ð21Þ

with rab :¼ rk½�ab�. For states of maximum rank i.e., rk½�ab� ¼ dadb, the bounds

depend on the dimensions of the parties a and b. In particular, in the two qubits

case, one has ‘ ¼ maxfrk½�ab�; rk½ð�abÞTb�g � 4. Thus, for extending two qubits

separable states of maximum rank, we ¯nd d�a � dmin
�a ¼ 2.

. For full-rank states, dfðda; db; dadbÞe and dfðda; db; d2
ad

2
bÞe are the limit-values for

dmin
�a . Values of dmin

�a are always smaller than those obtained via LLA (Table 1).

. For systems of greater dimension, consider the case da ¼ db ¼ d with full-rank

states. From the asymptotic expansion of (16) we deduce that

4. dmin
�a . 2 d3=2ðd ! 1Þ; ð22Þ

considering that rab � ‘ � r2ab. For these states d2 � dLuo
�a ¼ ‘ � d4.

. The proposition establishes a lower bound to the ancilla's dimensionality in the

extension from a separable state to a CQ one. If we wished for an CC optimal

extension, we will deal with a state of the form �AB ¼ P
m;nqmn�

A
m � �B

n . The

number of real parameters of �AB is given by (i) dAdB � 1 for fpmng, (ii) dAðdA � 1Þ
for f�A

mg, and (iii) dBðdB � 1Þ for f�B
n g. The bounds for d�a and d�b are obtained in

analogous fashion.
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From these considerations, it follows that, even if the optimal extension remains

unknown, Li–Luo's classical extension, from the optimum decomposition of the

separable state, yields a state that may di®er from the one providing the best classical

extension. We specialize to two qubits next and ¯nd more speci¯c results.

4. Classical Extension of Separable States in C2 �C2

We investigate now possible classical extensions of twoqubits separable states, with

emphasis on states of maximum discord.

4.1. Extensions in Li–Luo's scheme

In order to ¯nd states of maximum discord, let us revisit the relation between discord

and entanglement. We are interested in such states for a ¯xed rank of the density

matrix. In Ref. 30, Luo compares the discord and the entanglement of formation for

Werner states of two qubits. Moreover, in Ref. 31, the authors display such relation

for randomly generated twoqubits states. Figure 2 reproduces such relation, by nu-

merically computing the discord for 3� 106 states, and encounter those families that

bound by below and by above the graph discord versus entanglement. The family

�ð�Þ :¼ 1

2

� 0 0 �

0 1� � 1� � 0

0 1� � 1� � 0

� 0 0 �

0
BBB@

1
CCCA; ð23Þ

with 0 � � � 1 gives a lower bound for any degree of entanglement. The states

�� :¼ 1

2

� 0 0 �

0 1� � 0 0

0 0 1� � 0

� 0 0 �

0
BB@

1
CCA; ð24Þ

with 0 � � � 1, give an upper bound for states whose entanglement ranges be-

tween 0 and 0:620. For larger entanglement, this limit is provided by Werner

Table 1. Ancilla's dimension for the classical extension of a

bipartite separable state �ab with da ¼ d ¼ db and maximum

rank. Second column: Range of values allowed by Eq. (16).

Third column: Li–Luo's extension values from the optimum

decomposition of �ab. �For d ¼ 2, we use the result from San-

pera et al. stating that for these states ‘ ¼ 4.28

d dmin
�a dLuo

�a

1 1 1

2� 2 4

3 [2,8] [9,81]
4 [3,13] [16,256]
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states (see Fig. 2)

�� :¼ ð1� �Þ
4
þ �j ih j; ð25Þ

with �1=3 � � � 1 and j i :¼ ðj01i � j10iÞ= ffiffiffi
2

p
. All these families are subsets of the

so-called maximally mixed marginal states, for which an analytical discord-expres-

sion is known. The authors of Ref. 31 calculate the discord for the states ��, ¯nding

�að�Þ ¼ ð1� �Þ logð1� �Þ þ � logð�Þ þ ð1þ �Þ
� 1� ��

2
logð1� ��Þ 1þ ��

2
logð1þ ��Þ; ð26Þ

where �� :¼ maxfj�j; j2�� 1jg. These states' concurrence is Cð�Þ ¼ maxf0; 2�� 1g.
The states � are separable for � 2 ð0; 12�. Of these separable ��, the one of largest

discord corresponds to � ¼ 1
3. One has �að��Þj�¼1

3
¼ 1

3 (Fig. 3). Note that the opti-

mization can be achieved in analytic fashion (cf. Eq. (26)). Accordingly, the state

�‘¼4
max :¼ �� j�¼1

3
¼ 1

6

1 0 0 1

0 2 0 0

0 0 2 0

1 0 0 1

0
BB@

1
CCA ð27Þ

is representative of maximum discord-separable states in C2 � C2. We have

rk½�max� ¼ 3 and rk½�Tb
max� ¼ 4, so one expects to ¯nd a separable decomposition of the

Fig. 2. Discord versus entanglement of formation for bipartite states in C2 � C2. Dots correspond to

3� 106 randomly generated states according to Haar's measure. We report results for 1� 106 rank 2-

states, 1� 106 of rank 3, and 1� 106 of rank 4. Green and blue curves correspond, respectively, to the
families �� and �� .
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type (14), with ‘ ¼ 4. Thus, �‘¼4
max can be classically extended via LLA with dLuo

�a ¼ 4.

On the other hand, it is possible to ¯nd classical states of smaller dimension whose

separable reductions reaches a discord-amount close to the maximum. For instance,

the state

�‘¼3
max :¼ �� j�¼1

2
¼ 1

4

1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 1

0
BB@

1
CCA ð28Þ

has a discord that equals 93% of the discord accrued to the state �‘¼4
max and can be

classically extended with dLuo
�a ¼ 3. Similarly, the state

�‘¼2
max :¼

1

2
ðj0ih0j � j0ih0j þ jþihþj � j1ih1jÞ; ð29Þ

that can be classically extended with dLuo
�a ¼ 2, exhibit a discord equal to 61% of that

of �‘¼4
max (see Table 2).

4.1.1. Separable decomposition of �‘¼3
max

We continue with the issue of expressing, for di®erent ranks, states of large discord.

For ‘ ¼ 3, the maximum discord is 0:3113, a value reached by the state �‘¼3
max of

Eq. (28). It's easy to verify that

�‘¼3
max ffi

1

4
P0 � P0 þ P1 � P1 þ Pþ � Pþ þ P� � P�ð Þ ð30Þ

Fig. 3. Discord and entanglement of formation for states of the family ��.
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with fPjgj¼0;1;þ;�;r;l the eigen-projectors of �z and �x, respectively. By `ffi' we indicate

an equivalence up to unitary transformations. Equation (30) is a possible separable

decomposition, but it is not optimal. To ¯nd the separable optimum decomposition of

a given bipartite state, one proceeds as described in Ref. 28 Denoting by

j�; 	i :¼ cos
�

2

� �
j0i þ expði	Þ sin �

2

� �
j1i; ð31Þ

an arbitrary pure state in C2, we ¯nd that the setW ¼ fj0; 0i; j 2
3 ; 0i; j 2
3 ; 
ig de¯nes
the optimum decomposition

�‘¼3
max ffi

1

3

X3
i¼1

Wk �Wk ð32Þ

with Wk ¼ jwkihwkj and jwki 2 W. We repeat things below for �‘¼4
max.

4.1.2. Separable decomposition of �‘¼4
max

It is easy to see that �‘¼4
max ffi ��, with � ¼ 1

3, and that it can be decomposed as

�‘¼4
max ffi

1

6
P0 � P0 þ P1 � P1 þ Pþ � Pþ þ P� � P� þ Pr � Pr þ Pl � Plð Þ; ð33Þ

with fPjgj¼0;1;þ;�;r;l the eigen-projectors of �z, �x and �y, respectively. We seek now

for the optimum decomposition. For simplicity's sake, instead of �‘¼4
max, we consider

~�max :¼
1

6

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

0
BB@

1
CCA; ð34Þ

obtained from �‘¼4
max via a local (in b) unitary transformation, which does not change

the discord. This transformation consists of a swap in b,

Ub :¼
0 1

1 0

� �
; ð35Þ

such that ~�max ¼ U�‘¼4
maxU

†, with U :¼ a � Ub and a the identity in a.

Table 2. Discord for maximally discording

separable states in C2 � C2 according to

their length.

‘ð¼ dLuo
�a Þ �aða : bÞ

4 1
3 
 0:3333

3 ð34Þ logð43Þ 
 0:3113

2 2� ð
p
2
2 Þ logð3þ 2

p
2Þ 
 0:2018

1 0
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De¯ning Z ¼ fj0; 0i; j��; 0i; j��; 2
3 i; j��; 4
3 ig, with �� ¼ arccosð� 1
3Þ, the optimum

decomposition of ~�max is

~�max ¼
1

4

X4
k¼1

Zk � Zk; ð36Þ

with Zk ¼ jzkihzkj and jzki 2 Z.

Note that all states exhibit the same overlap among themselves, i.e., that

jh�k; 	kj�k 0 ; 	k 0 ij2 ¼ c, 8k 6¼ k 0 (c ¼ 1=3). In terms of a parameterization of states on

the Bloch sphere, where rk ¼ ðsinð�kÞ cosð	kÞ; sinð�kÞ sinð	kÞ; cosð�kÞÞ is the position-
vector associated to j�k; 	ki, the angle between two di®erent states is always 2
=3.

Summing up, the pure states in ~�max can be associated to the four vertices of the

regular 3-simplex in a 3D space (a tetrahedron). As shown by Eq. (36), both sub-

systems have the same pure states. Thus, the state of maximum discord for two

qubits can be expressed as the equal-weights, convex combination of four symmetric

product states given by four pure states that are maximally distinguishable. Given

this states' symmetry in both qubits' spaces, any choice of projective measurement

will yield the same discord.

4.2. Optimal classical extensions

As suggested by Table 1, it is possible to improve on the results of the LLA. Notice

from Fig. 4 that it is possible to classically extend �‘¼4
max with a qutrit, while the LLA

needs two qubits. Similarly, we can extend �‘¼3
max with one qubit, versus the one qutrit

required by the LLA. These new extensions were numerically obtained via Monte

Carlo so as to ¯nd the reductions in C2 � C2 [of classical states in CdA � C2] of largest

discord. One starts building up a classical state �Ab ¼
P

kpk�
A
k � � b

k, with

f�A
k g1�k�dA orthonormal projectors of CdA . The family of orthonormal projectors is

obtained as the columns of an arbitrary unitary matrix UA 2 CdA�dA . The 4 states � b
k

are arbitrary in C2 and fpkg a probability distribution. Given the prevailing sym-

metry in the maximally discordant states, we choose � b
k ¼ �a

k ¼ tr�a�
A
k and pk ¼ 1

dA

Fig. 4. So as to extend the two qubits, maximally discordant separable state �‘¼4
max, Li–Luo's algorithm

employs an ancilla in C4. In the optimal scheme, it is possible to ¯nd a compatible extension in C3.

Classical extension of quantum-correlated separable states

1550015-13



for all k, so that the classical state becomes determined solely by UA. This is the

only element that varies in each algorithm's step, which considerably simpli¯es

computations.

Figure 5 displays our results. The maximally discordant separable state, with

�aða : bÞ ¼ 0:3333, is obtained as the reduction of a classical state with dA ¼ 3. For

dA ¼ 2, the reductions' maximum discord is seen to be �aða : bÞ ¼ 0:3113. The col-

umns of the unitary matrix

U opt
A ¼

0:5288� 0:2428 i �0:0241þ 0:0541 i 0:2730 � 0:0396 i 0:5695þ 0:3689 i �0:1512� 0:1230 i 0:2672 � 0:1097 i

�0:0179þ 0:2237 i 0:1392þ 0:1287 i 0:1575 � 0:8817 i �0:2307þ 0:1243 i �0:1110� 0:0388 i 0:1259 � 0:1150 i

�0:0670þ 0:1750 i �0:0525� 0:0246 i 0:0387 þ 0:2783 i �0:2118þ 0:0457 i �0:4907þ 0:1406 i 0:1647 � 0:7403 i

0:4663þ 0:4930 i 0:0701þ 0:2679 i �0:0392 þ 0:0417 i 0:1412� 0:5644 i 0:2635þ 0:1158 i 0:1552 � 0:1193 i

�0:2532þ 0:0657 i 0:8938þ 0:0569 i 0:0919 þ 0:1655 i 0:1642þ 0:1537 i 0:1726þ 0:0124 i 0:0627 � 0:0954 i

�0:2169� 0:0076 i �0:2708þ 0:0706 i �0:0449 � 0:0414 i 0:0949þ 0:1610 i 0:6485� 0:3928 i �0:0244 � 0:5103 i

0
BBBBBBB@

1
CCCCCCCA

ð37Þ

determine, on the standard basis, the basis f�A
k g1�k�6 of the classical state �

Ab
opt such

that tr�a�
Ab
opt exhibits maximum discord: �aða : bÞ ¼ 0:3333. We are ¯nding an ex-

tension in C6 � C2 of �‘¼4
max, improving on the LLA. Why is this extension unat-

tainable in C6 � C2 via the Li–Luo's approach? It su±ces to note that ‘ ¼ 4, so that

the LLA demands an ancilla in C4 so as to classically extend things to �‘¼4
max. We

conjecture that �Ab
opt is the optimal extension of �‘¼4

max.

Notice the following di®erence between Li–Luo's extension and the optimal one.

In the latter, the ancilla is correlated only with the set ab, but not individually with a

or b, i.e., Ið�a : aÞ ¼ 0 and Ið�a : bÞ ¼ 0 but Ið�a : abÞ ¼ 0:585. Instead, for Li–Luo's

extension, one has Ið�a : aÞ ¼ 1, Ið�a : bÞ ¼ 1, and Ið�a : abÞ ¼ 1:585.

(a) (b)

Fig. 5. Search for the maximally discordant separable states of two qubits, obtained via reductions of

classically correlated states using the Monte Carlo method. Each line corresponds to a di®erent simulation-

temperature. (a) Using classical states in C4 � C2 one ¯nds reductions whose maximum discord is

�aða : bÞ ¼ 0:3113. (b) Using classical states in C6 � C2 one ¯nds reductions with maximum discord

�aða : bÞ ¼ 0:3333.
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5. Maximally Discordant Separable States

The previous results in C2 � C2 suggest that maximally discordant separable states

(MDSS) possess a rank close to the maximum. We see next how some symmetries

associated to the construction of maximally discordant separable states of two qubits

can be generalized to spaces of greater dimension.

Equations (30) and (33) indicate that two qubits MDSS can be built by uniformly

mixing states corresponding to di®erent mutually unbiased bases (MUBs). Indeed,

�‘¼3
max is constructed mixing two MUBs (�z and �x in our example) and �‘¼4

max is erected

mixing the three possible MUBs. We now look for a possible generalization of these

MDSS to arbitrary dimension.

For d� d-dimensional states, if fP i
kg1�i�d

1�k�dþ1 is the set of projectors determining

the dþ 1 MUBs of one of the parties, the state

�d
max :¼

1

dðdþ 1Þ
Xdþ1

k¼1

Xd
i¼1

P i
k � P i

k: ð38Þ

should be a plausible candidate of a maximally discordant state.

Another possible MDSS-generalization (Eq. (34)) to larger dimensions starts from

noting that the projectors basis of rank 1 fZkg1�k�4 of Eq. (36) constitutes a sym-

metric and informationally complete positive operator valued measure (SIC-POVM)

in C2. In fact, taking Ek :¼ Zk=d and d ¼ 2 one has

Xd 2

k¼1

Ek ¼ ; ð39Þ

and

trðEkEk 0 Þ ¼ 1

d2ðdþ 1Þ ; k 6¼ k 0: ð40Þ

Equivalently,

1

d

Xd2

k¼1

Zk ¼ ; ð41Þ

and

trðZkZk 0 Þ ¼ 1

dþ 1
; k 6¼ k 0: ð42Þ

In the d-dimensional case, a SIC-POVM is a set fZkg1�k�d 2 of rank 1 projectors

obeying (41) and (42). A trivial generalization to two qudits is given by the state

~� d
max :¼

1

d2

Xd2

k¼1

Zk � Zk: ð43Þ

Classical extension of quantum-correlated separable states
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The existence of SIC-POVMs in Cd has not been demonstrated yet for arbitrary d,

although it is proved for d prime or d a power of a prime. Our problem is equivalent to

that of ¯nding d2 rays separated by equal angles in Cd,32,33 being intimately linked to

the existence of dþ 1 mutually unbiased bases (MUBs) in Cd and thus with the

existence of complementary observables.34,35 Alternatively, our problem can be seen

as that of embedding the simplex (d2 � 1)-dimensional generated by d2 pure states

into the convex of quantum states in such a way that all pure states exhibit the same

overlap.36 This is the way in which we interpret the tetrahedron formed by the

components of ~�max in Eq. (36). A SIC-POVM is a POVM that better approximates

an orthonormal basis in the states-space.37 It is interesting to note that recently some

authors introduced a new measure of quantum correlations involved in the optimal

acquisition of information over all the local MUBs.38

5.1. Genuine quantum correlations

Recent works show that one can obtain states with ¯nite discord by e®ecting local

operations on states of null discord.13,14 Thus, one may view discord as a resource,

necessary, but not su±cient, to attain genuine quantum correlations. A way of point

out toward states with genuine quantum correlations is through their decomposition

in product states of local bases.39 If fAmg and fBng are bases associated to Hermitic

operators in HA and HB, respectively, the composite states �AB can be decomposed

as

�AB :¼
Xd 2

A

m¼1

Xd 2
B

n¼1

rmnAm �Bn; ð44Þ

with dA (dB) the dimension of HA (HB). The correlation matrix R :¼ ðrmnÞ can be

recast via decomposition in singular values. If LR :¼ rk½R� is its rank and sl its

singular values,

�AB :¼
XLR

l¼1

slFl �Gl; ð45Þ

where Fl and Gl are the elements of A and B, respectively, in the new basis. If the

states-components are pure, LR � ðdim½Hab�Þ2 (cf. Eq. (14)). If not (mixed states

allowed) one has LR � d2
min, where dmin :¼ minfdim½Ha�; dim½Hb�g corresponds to

that subsystem of smaller dimension. For classical states LR is bound (by above) by

the dimension of the subsystems, i.e., LR � dmin. There are states of ¯nite discord

with LR � dmin, but one can show that their discord can be created vial local

operations, so that they do not constitute quantum resources.13,14 States with LR >

dmin have discord necessarily and their correlation matrix is not compatible with that

pertaining to a classical state. Only these states are genuinely quantum (with respect

to their correlations). Summing up, LR is the signature of quantum-correlated states

that cannot be obtained from classical states via local operations.
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For instance, if ~�max, Eq. (36) represents the decomposition (45), with fj�l; 	li�
h�l; 	ljg1�l�4 the basis of Hermitic operators both in Ha and Hb, and sl ¼ 1

4 8 l. Here,

the correlation matrix is of rank 4. Also, dmin ¼ dim½C2� ¼ 2. Thus, LR > dmin and

the correlations are indeed genuinely quantum. On the other hand, it is easy to see

that for the state in Eq. (29), the correlation matrix is of rank 2. Discord-like cor-

relations can here be locally created. As a corollary, for 2 qubits bipartite states,

genuinely quantum states with discord are only those of LR > 2. In Table 2, only the

states with ‘ > 2 are relevant.

Note that, given our decomposition (43) of �d
max, since the fMkg are linearly

independent, the number of terms automatically determines the rank of the corre-

lation matrix. Here one has rk½R� ¼ d2 > dmin,
40 since dmin ¼ dim½Cd� ¼ d. Thus, for

these states, the discord is not spurious in the sense discussed above. In other words,

for any dimension, states that are separable and possess discord de¯ned via Eq. (43)

constitute genuine quantum resources.

6. Conclusions

Summarizing our results:

. We have demonstrated in this work that the existence of genuine quantum cor-

relations in separable states is related to the possibility of extending such states to

classically correlated ones of larger dimension.

. We have introduced the notion of optimum classical extension of separable states

and showed that the algorithm advanced by Li andLuo can be, in general, improved.

. We also found that the maximum degree of discord of a given separable state is

linked to the dimensionality of its optimum classical extension.

. We demonstrated the existence of a lower bound for the dimension of such ex-

tension.

. For two qubits separable states, we found di®erent classical extensions for states of

maximum discord. In particular, we showed that with one qutrit we can classically

extend the two qubits state of maximum discord. On the basis of numerical

simulations we conjectured that such a classical extension is the optimum one.

. Our results for low dimensionality systems induce hypothesis concerning the

structure of separable states of maximum discord in arbitrary dimension that, in

turn, suggest interesting links involving the notions of mutually unbiased basis and

symmetric and informationally complete positive operator valued measures (SIC-

POVMs).
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