
J
H
E
P
0
3
(
2
0
1
5
)
0
0
2

Published for SISSA by Springer

Received: December 30, 2014

Accepted: February 11, 2015

Published: March 2, 2015

Semiclassical partition function for strings dual to

Wilson loops with small cusps in ABJM
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1 Introduction

The existence of exact results for vacuum expectation values of Wilson loops in super-

symmetric gauge theories paved the way for many non-trivial explicit verifications of the

AdS/CFT correspondence. In various cases the strong coupling expansion of exact results

was successfully contrasted with explicit 1-loop results for the dual string theory configura-

tions. For instance, the expectation value of a Wilson line with a small cusp angle along it,

can be exactly computed in N = 4 super Yang-Mills by relating it to the circular Wilson

loop [1, 2] and in N = 6 super Chern-Simons-matter gauge theories by showing its relation

to a multiply wound circular Wilson loop [3]. The exact results in the former were shown

to agree with the 1-loop partition function of the dual string configuration [4]. However,

the exact results for cusped Wilson lines in the latter are yet to be matched with explicit

computations in the strong coupling limit.

Three dimensional N = 6 super Chern-Simons-matter is a theory with U(N)× U(N)

gauge group and Chern-Simons levels (k,−k). This theory gave rise to another precise

AdS/CFT correspondence example, since it was found to be dual to eleven-dimensional

M-theory on AdS4 × S7/Zk [5]. Moreover, in the k → ∞ limit, the M-theory reduces

– 1 –



J
H
E
P
0
3
(
2
0
1
5
)
0
0
2

to type IIA string theory on AdS4 × CP
3. It is therefore interesting to study Wilson

loop observables either from the CFT or the AdS point of view, to understand different

regimes and to produce verifications of the AdS/CFT correspondence in cases for which

exact results are available. In particular, the observables we are interested in this work are

cusped Wilson lines.

Cusped Wilson lines in N = 6 super Chern-Simons-matter theory have been studied in

several works both from the gauge and the string theory sides [6–9], and related to circular

Wilson loops in [3, 10–12]. Wilson lines with a cusp angle φ in R
3 can be mapped through

a conformal transformation to a pair of antiparallel lines in S2 × R separated by an angle

π−φ on the sphere. The expectation value of such operator gives rise to the so called cusp

anomalous dimension Γcusp defined as

〈Wcusp〉 = e−ΓcuspT , (1.1)

where T is the temporal extension of the anti-parallel lines along the cylinder. It is clear

from this expression that the cusp anomalous dimension is nothing but the potential be-

tween the two probes on the sphere. We will be considering Wilson lines that become 1/2

BPS when the cusp angle vanishes. These cusped Wilson loop operators admit a second

deformation by an internal space cusp angle θ [6], which accounts for a sudden change in

coupling with the matter fields. It has been proven that generalized cusped Wilson lines

with θ = ±φ remain BPS [6, 7]. Therefore, for θ, φ ≪ 1, the cusp anomalous dimension

takes the form

Γcusp ≈ (θ2 − φ2)B(λ) . (1.2)

The coefficient B(λ) is called the Bremsstrahlung function because it appears in the ex-

pression for the energy radiated by an accelerated fundamental charge [1].

The generalized Γcusp for ABJM theory was computed perturbatively in [6] to 2-loop

order. In the strong coupling limit, expectation values of Wilson loops defined for a curve

C can be computed, using the AdS/CFT correspondence, as the partition function for

a string worldsheet ending on the curve C located at the boundary. The dual gravity

background for N = 6 super Chern-Simons-matter theory is AdS4×CP
3 and the partition

function for a cusped line, to subleading order in the strong coupling limit, have been

studied in [8]. The expressions for the Bremsstrahlung function B(λ) found in [8] do not

coincide in the geometrical and internal cusps cases. As noted in [8], this is in contradiction

to the fact that the Wilson loop remains BPS when θ = ±φ [6]. This is our first motivation

for revisiting the 1-loop computation for the partition function of strings in AdS4 × CP
3

ending in cusped lines.

In [3], a proposal for the exact Bremsstrahlung function in ABJM theories in terms of

derivatives of a circular Wilson loop expectation value was given

B(λ,N) =
1

4π2
∂n log |〈Wn〉||n=1 . (1.3)

Here Wn is a BPS Wilson loop that winds n times around a maximal circle in the 3-sphere

where the ABJM is defined. For the case of a geometrical cusp angle in a 1/6 BPS Wilson

line, the 1/6 BPS circular Wilson loop computed in [13–15] was used in [3] to obtain explicit
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weak and strong coupling expansions for B(λ). For the case of a geometrical cusp angle

in a 1/2 Wilson line, the use of (1.3) to compute B(λ,N) was slightly discussed in [3].

Later on, in [11] explicit weak and strong coupling expansions were written down and a

disagreement with the 1-loop strong coupling computation of [8] was observed. Overcoming

such discrepancy has also motivated our work.

The paper is organized as follows: in section 2 we revisit the arguments which allow

to compute the partition function in terms of the vacuum energy density and verify, as

expected, that the vacuum energy density vanishes for the case of a 1/2 BPS straight line

in ABJM theory. We then proceed to compute the correction to the vacuum energy due to

small geometrical and internal cusp angles, using standard perturbation theory. In section 3

we verify that the proposal (1.3) is correct to 1-loop order in the strong coupling expansion.

In section 4 we discuss our main results and explain the reasons for the discrepancy with

the results in [8].

2 String partition function via vacuum energy

2.1 Rescaling of 1-loop operators

The computation of 1-loop partition functions on a static spacetime with metric g involves

calculating the determinant of some operator Og. This determinant is typically computed

by looking for the eigenfuctions of Og provided appropriate boundary conditions are given.

This we call the off-shell method. Alternatively, the staticity of spacetime provides an

alternative route: Og provides a wave equation whose solutions give rise to a spectrum

of states. This we call the on-shell method. It is a well known result that the vacuum

energy of the on-shell method coincides with the determinant computed from the off-shell

method only when the static spacetime has g00 = 1 [16]. Therefore, in a generic static

case the vacuum energy is related to the determinant of Õg = M−1Og with M = g00. It

was shown in [17] that the determinant of Õg differs from the original one by a conformal

anomaly type equation (see appendix B). An important observation in [18] was to note

that the vacuum energy computation can still be applicable to the 1-loop partition function

computation if there is a cancellation among the different anomalies coming from all the

1-loop operators involved.

As explained in [18], for a string ending on a straight line at the boundary of AdS5×S5,

the 1-loop correction to the partition functions can be obtained from the vacuum energy

because the total anomaly coming from the rescaling of the mode operators vanishes. In

appendix B, we show that this procedure applies for a string ending on a straight line at

the boundary of AdS4 × CP
3. Moreover, the cancellation of anomalies also occurs for a

general cusped string configuration with both geometrical and internal cusps. Therefore,

we will use the vacuum energy method to obtain the corresponding determinants for the

1-loop correction to the partition function.

2.2 String ending on a straight line

Expanding the Lagrangian for a straight Wilson line without cusps to second order gives

the following 1-loop contribution to the partition function [8]

Z1−loop =

∏

j det
1/2(iγ̃aDa − γ̃∗mj)

det6/2(−∇2) det1/2(−∇2 +R(2) + 4) det1/2(−∇2 + 2)
. (2.1)
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here γ̃a represent 2-dimensional curved gamma matrices in the worldsheet, γ̃∗ =
1
2ε

abγab is

the curved covariant chiral matrix and Da the corresponding spinorial covariant derivative

(see appendix A for details). In the absence of cusps, the induced metric on the string

worldsheet is an AdS2 geometry, with scalar curvature R(2) = −2. The fermionic masses

mj (j = 1, . . . , 8) in the worldsheet Dirac operators are related to the eigenvalues of the

matrix MF arising from the Green-Schwarz Lagrangian, which is given in terms of flat ten

dimensional Dirac matrices Γ by

MF =
i

4
[(Γ49 − Γ57 + Γ68) Γ11 − 3Γ0123] . (2.2)

Labeling the 32 components spinors as Ψs1,s2,s3,s4 , with {s1, s2, s3, s4} the eigenvalues of the
commuting set of gamma matrices {iΓ49, iΓ57, iΓ68, iΓ23}, using the kappa symmetry gauge

fixing 1
2 (1 + Γ01Γ11)Ψ = Ψ and an appropriate representation for the Dirac matrices, allow

to decompose the 32-component Majorana spinor into eight 2-component Majorana spinors

with chiral mass terms mj . The mj appearing in (2.1) are given by

mj = 3s1s2s3 + s1 − s2 + s3 , (si = ±1) , (2.3)

The result is: two fermions being massless, three with mass mF = 1 and three with

mF = −1. Naively, one would have expected a fermionic spectrum with two massless

modes, four mF = 1 modes and two mF = −1 modes (or some other combination) to

match the bosonic spectrum made of six massless and two m2
B = 2 bosonic modes, in order

to satisfy the AdS supersymmetric relation m2
B = m2

F −mF [19]. However, as pointed out

in [18], the relation m2
B = m2

F −mF is valid for N = 1 supersymmetry multiplets, in the

case of extended supersymmetry in AdS2, the relation m2
B = m2

F +mF is also possible.

We will compute the on-shell vacuum energy instead of (2.1), therefore we will be

computing the ratio of determinants but with bosonic operators scaled by g1/2 and fermionic

operators are scaled by g1/4. Nonetheless, as explained in the previous subsection, these

two quantities coincide (see appendix B).

To compute the vacuum energy we have to sum over the on-shell oscillator frequencies.

For scalar and fermion fields of masses mB and mF , the frequencies were computed in [19]

ωB
n = n+

1

2

(

1 +
√

1 + 4m2
B

)

. (2.4)

ωF
n =











n−mF +
1

2
, if mF <

1

2
,

n+mF +
1

2
, if mF > −1

2
.

(2.5)

where n = 0, 1, 2 . . .. The sums of such frequencies are divergent but can be regularized

via analytical continuation using the Hurwitz zeta function

ζH(s, x) =
∞
∑

n=0

(n+ x)−s . (2.6)

In the present case, we only need the Hurwitz zeta function evaluated at s = −1, the result

is regular and given by

ζH(−1, x) = −1

2

(

x2 − x+
1

6

)

. (2.7)
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So, for the case of a straight Wilson line we obtain

1

T
logZ1−loop =

1

2

(

6ζH

(

− 1,
3

2

)

+ 2ζH

(

− 1,
1

2

)

− 2ζH(−1, 2)− 6ζH(−1, 1)

)

= 0 .

(2.8)

The vanishing of the 1-loop contribution to the partition function was the expected re-

sult, because the string ending on a straight line is 1/2 BPS and preserves pure Poincare

supercharges.

In [8], a non-vanishing 1-loop partition function was obtained for the string ending

on the straight line. Presumably the non-vanishing of the result has its origin in the

simplification between the determinants from the massless fermion fields and two of the

massless scalar fields (see (A.27)). Omitting in (2.8) the modes that were canceled in [8]

we would have obtained

1

2

(

6ζH

(

− 1,
3

2

)

− 2ζH(−1, 2)− 4ζH(−1, 1)

)

= −1

8
, (2.9)

which is the result reported in eq. (B.62) in [8]. The computation (2.4)–(2.8) shows, as

expected, that the determinants of fermionic and bosonic massless modes do not cancel

each other when computed with different boundary conditions. This is indeed the case if

the excitations are to fit in a supersymmetric multiplet [19].

2.3 String ending on a line with a geometrical cusp

Let us now consider a string worldsheet ending on a cusped line with geometrical cusp angle

φ and vanishing internal cusp angle θ = 0 (see appendix A). The 1-loop contribution to

partition function is still given by (2.1), but now covariant derivatives and scalar curvature

are those of the induced worldsheet metric

ds2 =
1− k2

cn2(σ|k2)
(

−dτ2 + dσ2
)

, with −K(k2) < σ < K(k2) . (2.10)

Here cn(σ|k2) is a Jacobi elliptic function and K(k2) is the complete elliptic integral of

the first kind [4]. The parameter k2 relates to the geometrical cusp angle in the classical

solution. For small cusp angles the relation is φ ≈ πk. To simplify the notation we

shall omit the dependence on k2 in all the elliptic functions. The scalar curvature for the

metric (2.10) is

R(2) = −2

(

1 +
k2

1− k2
cn4(σ)

)

. (2.11)

As we have done for the straight line, we now proceed to study the on-shell vacuum

energy which computes the ratio of determinants of the rescaled operators. After Fourier

transforming the time dependence, we obtain the following operators:

• The eight fermions satisfy1

(

i

(

∂σ +
sn(σ)dn(σ)

2cn(σ)

)

γ1 + ωnγ
0 −mF

√
1− k2

cn(σ)

)

Ψn = 0 . (2.12)

1We have absorbed the chiral matrix present in (2.1) by a redefinition of the fermion fields and the

2-dimensional gamma matrices.
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here γa are 2d flat gamma matrices. Six of the fermions have mF = ±1 and the other

two have mF = 0.

• Seven of the scalar modes satisfy

(

∂2σ + ω2
n − m2

B(1− k2)

cn2(σ)

)

φn = 0 , (2.13)

with six modes having m2
B = 0 and one m2

B = 2. The eighth scalar field equation,

whose potential depends on the worldsheet scalar curvature R(2), results in

(

∂2σ + ω2
n − 2(1− k2)

cn2(σ)
+ 2k2cn2(σ)

)

φn = 0 . (2.14)

For k = 0 these operators reduce to either massless or massive Dirac and Klein-

Gordon fields in AdS2.

We now quote from [19] the pertaining solutions to AdS2 since we will exploit them in

the next section.

Fermions: depending on the value of the mass, two possible solutions exist comprising

supersymmetric multiplets:2

(I) For mF < 1/2, we denote the fermion by ΨT
m,n = (ψ1

m,n, ψ
2
m,n) and one has

ψ1
m,n(σ) =

[n!Γ(n− 2m+ 1)]
1
2

2−mΓ(n−m+ 1
2)

cos−m+ 1
2 (σ) cos

(

σ

2
+
π

4

)

P
(−m+ 1

2
,−m− 1

2
)

n (sinσ) ,

ψ2
m,n(σ) = − [n!Γ(n− 2m+ 1)]

1
2

2−mΓ(n−m+ 1
2)

cos−m+ 1
2 (σ) sin

(

σ

2
+
π

4

)

P
(−m− 1

2
,−m+ 1

2
)

n (sinσ) ,

(2.15)

here Pn denotes the Jacobi polynomials.

(II) For mF > −1/2, we denote the fermion as XT
m,n = (χ1

m,n, χ
2
m,n) and the components

result

χ1
m,n(σ) =

[n!Γ(n+ 2m+ 1)]
1
2

2mΓ(n+m+ 1
2)

cosm+ 1
2 (σ) sin

(

σ

2
+
π

4

)

P
(m− 1

2
,m+ 1

2
)

n (sinσ) ,

χ2
m,n(σ) =

[n!Γ(n+ 2m+ 1)]
1
2

2mΓ(n+m+ 1
2)

cosm+ 1
2 (σ) cos

(

σ

2
+
π

4

)

P
(m+ 1

2
,m− 1

2
)

n (sinσ) .

(2.16)

The frequency spectra for these wavefunctions is given by (2.5) and their normaliza-

tions are such that

∫ π
2

−π
2

dσ

cosσ
Ψ†

m,nΨm,n′ =

∫ π
2

−π
2

dσ

cosσ
X†

m,nXm,n′ = δnn′ . (2.17)

2The choice of gamma matrices in (2.12) is γa = (σ1, iσ3).
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Bosons: the solutions to the Klein-Gordon equation in AdS2 are given by

φλ,n(σ) =

√

n!(2n+ 2λ)Γ(n+ 2λ)

2λΓ(n+ λ+ 1
2)

cosλσ P
(λ− 1

2
,λ− 1

2
)

n (sinσ) , (2.18)

with frequencies ωn = n+λ and λ = 1
2(1+

√
1 + 4m2) (cf. (2.4)). These wavefunctions are

normalized to satisfy
∫ π

2

−π
2

dσφ∗λ,nφλ,n′ = δnn′ . (2.19)

All these modes satisfy Dirichlet boundary conditions.

For the massless scalar equation (λ = 1) a second solution exist satisfying Neumann

boundary conditions at σ = ±π/2 [19]

φ0,n(σ) =

√

n!(n− 1)!2n

Γ(n+ 1
2)

P
(− 1

2
,− 1

2
)

n (sinσ) , (2.20)

and the corresponding frequencies are ωn = n.

However, we are considering string configurations that are sitting at a specific point in

internal space CP
3 and therefore we have to impose Dirichlet boundary conditions for the

corresponding 6 massless scalar modes. Thus, we use the modes given in (2.18). For the

massless fermionic excitations the two possibilities Ψ0,n or X0,n are allowed in principle.

However, only for a specific choice the excitations would conform an N = 6 multiplet. We

will come back to this issue later on.

For 1/6 BPS straight Wilson line, the dual configuration is a smearing of strings along

a CP
1 ⊂ CP

3 [20–22] and then two of the massless scalar modes should satisfy Neumann

boundary conditions. If we were to repeat the computation done in (2.8) with 2 of the

massless scalar modes given by (2.20), the total 1-loop vacuum energy would continue to

vanish because
∑

n=0(n + 1) =
∑

n=0 n. In section 4 we consider the possibility of using

modes (2.20) the study of smeared Wilson loops deformed with a geometrical cusp.

For k 6= 0 equations (2.12)–(2.14) can be solved in terms eigenfunctions of the Lamé

equation. However, and since we are only interested in the leading order of small k limit,

we shall simply take the AdS2 eigenfunctions (2.15), (2.16) and (2.18) and use standard

perturbation theory.

2.3.1 Small cusp

Turning on k not only perturbs the constant mass in the Klein-Gordon and Dirac equations

in AdS2 by adding a potential, but also modifies the range of the coordinate σ. In order

to avoid a k-dependent coordinate range, it is convenient to define

σ̃ =
πσ

2K
, σ̃ ∈

(

− π

2
,
π

2

)

. (2.21)
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and introduce accordingly rescaled frequencies ω = πω̃
2K . With these definitions, for instance,

the equation (2.13) becomes

(

∂2σ̃ + ω̃2
n −

(

2K

π

)2 m2
B(1− k2)

cn2(2Kπ σ̃)

)

φn = 0

k→0−→
(

∂2σ̃ + ω̃2
n − m2

B

cos σ̃
+ k2

m2
B

2
+O(k4)

)

φn = 0 . (2.22)

The perturbed frequencies are

ω̃2
n = (n+ λ)2 − k2

∫ π
2

−π
2

dσ̃φ∗λ,n
m2

B

2
φλ,n = (n+ λ)2 − k2

m2
B

2
. (2.23)

Thus, the frequencies of the 6 massless modes becomes

ωn = (n+ 1)

(

1− k2

4

)

+O(k4) , (2.24)

and each of them contributes to the vacuum energy with

1

2

∞
∑

n=0

ωn =
1

2
ζH(−1, 1)

(

1− k2

4

)

+O(k4) . (2.25)

The perturbation of the m2
B = 2 scalar mode gives

ωn = (n+ 2)

(

1− k2

4

)

− k2

2

1

n+ 2
+O(k4) , (2.26)

which contributes to the vacuum energy with

1

2

∞
∑

n=0

ωn =
1

2
ζH(−1, 2)

(

1− k2

4

)

− k2

4
ζH(1, 2) +O(k4) . (2.27)

The term ζH(1, 2) = ζH(1, 1) − 1 originated from the second term in (2.26) is divergent

but, as we will see in a moment, it cancels against divergencies coming from other modes.

For the last scalar mode, equation (2.14) becomes

(

∂2σ̃ + ω̃2
n − 2

cos2 σ̃
+ k2

(

1 + 2 cos2 σ̃
)

+O(k4)

)

φn = 0 , (2.28)

where

ω̃2
n = (n+ 2)2 − k2

∫ π
2

−π
2

dσ̃φ∗2,n(1 + 2 cos2 σ̃)φ2,n = (n+ 2)2 − k2
2(n+ 2)2

(n+ 1)(n+ 3)
, (2.29)

which implies that

ωn = (n+ 2)

(

1− k2

4

)

− k2

n+ 1
+

k2

(n+ 1)(n+ 3)
+O(k4) . (2.30)
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The contribution of this mode to the vacuum energy is then

1

2

∞
∑

n=0

ωn =
1

2
ζH(−1, 2)

(

1− k2

4

)

− k2

2
ζH(1, 1) +

3k2

8
+O(k4) . (2.31)

Let us now turn to the fermionic fluctuations. Expanding equation (2.12) we get

(

i

(

∂σ̃ +
1

2
tan σ̃

)

γ1 + ω̃nγ
0 − mF

cos σ̃
+ i

k2

8
sin 2σ̃γ1 +

k2

4
mF cos σ̃ +O(k4)

)

Ψn = 0 .

(2.32)

Now, using the k = 0 eigenfunctions, the perturbed frequencies are

ω̃n = n−mF +
1

2
− i

k2

8

∫ π
2

−π
2

dσ̃

cos σ̃
sin 2σ̃Ψ†

mF ,nγ
01ΨmF ,n

− k2

4

∫ π
2

−π
2

dσ̃

cos σ̃
mF cos σ̃Ψ†

mF ,nγ
0ΨmF ,n , (2.33)

for the mF < 1/2 fermionic modes or

ω̃n = n+mF +
1

2
− i

k2

8

∫ π
2

−π
2

dσ̃

cos σ̃
sin 2σ̃X†

mF ,nγ
01XmF ,n

− k2

4

∫ π
2

−π
2

dσ̃

cos σ̃
mF cos σ̃X†

mF ,nγ
0XmF ,n , (2.34)

for the mF > −1/2 fermionic modes.

The contribution to the perturbation from the spin connection vanishes because

Ψ†
mF ,nγ

01ΨmF ,n = X†
mF ,nγ

01XmF ,n = 0 . (2.35)

Computing the remaining integral, for mF = ±1, we get

ω̃n = n+
3

2
− k2

8

2n+ 3

(n+ 2)(n+ 1)
,

⇒ ωn =

(

n+
3

2

)(

1− k2

4

)

− k2

4

1

n+ 1
+
k2

8

1

(n+ 2)(n+ 1)
. (2.36)

Then, each of these modes contributes to the vacuum energy with

1

2

∞
∑

n=0

ωn =
1

2
ζH

(

− 1,
3

2

)(

1− k2

4

)

− k2

8
ζH(1, 1) +

k2

16
+O(k4) . (2.37)

Finally, for themF = 0 fermionic modes ω̃ = n+ 1
2 and the correction to the frequencies

comes entirely from the change in the range of the variable σ. Their contribution to the

vacuum energy is

1

2

∞
∑

n=0

ωn =
1

2
ζH

(

− 1,
1

2

)(

1− k2

4

)

+O(k4) . (2.38)
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Now we collect all the contributions to evaluate the 1-loop partition function. There

are 2 massless fermionic fluctuations (2.38), 6 fermionic fluctuations with masses mF =

±1 (2.37), 6 massless scalar fluctuations (2.25) and 2 scalar fluctuations withm2
B = 2 (2.27)

and (2.31),

1

T
logZ1−loop = 6

[

1

2
ζH

(

− 1,
3

2

)(

1− k2

4

)

− k2

8
ζH(1, 1) +

k2

16

]

+
2

2
ζH

(

− 1,
1

2

)(

1− k2

4

)

− 6

2
ζH(−1, 1)

(

1− k2

4

)

−
[

1

2
ζH(−1, 2)

(

1− k2

4

)

− k2

2
ζH(1, 1) +

3

8
k2
]

−
[

1

2
ζH(−1, 2)

(

1− k2

4

)

− k2

4
ζH(1, 2)

]

= −k
2

4
. (2.39)

Recall that, in this limit, k2 = φ2

π2 and the 1-loop anomalous dimension results

Γ1−loop
cusp =

φ2

4π2
+O(φ4) . (2.40)

This result differs from the one in [8].

At this point, and to verify that the vacuum energy computation gives the correct par-

tition function contribution, we can use the above results to reproduce the Bremsstrahlung

function to 1-loop order for a string in AdS5 × S5. In that case, all the fermionic fluctu-

ations had masses mF = ±1, 5 scalar fluctuations were massless and 3 had m2
B = 2, two

contributing with (2.27) and the other with (2.31). Thus, in that case the 1-loop partition

function is

1

T
logZ1−loop =8

[

1

2
ζH

(

− 1,
3

2

)(

1− k2

4

)

− k2

8
ζH(1, 1) +

k2

16

]

− 5

2
ζH(−1, 1)

(

1− k2

4

)

−
[

1

2
ζH(−1, 2)

(

1− k2

4

)

− k2

2
ζH(1, 1) +

3

8
k2
]

− 2

[

1

2
ζH(−1, 2)

(

1− k2

4

)

− k2

4
ζH(1, 2)

]

= −3k2

8
, (2.41)

which leads to

Γ1−loop
cusp =

3φ2

8π2
+O(φ4) , for AdS5 × S5 , (2.42)

in perfect agreement with the 1-loop results found in [4].

2.4 String ending on a line with an internal cusp

In this limit, the induced geometry is again (2.10) but the mass terms in the quadratic

operators are different. The fermionic fluctuation equations are of the form

(

i

(

∂σ +
sn(σ)dn(σ)

2cn(σ)

)

γ1 + ωnγ
0 −mF (σ)

√
1− k2

cn(σ)

)

Ψn = 0 . (2.43)
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where now

mF (σ) =
1

4

(

s1 − s2 +
dn(σ)√
1− k2

s3

)

+
3

4

dn(σ)√
1− k2

s1s2s3 . (2.44)

Three of the scalar modes satisfy the equation
(

∂2σ + ω2
n − m2

B(1− k2)

cn2(σ)
− k2

)

φn = 0 , (2.45)

two for m2
B = 2 and one for m2

B = 0. Four other scalar fields satisfy

(

∂2σ + ω2
n − k2

4

)

φn = 0 , (2.46)

while last scalar mode satisfies

(

∂2σ + ω2
n + 2k2cn2(σ)− k2

)

φn = 0 . (2.47)

2.4.1 Small cusp

In the small k2 limit eq. (2.45) becomes

(

∂2σ̃ + ω̃2
n − m2

B

cos2 σ̃
− k2

(

1− m2
B

2

)

+O(k4)

)

φn = 0 , (2.48)

Thus, the two modes with m2
B = 2 becomes unperturbed at this order with

ωn = (n+ 2)

(

1− k2

4

)

. (2.49)

Their contribution to the vacuum energy is

1

2

∞
∑

n=0

ωn =
1

2
ζH(−1, 2)

(

1− k2

4

)

. (2.50)

The mode with m2
B = 0 leads to

ωn = (n+ 1)

(

1− k2

4

)

+
k2

2

1

n+ 1
, (2.51)

and summing these corrected frequencies we obtain the contribution to the vacuum energy

1

2

∞
∑

n=0

ωn =
1

2
ζH(−1, 1)

(

1− k2

4

)

+
k2

4
ζH(1, 1) . (2.52)

Similarly, for the four modes satisfying (2.46)

ωn = (n+ 1)

(

1− k2

4

)

+
k2

8

1

n+ 1
, (2.53)

each contributing

1

2

∞
∑

n=0

ωn =
1

2
ζH(−1, 1)

(

1− k2

4

)

+
k2

16
ζH(1, 1) . (2.54)
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The expansion of (2.47) gives

(

∂2σ̃ + ω̃2
n + k2 cos 2σ̃ +O(k2)

)

φn = 0 , (2.55)

for which

ω̃2
n = (n+ 1)2 − k2

∫ π
2

−π
2

dσ̃φ∗1,n cos
2 σ̃φ1,n = (n+ 1)2 − k2

2
δn0 . (2.56)

The contribution of this mode to the vacuum energy is then

1

2

∞
∑

n=0

ωn =
1

2
ζH(−1, 1)

(

1− k2

4

)

− k2

8
+O(k4) . (2.57)

To obtain the contribution from the fermionic modes we evaluate the small k expansion

of (2.44) for the 8 different combinations (s1, s2, s2). There are four modes with mF = ±1

for which the perturbed equations in the rescaled variable is3

(

i

(

∂σ̃ +
tan σ̃

2

)

γ1 + ω̃nγ
0 − mF

cos σ̃
− k2

mF

4
cos σ̃

)

Ψn = 0 . (2.58)

Their corrected frequencies are

ωn =

(

n+
3

2

)(

1− k2

4

)

+
k2

4

1

n+ 1
− k2

8

1

(n+ 1)(n+ 2)
, (2.59)

and so the sum over oscillator frequencies results

1

2

∞
∑

n=0

ωn =
1

2
ζH

(

− 1,
3

2

)(

1− k2

4

)

+
k2

8
ζH(1, 1)− k2

16
. (2.60)

For the remaining two modes with mF = ±1 the potential vanishes

(

i

(

∂σ̃ +
tan σ̃

2

)

γ1 + ω̃nγ
0 − mF

cos σ̃

)

Ψn = 0 , (2.61)

and the frequencies are simply

ωn =

(

n+
3

2

)(

1− k2

4

)

, (2.62)

whose sum is
1

2

∞
∑

n=0

ωn =
1

2
ζH

(

− 1,
3

2

)(

1− k2

4

)

. (2.63)

For the two massless modes we obtain
(

i

(

∂σ̃ +
tan σ̃

2

)

γ1 + ω̃nγ
0 ± k2

4
cos σ̃

)

Ψn = 0 , (2.64)

3Here and in what follows we omit the perturbation from the spin connection because its contribution

to the perturbed frequencies vanishes.
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where the ± sign correspond to (s1s2s3) equal (+−+) and (−+−) respectively. At this

point we have to decide which fermionic massless modes (Ψ0,n or X0,n) should be used

to compute the perturbative correction to the frequencies. As we have anticipated, only

for a specific choice, the full set of fluctuations will conform an N = 6 supersymmetry

multiplet. Moreover, since the background string configuration with cusp angles θ = ±φ is

supersymmetric, among the four possible choices we select the one that leads to the same

cusp anomalous dimension as for the geometrical cusp angle. For this to happen one has

to take X0,n for (+−+) while Ψ0,n for (−+−), which leads for both modes to

ωn =

(

n+
1

2

)(

1− k2

4

)

− k2

8
δn0 , (2.65)

and then

1

2

∞
∑

n=0

ωn =
1

2
ζH(−1,

1

2
)

(

1− k2

4

)

− k2

16
. (2.66)

Now we sum all the contributions to the vacuum energy to k2 order

1

T
logZ1−loop = 4

[

1

2
ζH

(

− 1,
3

2

)(

1− k2

4

)

+
k2

8
ζH(1, 1)− k2

16

]

+ 2

[

1

2
ζH(−1,

1

2
)

(

1− k2

4

)

− k2

16

]

+
2

2
ζH

(

− 1,
1

2

)(

1− k2

4

)

− 2

2
ζH(−1, 2)

(

1− k2

4

)

−
[

1

2
ζH(−1, 1)

(

1− k2

4

)

− k2

8

]

−
[

1

2
ζH(−1, 1)

(

1− k2

4

)

+
k2

4
ζH(1, 1)

]

− 4

[

1

2
ζH(−1, 1)

(

1− k2

4

)

+
k2

16
ζH(1, 1)

]

= −k
2

4
. (2.67)

In this limit, k2 = − θ2

π2 . Therefore the cusp anomalous dimension for internal cusp results

Γ1−loop
cusp = − θ2

4π2
+O(θ4) . (2.68)

This is consistent with the fact that cusped Wilson loop is BPS for θ = ±φ [6]. In other

words, the Bremsstrahlung function up to 1-loop order in the strong coupling limit is

Bφ = Bθ =

√
2λπ2

4π2
− 1

4π2
+O(λ−1/2) . (2.69)

We can straightforwardly obtain the 1-loop partition function for a string with an

internal cusp in AdS5 × S5 from the previous computations. In that case one has eight

mF = ±1 fermions contributing with (2.60), four massless scalars resulting in (2.52),

three m2
B = 2 scalars giving (2.50) and one scalar coupled to the worldsheet curvature
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contributing with (2.57)

1

T
logZ1−loop = 8

[

1

2
ζH

(

− 1,
3

2

)(

1− k2

4

)

+
k2

8
ζH(1, 1)− k2

16

]

− 4

[

1

2
ζH(−1, 1)

(

1− k2

4

)

+
k2

4
ζH(1, 1)

]

− 3

2
ζH(−1, 2)

(

1− k2

4

)

−
[

1

2
ζH(−1, 1)

(

1− k2

4

)

− k2

8

]

= −3k2

8
. (2.70)

From logZ = −ΓcuspT and (1.2) we obtain

Γ1−loop
cusp = − 3θ2

8π2
+O(θ4) , for AdS5 × S5 , (2.71)

in agreement with the 1-loop results found in [4].

3 Exact Bremsstrahlung functions in ABJM

The cusp anomalous dimension for small angles is given by the Bremsstrahlung function,

Γcusp = −B(λ,N)φ2 +O(φ4) . (3.1)

This Bremsstrahlung function has been related to the expectation value of certain BPS

circular Wilson loop, which is exactly known [3]

B(λ,N) =
1

4π2
∂n log |〈Wn〉||n=1 , (3.2)

where Wn is a Wilson loop that winds n times around the maximal circle in a 3-sphere.

In this section, we review the strong coupling expansion of the Bremsstrahlung func-

tions from equation (3.2). The strong coupling expansion of the 1/6 BPS multiply wound

circular Wilson loop is [15],

〈Wn〉 =
ineπn

√
2λ

λ

(√
2λ

4πn
− Hn

4π2n
− i

8πn
− 1

96

+

(

i

192
+

πn

4608
+
Hn−1

96π

)

1√
2λ

+O(λ−1)

)

, (3.3)

where Hn are harmonic numbers. The use of this expansion in (3.2) gives the

Bremsstrahlung function for a small cusp deforming a 1/6 BPS Wilson line [3]

B1/6(λ) =

√
2λπ2

4π2
− 1

4π2
+

(

1

4π2
− 5

96

)

1√
2λπ2

+O(λ−1) . (3.4)

To obtain the Bremsstrahlung function for a small cusp deforming a 1/2 BPS Wil-

son line, we need to feed (3.2) with the 1/2 BPS multiply wound circular Wilson loop

expectation value [15]

〈W 1/2
n 〉 = 〈Wn〉 − einπ〈Wn〉 , (3.5)
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where Wn is the previous 1/6 circular Wilson and 〈Wn〉 is the complex conjugate of 〈Wn〉.
We then obtain

B1/2(λ) =
1

4π2
∂n log(〈Wn〉+ 〈Wn〉)

∣

∣

n=1
− i

8π

〈W1〉 − 〈W 1〉
〈W1〉+ 〈W 1〉

. (3.6)

Since the derivative ∂n(〈Wn〉+ 〈Wn〉) vanishes at n = 1, we are left with

B1/2(λ) =
1

8π

Im (〈W1〉)
Re (〈W1〉)

. (3.7)

Using the expansion (3.3), one obtains [11]

B1/2(λ) =

√
2λπ2

4π2
− 1

4π2
− 1

96

1√
2λπ2

+O(λ−1) . (3.8)

The first two orders of (3.8) are in complete agreement with (2.69), computed in section 2.

4 Discussion

We have computed the partition function for strings ending in cusped lines at the boundary

to 1-loop order in the large
√
λ expansion. We computed the corresponding 1-loop deter-

minants by relating them to the vacuum energy density of the 1-loop oscillator modes.

These 1-loop determinants have been computed previously for small cusp angles, by re-

ducing the operators to 1-dimensional ordinary differential ones and exploiting the Gelfand-

Yaglom method [4, 8, 23–25]. In the case of strings in AdS5×S5, our results coincide with

those of [4]. For strings in AdS4 ×CP
3, our results differ from those in [8]. We understand

the discrepancy in the result as due to the imposition of different boundary conditions for

the massless modes.

In two dimensions the Dirac operator can be reduced to the flat space form by rescaling

the spinor with g1/4. From the AdS2 fermionic modes (2.15) one obtains, after the rescaling,

the following spinor solution to the flat space massless Dirac operator

ψ̃1
0,n(σ) ≡ g1/4ψ1

0,n(σ) =
1√
π
cos

((

n+
1

2

)

σ −
(

n− 1

2

)

π

2

)

ψ̃2
0,n(σ) ≡ g1/4ψ2

0,n(σ) =
1√
π
cos

((

n+
1

2

)

σ −
(

n+
5

2

)

π

2

)

.

(4.1)

Each component of these solutions with ω = n+ 1
2 satisfies Dirichlet boundary conditions

in one endpoint and Neumann boundary conditions in the other. Other solutions with

ω = n exist. They have Dirichlet boundary conditions for one component and Neumann

boundary conditions for the other. However, they do not form a supersymmetry multiplet

with the massless scalar fields we are using.

When using the off-shell method to compute 1-loop determinants, the choice of bound-

ary conditions will impact in the outcome as well. In [8] Dirichlet boundary conditions were

used for the fermionic fluctuations. The determinant of the corresponding quadratic op-

erator with spectrum λn = ω̃2 + n2 could then be simplified with the determinant of a

massless scalar field with Dirichlet boundary conditions.
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Let us briefly analyze how the results of [8] would change if the determinant of

the quadratic operator for the massless fermionic modes were computed with Dirichlet-

Neumann boundary conditions. The corresponding spectrum would be λn = ω̃2+(n+ 1
2)

2.

Using that
det(∂2σ̃ − ω̃2)DN

det(∂2σ̃ − ω̃2)DD
= ω̃ coth(ω̃π) , (4.2)

it is straightforward to see that the resulting change in the geometrical cusp anomalous

dimension is

δΓφ =− T

4π

∫ ∞

−∞
dω log(coth2(2Kω)) = − Tπ

16K

=− T

(

1

8
− k2

32
+O(k4)

)

. (4.3)

The result computed in [8] corrected by (4.3) is in complete agreement with our result.

Our results for the cusp anomalous dimension for a geometrical cusp in section 2.3 and

for an internal cusp in section 2.4 are consistent with its vanishing in the BPS case θ = ±φ.
Moreover this unique Bremsstrahlung function found in the strong coupling limit (2.69) is

in perfect agreement with the expansion of the exact result (3.8) in section 3.

Finally, we would also like to comment about the Bremsstrahlung function for a small

geometrical cusp deformation of a 1/6 BPS Wilson line. From the string point of view,

this kind of Wilson loops are interpreted as the smearing of string configurations over a

CP
1 ⊂ CP

3. This corresponds to impose Neumann boundary conditions for the directions

along the CP
1 [3].

Therefore, to compute Z1−loop for geometrical cusp angle deformation of a 1/6 BPS

Wilson line, we should repeat the perturbative analysis replacing two of the scalar massless

modes with Dirichlet boundary conditions by two scalar massless modes with Neumann

boundary conditions, and correspondingly replacing fermionic massless modes type Ψ0,n

by X0,n and viceversa. However, in this case, the perturbation of scalar massless modes

vanishes using either (2.18) or (2.20). The same happens for fermionic massless modes and,

then, to this order Z1−loop is the same as for the deformation of a 1/2 BPS Wilson line

Bφ
1/6 =

√
2λπ2

4π2
− 1

4π2
+O(λ−1/2) , (4.4)

which is in agreement with (3.4). For an internal cusp angle, the dual string has a non-

trivial profile inside the CP3. The smearing of such configurations has no clear geometrical

interpretation [12].
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A Review of the classical solution and quantum fluctuations

In this section we review the classical solution and its quantum fluctuations found in [8]

for a string in AdS4 × CP
3 ending on a Wilson line with geometrical cusp φ and internal

cusp θ.

A.1 Classical solution

The target space is AdS4 × CP
3 with metric

ds2 = R2
(

ds2AdS4
+ 4ds2

CP
3

)

, (A.1)

where

ds2AdS4
= − cosh2 ρdt2 + dρ2 + sinh2 ρ

(

dψ2 + sin2 ψdϕ2
)

. (A.2)

In this background a Green-Schwartz action (GS) is considered. The action of bosonic

degrees of freedom is of the Nambu-Goto type in the static gauge, taking t and ϕ as the

worldsheet coordinates,

S =

√

λ

2

∫

d2σ
√

detGµν∂iXµ∂jXν , (A.3)

where µ, ν and i, j are target space and worldsheet indices respectively, Gµν is the target

space metric and Xµ are the embedding coordinates.

The global radius ρ and ϑ, a particular Killing direction in CP
3, are taken to be

functions of ϕ

ρ = ρ(ϕ) , ϑ = ϑ(ϕ) , (A.4)

while the remaining variables are held fixed. The cusp angles φ and θ relate to the

angular extension of the string in AdS and CP
3 respectively as ϕ ∈ [φ/2, π − φ/2] and

ϑ ∈ [−θ/2, θ/2]. The conserved charges associated to t and ϑ translations are

E = − sinh2 ρ cosh ρ
√

sinh2 ρ+ (∂ϕρ)2 + (∂ϕϑ)2
, J =

∂ϕϑ cosh ρ
√

sinh2 ρ+ (∂ϕρ)2 + (∂ϕϑ)2
. (A.5)

The BPS condition θ = ±φ is equivalent to E = ±J at the classical level. Now we introduce

two parameters

p =
1

E
, q = − J

E
, (A.6)

in terms of which we can express the cusp angles

φ = π − 2
p2

b
√

b4 + p2

[

Π

(

b4

b4 + p2
| k2
)

−K(k2)

]

, θ =
2bq

√

b4 + p2
K(k2) , (A.7)

where

p2 =
b4(1− k2)

b2 + k2
, q2 =

b2(1− 2k2 − k2b2)

b2 + k2
. (A.8)

The small cusp angles limit (φ, θ ≪ 1) corresponds to p→ ∞

φ =
π

p
+
π(3q2 − 5)

4p3
+O(p−5) , θ =

πq

p
+
πq(q2 − 3)

4p3
+O(p−5) . (A.9)
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The classical action for this embedding reads

Scl = T
√
2λ

√

b4 + p2

bp

[

(b2 + 1)p2

b4 + p2
K(k2)− E(k2)

]

, (A.10)

where T is a cut-off for the time integration and a divergent term from the ρ → ∞ limit

has been dropped.

A.2 Fluctuation Lagrangian

It is convenient to define a world-sheet coordinates τ and σ for which

cosh2 ρ =
1 + b2

b2 cn2(σ | k2) , (A.11)

with ranges

−K(k2) < σ < K(k2) , −∞ < τ <∞ . (A.12)

In these coordinates, the induced metric takes the form

ds2 =
1− k2

cn2(σ | k2)
(

−dτ2 + dσ2
)

, (A.13)

and leads to the following scalar curvature

R(2) = −2

(

1 +
k2

1− k2
cn4(σ | k2)

)

. (A.14)

In what follows we drop the k2 dependence in the Jacobi functions in order to simplify

the notation.

Since we are in static gauge, there are no fluctuations in the longitudinal directions.

Defining appropriate scalar fluctuation fields ζa for the transverse directions (a = 1, . . . , 8)

(see [8]) the bosonic quadratic action results

Sb =
1

2

∫

dτdσ
√
g
[

gij∂iζa∂jζb +A (ζ8∂σζ7 − ζ7∂σζ8) +Mabζaζb
]

, (A.15)

where

M11 =
b4 − b2p2 − p4

b2p2 cosh2 ρ
+ 2 , (A.16)

M22 =
b4 − b2p2 − p4

b2p2 cosh2 ρ
, (A.17)

Mss =
b4 − b2p2 − p4

4b2p2 cosh2 ρ
, s = 3, 4, 5, 6 (A.18)

M77 =
b4 − b2p2 − p4

b2p2 cosh2 ρ
− 2(b2 + 1)(b2 − p2)

b2p2 cosh4 ρ
+ b2

b4 + 2b2p2 sinh2 ρ+ b2p2 − p2

cosh2 ρ(b4 + 2b2p2 sinh2 ρ− p2)2
, (A.19)

M88 =
b4 − b2p2 − p4

b2p2 cosh2 ρ
+ 2− 3b2

cosh2 ρ(b4 + 2b2p2 sinh2 ρ− p2)
(A.20)

+
b4p2

(b4 + 2b2p2 sinh2 ρ− p2)2
, (A.21)

– 18 –



J
H
E
P
0
3
(
2
0
1
5
)
0
0
2

M78 =M87 =
2
√

−b4 + b2p2 + p2
√

b2 sinh2 ρ− 1
√

b2 + p2 sinh2 ρ

p cosh3 ρ(b4 + 2b2p2 sinh2 ρ− p2)
, (A.22)

A =
2
√

b4 + p2
√

−b4 + b2p2 + p2

p cosh2 ρ(b4 + 2b2p2 sinh2 ρ− p2)
. (A.23)

For the fermionic modes the resulting quadratic fluctuation Lagrangian is of the Dirac

type. We will only write the expressions in the corresponding limits of small geometrical

and internal cusp in the next subsection. The kappa symmetry fixing condition is of

the form
1

2
(1 + Γ01Γ11) θ = θ . (A.24)

A.2.1 Small cusp limit

We are interested in the behaviour of the 1-loop partition function when the cusp angle,

either geometrical or internal, is small.

In the first case we consider a small geometrical cusp angle φ and a vanishing θ.

From (A.9) we conclude that θ = 0 implies q → 0. In this limit we can express p and b in

terms of k. For small values of k the geometrical cusp angle is also small, φ2 = π2k2+O(k4).

For bosonic modes the mass matrix become diagonal and we obtain the corresponding

Klein-Gordon operators in the metric (A.13) with masses

M11 = 2, M88 = R(2) + 4, Mss = 0, s = 2, 3, 4, 5, 6, 7 (A.25)

For fermionic modes we obtain a Dirac Lagrangian with covariant derivatives in met-

ric (A.13) and mass term of the form

MF =
iΓ01

4
[(Γ49 − Γ57 + Γ68)− 3Γ23] , (A.26)

Now we can expand the 10-dimensional spinor in a basis in which matrices

{iΓ49, iΓ57, iΓ68, iΓ23} are diagonal with eigenvalues {s1, s2, s3, s4} (si = ±1). With this

choice that the Lagrangian factorizes into eight Lagrangians for 2-dimensional spinors, for

which Γ01 → γ̃∗ with γ̃∗ the chiral gamma matrix. The kappa symmetry fixing (A.24) is

equivalent to s4 = −s1s2s3 and evaluating (A.26) for the eight combinations of {s1, s2, s3}
give two massless modes, three fermions with chiral mass mF = 1 and three fermions with

mF = −1.

The resulting 1-loop partition function then results

Z1−loop =
det2/2 (iγ̃aDa) det

3/2 (iγ̃aDa − γ̃∗) det
3/2 (iγ̃aDa + γ̃∗)

det6/2 (−∇2) det1/2
(

−∇2 +R(2) + 4
)

det1/2 (−∇2 + 2)
, (A.27)

where γ̃a are curved 2-dimensional Dirac matrices for metric (A.13), Da are the corre-

sponding covariant derivatives namely

Dτ = ∂τ +
sn(σ) dn(σ)

2 cn(σ)
γ0γ1, Dσ = ∂σ , (A.28)
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and ∇2 is the scalar Laplacian

∇2 =
cn2(σ)

1− k2
(

∂2τ + ∂2σ
)

. (A.29)

Note that in the k → 0 limit they reduce to AdS2 Dirac and Klein-Gordon operators

and (A.27) reduces to the partition function for a string ending on a straight line.

The other case we study is a small internal cusp θ with vanishing φ. This corresponds

to p→ ∞ limit with q/p and b/p held fixed, namely

q

p
=

ik√
1− k2

,
b

p
=

1√
1− k2

. (A.30)

Note that, in this limit, k will be again the small parameter for the small θ expansion but

now k is imaginary. In particular, we have from (A.9) that, up to k2 order, k2 = −θ2/π2.
For the bosonic modes we obtain Klein-Gordon operators in metric (A.13) with

mass terms

M11 =M88 = 2 +
k2√
g
, M22 =

k2√
g
,

M77 = R(2) + 2 +
k2√
g
, Mss =

k2

4
√
g
, s = 3, 4, 5, 6

(A.31)

For fermionic modes the mass term in the 10d Dirac Lagrangian results

MF =
iΓ01

4

[(

Γ68 − Γ57 +
dn(σ)√
1− k2

Γ49

)

− 3
dn(σ)√
1− k2

Γ23

]

. (A.32)

Again we can expand the 10d spinor in the basis we used for the geometrical cusp obtaining

the mass spectrum involved in the computation of section 2.4.

B Rescaling of 1-loop operators

As explained in [18], for certain Wilson loops in AdS5 × S5 type IIB string theory, we can

compute the 1-loop correction to the partition function in terms of the vacuum energy, i.e.

the sum over the oscillator modes of the 1-loop fluctuation operators . We will show that

this statement is also valid for the Wilson loops discussed in this work. For this result to

be correct we need to rescale the quadratic operators by M = g00 [16]. This can be made

by a redefinition of the internal product, which implies a Weyl rescaling of the metric. At

the quantum level, a conformal rescaling of the metric introduces a conformal anomaly,

which depends on the fields involved and the equations of motion they satisfy, [17, 26, 27].

Consider a general second order operator acting on scalar fields in the following way

(

φ,∆Bφ
)

=

∫

d2σ
√
g
(

gij∂iφ∂jφ+Xφ2
)

, (B.1)

where the mass term X can be an arbitrary σ-dependent function.

If we define the measure in the scalar functional space to be scaled with an arbitrary

function M
(

φ, φ′
)

=

∫

d2σ
√
gMφφ′ , (B.2)
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the relevant determinant when computing the path integral results

det∆B
M = detM−1(−∇2

g +X) , (B.3)

where ∇2
g is the scalar Laplacian in the arbitrary metric gij .

The conformal anomaly under this rescaling arises in the heat kernel expansion for

these operator

log det∆B
M = −

∫ ∞

Λ−2

dt

t
Tr exp

(

−t∆B
M
)

, (B.4)

where Λ−2 is an appropriate cut-off since the integral is divergent t → 0 . Making use of

δ∆B
M = −δ logM∆B

M we obtain

δ log det∆B
M = Tr

(

exp
(

−t∆B
M
)

δ logM
)

|∞Λ−2 . (B.5)

The t → ∞ limit vanishes for positive definite operators, so the only contribution comes

from the t→ 0 limit. In this limit we expand the heat kernel as follows

Tr
(

exp
(

−t∆B
M
)

δ logM
)

∼ 1

td/2

∑

n

an
(

δlogM | ∆B
M
)

tn , (B.6)

where d is dimension of the manifold and an are the Seeley coefficients. Since the manifold

in our problem has a boundary, n corresponds to integer and semi-integer positive numbers.

For d = 2, we have divergent contributions proportional to Λ2, Λ and log Λ which

involve a0, a1/2 and a1. It can be seen that these terms do not depend on M, [17, 18]. The

relevant contribution comes from the finite term which depends only on a1 (and irrelevant

boundary terms). Then we conclude that

δ log det∆B
M = −a1

(

δlogM | ∆B
M
)

. (B.7)

The Seeley coefficient a1 for these operators is known. Therefore, we obtain the conformal

anomaly in terms of a Liouville type action for M

log det∆B
M− log det∆B = − 1

4π

∫

d2σ
√
g

(

logM
(

1

6
R(2) −X

)

+
1

12
∂i logM∂i logM

)

,

(B.8)

where R(2) is the scalar curvature for the metric gij . When M = 1√
g we can integrate by

parts and rewrite (B.8) in the form

log det∆B
M − log det∆B = +

1

4π

∫

d2σ
√
g

(

logMX +
1

12
∂i logM∂i logM

)

. (B.9)

Let us now consider the action for a fermionic operator DF

∫

d2σ
√
gψ̄DFψ , (B.10)

and measure
(

ψ, ψ′) =

∫

d2σ
√
gKψ̄ψ′ . (B.11)
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In this case the relevant second order operator is ∆F
K = (K−1DF )

2, whose variation is

δ log∆F
K =

∫ ∞

Λ−2

dtTr exp
(

−t∆F
K
) (

δK−1DFK−1DF +K−1DF δK−1DF

)

. (B.12)

Because of the trace, both terms commute and we obtain

δ log∆F
K = −2Tr exp

(

−t∆F
K
)

δ logK |∞Λ−2 . (B.13)

As done in the bosonic case, we can compute the anomaly in terms of the Seeley coefficients

of ∆F
K

δ log det∆F
K = −2a1

(

δlogK | ∆F
K
)

. (B.14)

Note that for non-trivial K this is in general different from K−2D2
F because of the lin-

ear derivatives acting on K−1. Therefore we have to compute the corresponding Seeley

coefficients for (K−1DF )
2 which are in general different from the K−2D2

F ones.

Consider

D2
F = −∇̂2 +

1

4
R(2) + Y , (B.15)

where ∇̂ involves spin connection terms and Y is an arbitrary potential. For this class of

operators the Seeley coefficient a1 is also known [18]. Then, the anomaly results

log det∆F
K − log det∆F =

1

4π

∫

d2σ
√
g

(

logK
(

1

6
R(2) + 2Y

)

+
1

6
∂i logK∂i logK

)

,

(B.16)

and for K = 1
(
√
g)1/2

we can rewrite it as

log det∆F
K − log det∆F =

1

4π

∫

d2σ
√
g

(

logK(2Y )− 1

6
∂i logK∂i logK

)

. (B.17)

The last expression is valid for general 2d fermionic operators. However, the in the GS

formulation the fermionic fields are worldsheet anticommuting scalars. In this case, the

R(2) term is four times the corresponding to standard 2d fermions [18]. Taking this into

account we obtain

log det∆F
K − log det∆F =

1

4π

∫

d2σ
√
g

(

logK(2Y )− 2

3
∂i logK∂i logK

)

. (B.18)

Now that we know the individual contribution of scalars and GS fermions to the

scaling anomaly, we are able to derive the condition over the partition function in order to

be invariant under this operation.

For that purpose, consider the fluctuation scalar fields over a classical configuration.

In general, the action can be written in the form

SB
1−loop =

∫

d2σ
√
g
(

gij∂iφ
a∂jφ

a +Xabφ
aφb
)

, (B.19)

where summation over a = 1, . . . , 10 is implied and gij is the induced metric for a general

classical configuration. All the possible potential and mass terms are contained in the mass
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matrix Xab. Since we are now working in the conformal gauge, this fluctuation Lagrangian

contains both transverse and longitudinal scalar modes.

The fluctuation Lagrangian for the fermionic modes can be written as

SF
1−loop

∫

d2σ
√
gψ̄a(DF )abψ

b , (B.20)

where a = 1, . . . , 8 runs over the 8 two component GS fermionic modes. Then the quadratic

fermionic operators are

(DF )
2
(ab)ψ

b =
(

D2δab + Yab
)

ψb , (B.21)

where D2 is the square of the standard kinetic term for each GS fermion and the mass

matrix Yab contains all possible potential and mass terms.

Finally, for the ghost modes with K =
(√
g
)−1/2

, the anomaly can be written as

log det∆gh
K − log det∆gh = −26

12

1

4π

∫

d2σ
√
g∂i logK∂i logK . (B.22)

Given the scaling anomalies (B.9), (B.18) and (B.22) we can see [18] that the cancellation

of the total scaling anomaly is equivalent to the condition

TrX = TrY . (B.23)

The results presented in appendix A were computed in [8] in static gauge (Nambu-Goto

formulation). In order to verify the last equality for this configuration note that, being X̄

the mass term obtained in static gauge, it is related to the corresponding one in conformal

gauge as

TrX̄ = TrX − TrlongX . (B.24)

Since it is known that TrlongX = −R(2), the condition (B.23) can be expressed as

TrX̄ − TrY = R(2) . (B.25)

It is important to stress that this scaling invariance condition is valid for any string con-

figuration. In particular, for the straight line configuration (R(2) = −2) we have a 2d field

theory on AdS2 with 2 fermionic massless modes, 6 with Yaa = m2
F = 1 and

X̄ab = diag
(

R(2) + 4, 2, 0, 0, 0, 0, 0, 0
)

. (B.26)

Therefore condition (B.25) is satisfied and we can compute the 1-loop partition function

via a vacuum energy computation.

Finally, for the cusped classical configuration the condition (B.25) is also valid implying

the vanishing of the total scaling anomaly and therefore justifying the vacuum energy

computation made in this article. Note that this analysis is valid for arbitrary values of

parameters p and q.
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