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a b s t r a c t

Service robots are not only expected to navigate within the environment, as they also will may
with people. Human tracking by mobile robots is essential for service robots and human interaction
applications. In this work, the goal is to add a more natural robot–human following in front based on
the normal human gait model. This approach proposes implementing and evaluating a human–robot
interaction strategy, using the integration of a LRF (Laser Range Finder) tracking of human legs with
wearable IMU (Inertial Measurement Unit) sensors for capturing the human movement during the gait.
The work was carried out in four stages: first, the definition of the model of human–robot interaction and
the control proposal were developed. Second, the parameters based on the human gait were estimated.
Third, the robot and sensor integration setup are also proposed. Finally, the description of the algorithm
for parameters detection is presented. In the experimental study, despite of the continuous oscillation
during the walking, the parameters estimationwas precise and unbiased, showing also repeatability with
human linear velocities changes. The controller was evaluated with an eight-shaped curve, showing the
stability of the controller even with sharp changes in the human path during real experiments.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In 2011, about 2.5 million of service robots for personal and
domestic use were sold. This represents an increase of 15% when
comparing to 2010 [1]. Accordingly, the use of robots is extending
from the industrial field to living and working places. In this con-
text, intelligent service robotics is a research field that became very
popular over the past years, and covers a wide range of scenarios
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such as: interactive guiding robots in museums [2], exhibitions [3]
and shopping malls [4].

In the same manner, several research projects in many coun-
tries are focused on robots to assist elderly and/or people with dis-
abilities. Sales on this important future market of service robots
are expected to reach 4600 units in the period of 2013–2015 as
this market is expected to grow substantially within the next
20 years [1]. In this scenario, mobile robots are expected to cover a
wide range of applications, such as hospital support [5] and assis-
tance for elderly people [6].

Regarding the sensor system for these applications, the de-
velopment of wearable IMU (Inertial Measurement Unit) systems
presents important advantages in the field of human motion anal-
ysis such as: portability, high accuracy and ease of use in un-
structured environments. The integration of wearable sensors and

http://dx.doi.org/10.1016/j.robot.2014.06.001
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2014.06.001&domain=pdf
mailto:cacifuentes@gmail.com
mailto:carlos.garcia@ufes.br
mailto:anselmo@ele.ufes.br
mailto:rcarelli@inaut.unsj.edu.ar
mailto:teodiano@ele.ufes.br
http://dx.doi.org/10.1016/j.robot.2014.06.001


1426 C.A. Cifuentes et al. / Robotics and Autonomous Systems 62 (2014) 1425–1439
mobile robots in advanced interaction scenarios is expected to en-
able a new generation of service robots and healthcare applica-
tions [7].

Service robots are not only expected to navigate within the
environment, but they also should interact with people. Basically,
as service robots focus attention on humans, and considering that
human behavior is difficult to model or predict, it is interesting to
achieve tracking systems with high quality and precision in order
to assess the human motion using a robot. This allows a more
natural human–robot interaction.

The development of wearable systems allows very important
improvements to humanmotiondetection. The contribution of this
paper can be summarized in two aspects: a new human–robot
interaction strategy based on the human gait by combining data
from a wearable IMU (Inertial Measurement Unit) and an onboard
Laser Range Finder (LRF), and a new robot–human controller for
tracking in front with an experimental validation of the controller
performance. The proposed controller was evaluated with an
eight-shaped curve, showing stability even with changes in the
human path and keeping a continuous following in front of the
human during real experiments.

The next sections present some important remarks considering
human tracking systems, control strategies to human–robot
interaction and some considerations related tohumangait thatwill
be described in this work.

1.1. Human tracking by mobile robots

As previously discussed, human tracking is essential for mobile
service robots and human–robot interaction applications. There
are a variety of approaches;most of thememploy both visual track-
ing and/or Laser Range Finder (LRF) devices [8–11]. However,when
the robot is tracking a person in outdoors, visual measurement er-
rors are expected to increase. For this reason, some researches ap-
ply LRF human tracking [12–16]. The use of LRF is advantageous
because it is robust with respect to illumination changes in the
environment. Additionally, it is important to mention that wear-
able IMU sensors are appearing in this field, offering the possibility
of combining human tracking with human gesture detection and
body posture estimation [17–21].

One common way for human detection by LRF is scanning legs.
In this case, apart from tracking the position of the human in
relation to the robot, other important human gait information can
be obtained allowing a more adaptable human–robot interaction.
Step length, cadence, velocities, legs orientation, and gait phases
(stance and swing) are some examples of information that could
be obtained from tracking the human legs. Nevertheless, it is
important to observe that the tracking system has to deal with
specific situations, such as clothing. Therefore the use of some
clothes that fully covers human’s legs, such as long skirts, is a
limitation and is not considered in this work.

A basic technique for leg detection uses the acquired data
from LRF, defining the measurement range that violates the static
environment assumption to determine leg position [11]. Other
approaches make use of specific geometrical shapes to determine
leg position. In [12], circle shapes are suggested to extract leg
data. In [13] and [14], the approach is inductive on the basis of
sufficient measurements without specific assumptions of shapes
and also exploiting a human walking model. Such approaches do
not present an exhaustive experimental evaluation and do not
explain how the performance of the detection algorithm is affected
when the legs cannot be detected. It is important to mention that
leg obstruction is very common in circle or curved paths, when one
leg can be placed behind the other from the sensor point-of-view.

Another proposal suggests the use of LRF for human torso track-
ing [15,16]. An advantage of this approach is that the scanned
data presents smaller variations caused by the oscillatory move-
ments during the human’s gait, and obstruction and occlusion is-
sueswhen performing curved paths do not represent a problem. As
a disadvantage, human gait information (a fully modeled process)
is not obtained and cannot be used as an extra input to the system.
On the other hand, the works presented in [15,16] propose the es-
timation of body pose information using particle filters. However,
the human tracking is not effectivewhendetecting non-humanob-
jects with similar shape and width of human segments.

In this context, the use of wearable IMU sensors (already
fully integrated in personal mobile devices) on the human’s body
may present important advantages eliminating the possibility of
uncertain situations.

Some examples of wearable IMU sensors combined with
tracking systems for gesture detection in indoor applications
(environmental-robot interaction) can be found. In [17], an ap-
proach to detect movements of a person, and estimate of the hu-
man path using a wearable IMU is shown. In [18], a robot finds
the human subject through onboard vision and identifies the ac-
tivity he/she is performing by the use of twowearable IMU sensors
placed to the subject’s body.

Considering the combination of LRF and IMU sensors for human
tracking, in [19], amethod for combining kinematicmeasurements
from LRF mounted on the robot and an IMU carried by the human
is shown. A proposal to extract human velocity and position is also
presented. However, that study does not provide any information
regarding the validation of the proposed method. In [20], a study
in which several robots were programmed to follow a person for
the purpose of mapping a building for firefighters’ rescue missions
is presented. This sensor combination is employed to avoid the
use of information obtained from artificial vision systems, such
as cameras. In this case, the objective is to map the building
for situations in which there is low visibility caused by fire. An
IMU was used for mapping and locating the current position
of a firefighter and, finally, providing the subject an exit path.
Finally, a method for human motion capturing in large areas is
described in [21], which shows a tracking approach that aims to
provide globally aligned full body posture estimates by combining
information from sensor on a mobile robot and multiple wearable
IMU sensors attached to the human subject.

Summarizing, works found in the literature indicate a trend for
future developments in the field of human tracking using mobile
robots that rely on the integration of LRF and human motion
capturing by means of wearable IMU sensors. This approach
needs further investigation, and appropriate sensor integration
algorithms have to be implemented, which is themain focus of this
work.

1.2. Human following and mobile robot control

The use of control strategies for mobile robot following behind
the human is a common approach in many works, such as [14,21].
Alternatively, there is another approach with the ‘‘side by side’’
behavior [22,23]. Recently, an alternative behavior was introduced
in [16,24], where the mobile robot follows the human while
positioned in front of him/her. Accompanying in front of a human
is useful in many applications: if the robot carries tools, materials
ormerchandise to be dispensed, it is more natural and comfortable
for the person to access the items if the robot is placed in front of
him/her [24].

Specifically in [16], the authors developed one experiment
with subjects walking or running along a straight line, and a
mobile robot tracking and following the subject from behind. This
experiment has indicated that a robot moving behind the human
causes the human to always pay attention to its motion. Therefore,
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Fig. 1. Gait phases and pelvic rotations on the transverse plane.
when the robot accompanies a human while staying in his/her
field-of-view, this makes the human feels more comfortable.

Indeed, there are fundamental differences in motion between
conventional wheeled mobile robots and humans. A possible
solution is to use the control system to absorb this kinematic
difference between human and the mobile robot locomotion.
In [25,26], a virtual spring model is used. This method is derived
from the assumption that the human target and the mobile robot
are connected by a virtual spring. The input velocity to a mobile
robot is generated on the basis of an elastic force of a virtual spring,
and this proposal absorbs the gap between the human and the
mobile robot motion.

Another solution is the presumption based on the detailed
analysis that human walking is included into the control. In this
work, the goal is to develop a natural robot following in front of
the human interaction strategy based on the human gait model.
The method presented in the following sections proposes a hu-
man–robot interaction strategy using the integration of a LRF
tracking of human legs with wearable IMU sensors for capturing
the human movement during the gait. This work also presents de-
tailed information regarding the implementation and experimen-
tal validation of the proposed interaction scheme.

1.3. Brief considerations regarding the human gait

The human gait process starts as a nerve impulse in the central
nervous system and ends with the generation of the ground
reaction forces. The gait cycle is defined as the time interval
between two successive occurrences of one of the repetitive events
of walking. Fig. 1 presents the gait cycle divided into two phases;
stance and swing for each leg. Analyzing only the right leg, leg
stance is the entire period in which the right foot is in contact with
the ground. This phase is subdivided into three intervals, such as:
two double supports and one right single support. Both the start
and the end of stance involve a period of bilateral foot contact with
the floor (double support). Right single support begins when the
left foot is lifted for swing (Left Leg Swing Phase). Alternatively,
during the right leg swing phase, the right foot is in the air and
the right leg is swinging through preparation for the next foot
strike [27].

During walking the body functionally divides itself into passen-
ger and motor units. The head, neck, trunk and arms are grouped
as a passenger unit and the two lower limbs and pelvis are themo-
tor system. The hip represents the junction between the passenger
and the motor units. It provides three-dimensional motion with
specific muscle control for each direction of activity. During the
stance, the primary role of the hip muscles is stabilization of the
superimposed trunk. During swing, limb control is the objective.
During each stride the pelvis moves in all three directions. The site
of action is the supporting of the hip joint. Consequently, the great-
est amount of motion occurs at the pelvis. All motions follow small
Fig. 2. Model for the human–robot interaction.

arcs, representing a continuum of postural change [28]. The trans-
verse plane of pelvic rotation [29] is also shown in Fig. 1.

This work is organized as follows. Section 2 describes the
methodology of this work, where the human–robot interaction,
the parameter estimation, the robot and sensor integration setup
and the parameter detection algorithmare presented. Section 3 de-
scribes the experimental study, with three different experiments
in order to verify the accuracy of the human–robot interaction pa-
rameters detection. Section 4 shows the experimental results on
the human–robot controller, as well as the discussion about them.
Finally, conclusions and future work are presented in Section 5.

2. Material and methods

The approach presented in this work is focused on tracking
the normal human gait in order to get a more natural robot
following in front of the human. This way, the work was carried
out in four stages. First, the definition of the kinematic model of
human–robot interaction and the control system were developed.
Second, a method for parameter estimation based on the human
gait is presented. Third, the robot and sensor integration setup is
introduced. Finally, the description of the algorithm for parameters
detection is presented.

2.1. Human–robot interaction strategy

Amodel for the human–robot interactionwas developed,which
is shown in Fig. 2, where the variables and the parameters are: hu-
man linear velocity (vh), human angular velocity (ωh), human ori-
entation (ψh), robot linear velocity (vr ), robot angular velocity (ωr ),
robot orientation (ψr ). Some interaction parameters were defined,
such as the angle ϕ between vh and the human–robot segment RH ,
the angle θ between vr and the RH segment, and the RH length (d).
Finally, the parameter a defines the distance between the reference
point (R) and the robot center of rotation (C).

The control system is based on the inverse kinematics. The
variables to be controlled are the angle ϕ and the distance d. The



1428 C.A. Cifuentes et al. / Robotics and Autonomous Systems 62 (2014) 1425–1439
Fig. 3. Block diagram of the proposed controller.

control objective is to achieve a desired human–robot distance dd
and angle ϕ to converge asymptotically to zero. Eq. (1) shows the
direct kinematics of the robot, where d̃ = d − dd is the difference
between the desired and the measured distances, and vr and ωr
represent the linear and angular velocity to the robot. As it can be
observed in Fig. 2, ˙̃d depends not only on vhand vr , but also on ωr ,
due to the fact that the reference point (R) is not located at the robot
rotation center (C). Therefore, whenωr is modified, it results in a d
change. Finally ϕ̇ depends on vh, vr , ωh and ωr as expected.


˙̃d
ϕ̇


=


cos θ −a sin θ

−
sin θ
d

−a
cos θ
d

 u  
vr
ωr


+


−vh cosϕ

ωh + vh
sinϕ
d


. (1)

From this kinematics model, it is possible to calculate the inverse
kinematics controller shown in Eqs. (2) and (3), which are the
components of the u-vector.

vr = cos θ

−kd d̃ + vh cosϕ


− d sin θ


−kϕϕ − ωh −

vh

d
sinϕ


(2)

ωr = −
sin θ
d


−kd d̃ + vh cosϕ


−

d
a
cos θ


−kϕϕ − ωh −

vh

d
sinϕ


. (3)

The parameters to be adjusted are the controller positive gains
kd, kϕ .

In this work, no dynamics effects are assumed. This assumption
is based on the fact that human gait consists of slow movements,
especially in human–robot interaction scenarios, as previously
observed in [30]. However, if it becomes necessary, a dynamic
compensator could be integrated into the control scheme. This
compensator could be obtained from an identification process [31]
and used in series with the kinematic controller [32,33]. On the
other hand, the human dynamics are not considered. However the
human kinematics is here used as an input to the control law. In
this context, the commands are given directly to the robot to follow
the human.

In this kinematic approach, using the proposed control law and
assuming a perfect velocity tracking by the robot, the control errors
d̃ and ϕ converge to zero. This conclusion becomes evident after
substituting (2) and (3) into (1), thus obtaining

˙̃d
ϕ̇


=


−kd d̃
−kϕϕ


. (4)

Therefore, the control system is exponentially asymptotically
stable (5).

d̃(t) = d̃(0)e−kdt

ϕ(t) = ϕ(0)e−kϕ t .
(5)

The control structure here proposed is shown in Fig. 3, where the
control errors are d̃ andϕ. The errorϕ can be obtained as a function
of θ, ψh and ψr (Fig. 2). The other inputs to the controller are vh,
ωh, d and θ . The output of the controller is the control actions vr
and ωr .

In the approach presented in this work, human walking infor-
mation and spatio-temporal gait parameters are included into the
strategy for the estimation of the interaction parameters. Indeed,
control inputs (set-points) are updated at each gait cycle. At the
end of each gait cycle, controller outputs are calculated and sent to
the robot. At the same time, the new parameter detection process
starts with the next gait cycle. In the next section, the estimation
of the control parameters will be explained with more details.

2.2. Parameter estimation

Control parameter estimation is based on the combination of
LRF and IMU sensors as previously commented. Legs position
and orientation is obtained from the LRF measurements and the
trunk motion is captured by an IMU sensor located on the human
pelvis. An example of trunk motion during a normal gait cycle
(GC) is depicted in Fig. 4 (dashed line). The method to obtain the
parameters of the proposed model is as follows:

• Human linear velocity (vh) is the rate of change of the position
in each stride. Therefore, during the human walking, it is
necessary to detect the beginning and the end of the gait cycle.

• Human angular velocity (ωh) is the average angular velocity
during each cycle gait. This velocity is measured in this
approach from the rate change of the pelvic rotation.

• Human orientation (ψh) is the average of the pelvic rotation
during each cycle gait.
Fig. 4. External and internal measurement of the gait with the robot following the human in front.
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Fig. 5. Robot and sensor integration setup.
• Robot orientation (ψr ) is measured by the robot odometry
sensors. However, an onboard IMU sensor can be used in order
to get a more accurate measurement.

• θ represents the human orientation in relation to the robot.
In order to get an accurate measurement despite the human
is walking, it should be measured when both legs have equal
distance from the robot (d, obtained with the LRF sensor), and
at the same time, the pelvic rotation is near to zero (Fig. 4).

• ϕ represents the difference in orientation between vh orienta-
tion vector and the human–robot segment RH (Fig. 2). ϕ is also
equal to θ − ψr + ψh (Fig. 3). This angle is only defined if the
magnitude of the vh is greater than zero.

2.3. Robot and sensor system setup

A mobile robot Pioneer 3-AT [34] was used in this work. The
robot has an onboard computer with a Wi-Fi link, which receives
the robot state (x, y, ψr) as well as the control information, such as
angular and linear velocities, as shown in Fig. 5.

Themaximum linear velocity is set to 0.7m/s and themaximum
angular velocity is set to 140°/s. It can also be seen in Fig. 5 a SICK
LMS-200 LRF [35], which is mounted at the legs height level, with
an angular resolution of 1°.

The IMU sensor used to measure the human pelvic motion
was developed in a previous research [36,37], which is a wearable
ZigBee IMU called ZIMUED. This sensor node is capable of sending
data such as 3D accelerations, 3D angular velocities, 3D magnetic
information and orientation data (roll, pitch and yaw) through
ZigBee to the ZIMUED Coordinator. This sensor is attached to the
human pelvis as shown in Fig. 5.

The robot and sensor system integration setup has two possible
configurations. The first one is the evaluation of the human-
interaction parameters, where a remote computer receives the
LRF data and robot orientation through WI-FI link. In this mode,
the controller is not executed, but it is useful to analyze the
performance of the parameters detection algorithm. The second
mode is the control mode, in which the onboard computer receives
the sensor information to execute the controller. A ZIMUED
coordinator is linked by ZigBee connection with an IMU sensor
on the human. In the same way, the coordinator sends the
human IMU data to a USB connection with the computer for both
configurations. LRF and robot states are sampled every 100ms and
the ZIMUED sensor at every 20 ms. At the same time, the robot is
able to receive the control commands such as angular and linear
velocities to be performed.

In the control mode, the main program receives IMU data ev-
ery 20 ms. This packet defines the main clock of the detection al-
gorithm. The performance of the communication was evaluated
in [36]. With the conditions used in this setup, the wireless com-
munication does not present loss in data packets. However, if the
controller is executing and suddenly the ZigBee communication is
broken, the detection algorithm is blocked, and an internal timer
is started. If no packets are received within 100 ms, the robot is
automatically stopped for a secure operation.

The leg detection approach presented in this work combines
techniques presented in [8,38], which is split into four basic
tasks: LRF data pre-processing, transitions detections, pattern’s
extraction and estimation of legs’ coordinates. In the pre-
processing phase, the delimitation of the HIZ (Human Interaction
Zone) is performed (Fig. 5). Then, the laser scanning data are used
to identify transitions.

The legs positions are calculated in polar coordinates (Fig. 5).
The general process is based on the differences between two
transition events that define a leg pattern (x-marks on Fig. 5).
After that, both distance and angle measurements are calculated
in relation to the middle point of each leg. In Fig. 5, (d1, a1) and
(d2, a2), respectively, represent the polar coordinates of left and
right legs.

The angle range of the HIZ is restricted from −60° to 60°, and
the scanning distance from the LRF is limited up to 2 m. On this
range, the human can walk freely but the legs cannot present any
occlusion.When one leg cannot be detected as a cause of screening
by the other leg, the algorithm calculates the human distance with
the only one leg detected. Finally, in the case the human leaves the
HIZ, the robot is automatically stopped.

2.4. Parameters detection algorithm

The parameter estimation here proposed is based on the leg
detection from the LRF and pelvic rotations (see Fig. 4) obtained
from the IMU sensor (Fig. 5). This signal is represented by the yaw
orientation. The velocity of this orientation is periodical due to
the periodicity of the human gait, making this signal suitable to
synchronize the parameter estimation every gait cycle. In Fig. 5, the
signals of the pelvicmotion and laser detection of the Right and Left
Legs (RL and LL) distances are shown. These measurements were
obtained through experiments with a person walking towards the
LRF sensor.

In Fig. 6a the pelvic angular velocity obtained from the Z axis
gyroscope signal is shown. The zero crossing points are marked
with a circle and square at every gait cycle. Fig. 6b shows the square
mark representing the maximum pelvic orientation (they happen
after the right heel contacts the ground). The circlemark represents
the minimum pelvic orientation (it happens after the left heel
contact). At the same time, these events are presented in the RL and
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(a) Pelvic angular velocity (Z-Gyroscope). (b) Pelvic orientation (IMU).

(c) Legs distance (LRF). (d) Legs orientation (LRF).

Fig. 6. Detection of zero crossing points over pelvic angular velocity.
LL distances and orientation trajectories respectively (Fig. 6c,d).
The parameter detection algorithm is performed as follows:

• Human linear velocity (vh). This parameter is updated at each
step. The interval between the last two zero crossing points
represents the step time. The step length is the distance
performed in one step. It is obtained from the maximum
distance between right and left legs during the step time. The
magnitude of vh is the step length divided by the step time. Due
to the fact that the robot linear velocity limit is 0.7 m/s, it is
recommended to the human not to exceed this limit.

• Human angular velocity (ωh). This parameter is calculated at
each stride. This is the average of all values of angular velocity
(from Z-Gyroscope) during one stride. Therefore, if the human
is walking straight, the oscillatory form of the gait ωh will be
close to zero (see Fig. 5). Although the robot angular velocity
is limited to 140°/s, this does not cause any problem as the
human does not achieve such high angular speed during normal
interaction.

• Human orientation (ψh). This parameter is calculated at each
stride. This is the average of all values of the pelvic orientation
(from pelvic yaw) during one stride. The range of this angle is
between −180° and 180°.

• Robot orientation (ψr ). This orientation is measured by the
robot odometry at each step. The range of this angle is between
−180° and 180°. Despite the odometry is the most widely
used method to obtain the robot position, there are well
known errors from this measurement method [39]. A more
accurate measurement could be obtained by using an IMU
mounted on the robot. The use of an IMU is especially important
during experiments that last severalminutes, as the cumulative
odometry errors are more significant.

• θ angle andhuman–robot distance (d). θ is the average between
right and left legs orientation from the LRF legs detection. The
range of this angle is restricted between −60° and 60°. This
is calculated when both legs have the same distance (crossing
point); thus, the human–robot distance is obtained. The range
of this distance is limited up to 2 m.

• ϕ angle. This angle is calculated as θ − ψr + ψh at each stride.
3. Experimental study for validation of the estimation of
interaction parameters

Three different experiments were developed in order to verify
the accuracy in the detection of the human–robot interaction
parameters with the proposed algorithm. In the first and second
experiments, no motion was performed by the robot. The subject
was asked to walk on a straight line following different paths
marked on the floor to define specific angular parameters (θ, ϕ and
ψh), the parameter vh was defined during each test according to the
human gait and compared with the estimated parameters.

In the third experiment, the robot is configured with specific
linear (vr ) and angular (ωr ) velocities, and the human follows
the robot keeping a constant distance. Human linear and angular
velocities are estimated in a more dynamic scenario and are
compared with the reference velocities performed by the robot.

The layout of the paths for the first experiment is shown in
Fig. 7a. These paths, marked on the floor (black dashed lines), have
different predefined θ angles with respect to the LRF reference:
−20°,−15°,−10°,−5°, 0°, 5°, 10°, 15° and 20°. One volunteer
was asked to walk on a straight line in the direction of the robot,
performing three repetitions of each one of the proposedpaths. The
assumption was that both θ measured from LRF and ψh measured
from the IMU should have the same value to the predefined
angles during every path, as it can be observed in Fig. 7b. In this
experiment ϕ angle is always equal to zero.

The layout of the paths proposed on the second experiment is
shown in Fig. 8a. These paths marked on the floor (black dashed
lines) are performed to evaluate the ϕ angle estimation based on
the direct measurement of θ by the LRF. Thereby, despite the fact
that the start points were the same of the first experiment, all
paths are now parallel to each other. One volunteer was asked
to perform three repetitions of the proposed paths. Then, every
path is performed by the volunteer with the same linear velocity
(vh) orientation, as it can be observed in Fig. 8b. Therefore, the
assumption in this experiment is that both θ and ϕ have the same
magnitude and opposite signs. Each path was labeled (T1, T2, T3,
T4, 0°, T5, T6, T7 and T8) as shown in Fig. 8b.
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Fig. 7. First experiment. (a) Proposed paths; (b) Interaction parameters.
Fig. 8. Second experiment. (a) Proposed paths; (b) Interaction parameters evaluated.
Fig. 9. Third experiment. (a) Paths layout and human location to perform the circle path; (b) Interaction parameters evaluated.
Additionally, in the first and second experiments, each test
was performedwith three predefined linear human velocities (vh):
0.25, 0.5 and 0.75 m/s to assess the effect of different gait speeds
on the estimation process. The selection of these velocities is based
on past experience in human–robot interaction scenarios, such as
carrying loads or in walker-assisted gait [30]. Thus, every path was
marked with distance intervals (0.25, 0.5 and 0.75 m). In order to
achieve the desired velocities, steps were performed following a
sound indication produced at every second.

In the first and second experiments the human angular velocity
is not evaluated. Therefore, to verify the estimation process of this
parameter, a third experimentwas performedwith a circle-shaped
path (Fig. 9). Thus, the robot was programmed to perform constant
linear and angular velocities. The human was asked to maintain a
constant distance while following the robot. To simplify this task,
human hands were kept in contact with the robot as shown in
Fig. 9a. The assumption in this experiment is that human angular
and linear velocities will be approximately equal to the robot’s
velocities (Fig. 9b). Three circle-shaped trajectories with different
constant linear and angular velocities were programmed: (i) 0.15
m/s and −7°/s; (ii) 0.25 m/s and −11°/s; and (iii) 0.30 m/s and
−14°/s.

4. Experimental results

The results of the three experiments show the precision
and variability of the human-interaction parameters estimation.
Section 4.1 presents the results of the experimental validation
of the proposed methodology for the estimation of interaction
parameters.

Once the procedure for the estimation of the interaction pa-
rameters are validated, the results of the experimentations with
the proposed controller are presented in Section 4.2. First, a sim-
ulation is considered to demonstrate the expected behavior of the
interaction strategy. Finally, the results of a final experiment are
presented, showing the human-interaction parameter detection
and the controller being executed, both in real-time, by the mobile
robot embedded system.

4.1. Detection and estimation of human–robot interaction parame-
ters

In the first experiment, θ and ψh estimation remain near
the expected angle in every test. Fig. 10 shows a part of the
measurements and estimated parameters performed in three
predefined velocities (v1 = 0.75 m/s, v2 = 0.50 m/s and v3 =

0.25 m/s) in the −5 degrees path. IMU and LRF data (continuous
signals) are presented along with the human linear velocities and
angular parameters (discrete values) obtained in two foot strikes.

The angular velocities obtained from the gyroscope in the z-
coordinate are shown in Fig. 10a. As expected from normal gait,
there is an increase in pelvic rotation for greater linear velocities.
The average of the angular velocity remains close to zero because
the human is walking in a straight line. Pelvic yaw and pitch angles
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(a) Pelvic angular velocity. (b) Pelvic orientation.

(c) Legs distance. (d) Legs orientation.

(e) vh. (f) Angular parameters.

Fig. 10. Measurements and estimated parameters performed in the first experiment of the test of −5 degrees. (a) Pelvic angular velocities from z-axis gyroscope; (b) Pelvic
orientation from IMU; (c) Legs distance curves from LRF detection; (d) Legs orientation curves from LRF detection; (e) Estimated vh; (f) Estimated θ, ψh, ϕ and ψr angles.
are shown in Fig. 10b, where ψh is obtained from the yaw angle. It
is also observed an increase in the oscillation amplitude with the
increase of vh.

The paths of the human legs obtained in these intervals are
shown in Fig. 10c. As expected, length stride increases when vh
increases. As the robot is not moving, the module of the slope
of these curves is the actual vh. The negative values of the slope
indicate the decrease in the distance as the subject is walking
towards the LRF. Although feet position (indication of the step
length) were marked on the floor, the resolution of the step length
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(a) Estimated θ in first experiment. (b) Estimated ψh in first experiment.

Fig. 11. Estimated values of θ and ψh versus reference angles from the first experiment.
(a) Tests T1 T2 T3 T4 HLV 0.5 m/s. (b) Tests T5 T6 T7 T8 HLV 0.5 m/s.

Fig. 12. Estimated values of θ , ϕ and ψh from the second experiment.
measurements is defined by the shoe size, which is reflected on the
error of the vh estimation as shown in Fig. 10e.

The legs orientation obtained from the LRF detection is shown
in Fig. 10d. Finally, the estimated angular parameters are shown in
Fig. 10f. It can be observed that θ and ψh angles were close to the
expected−5 degrees. Also, the ϕ angle is close to zero as proposed
in this experiment.

From the first experiment, all estimated values of θ and ψh
for different vh were grouped and compared with the path angle
(reference value). In the estimations of θ (Fig. 11a), the RMSE was
0.6° and the bias was −0.6°. The values obtained for the errors
seem to remain constant in all experiments. This could be caused
by amisalignment of the LFR sensor during the experimental setup.
Regarding the estimations of ψh (Fig. 11b), the RMSE was 0.2° and
the bias was −0.2°. Despite of the continuous oscillation of the
pelvis during walking, ψh estimation was precise and unbiased,
showing also repeatability with changes of vh.

Considering the second experiment, Fig. 12 shows the angular
parameters during different tests in a single stride. It is possible to
see that ψh remains close to zero, and θ and ϕ remain close to a
same magnitude with opposite signs, such as expected.

From the first and second experiments, vh average errors
(RMSE) of all tests were grouped in Fig. 13a. The estimation of
the error for 0.25, 0.50 and 0.75 remains under 0.15 m/s. Although
this is high in comparison with the desired/performed speed, it is
important tomention that errors can be caused by amisplacement
of the feet in two consecutive steps. To illustrate this, one could
imagine the situation in which the human steps the line with the
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(a) Average linear velocity errors. (b) Average angular parameter errors.

Fig. 13. Average errors (RMSE value) in estimation of vh for 0.25, 0.50 and 0.75 m/s. (a) Linear velocity estimated errors; (b) θ ,ψh and ϕ errors with the different velocities.
Table 1
Error in linear and angular velocities estimation for the third experiment.

Actual vh
(m/s)

Actualωh
(°/s)

Estimated vh
(m/s)

Estimatedωh
(°/s)

Errorvh
(%)

Error ωh
(%)

0.15 −7 0.149 −6.6 1% 5%
0.25 −11 0.253 −10.4 −1% 5%
0.3 −14 0.311 −13.2 −4% 6%

toe on a step andwith the heel on the consecutive one. Considering
that the foot size is of similar magnitude of the step lengths, errors
with the presented magnitude are expected in these experiments.

Additionally, the errors of the angular parameters (Fig. 13b)
remain close to 3°. The error of θ is considerably smaller (around
1°) due to the direct measurement of this parameter using the LRF,
which presents high resolution.

In the third experiment, the robot follows constant angular
and linear velocities describing a circle-shaped path. Fig. 14 shows
a part of the measurements and the estimated parameters for
the robot trajectory performed for linear velocity of 0.3 m/s and
angular velocity of −14°/s.

The angular velocities obtained from the gyroscope in the z-
coordinate are shown in Fig. 14a. Due to the performed circle path,
the estimated ωh remains close to −14°/s as expected (Fig. 14f).
This measurement can also be observed in the tendency of the
pelvic orientation values shown in Fig. 14b.

The position and orientation of the human legs obtained in this
interval are shown in Fig. 14c,d, respectively. Due to the fact that
the LRF and the legs aremoving at the same time, it can be observed
that these signals present a constantmean value. The vh estimation
is shown in Fig. 14e and remains close to the expected 0.3 m/s.
During the tests, the human was following the robot. This can be
observed through the pattern of the ψh and ψr angles in Fig. 14g.
As a result of that, θ and ϕ are shown in Fig. 14h.

Table 1 shows the summary of the actual and estimated linear
and angular velocities in the third experiment. The linear velocity
error corresponds to the previous analysis, and the angular velocity
error remains close 1°/s, which is acceptable in this kind of
interaction strategy.

4.2. Controller evaluation

Fig. 15 shows a simulation of the proposed controller. The blue
line in Fig. 15a represents the human path performing an eight-
shaped curve (input to controller), and the red line is the path
performed by the robot, following the human (controller output).

This simulation shows the stability of the controller even with
sharp curves performed by the human. It can be observed how the
θ angle is close 30° (Fig. 15b) making a turn, and ϕ is kept less than
1° (Fig. 15c). Therefore, the proposed controller is expected to keep
the robot continuously ‘‘following in front’’ of the human.

To evaluate the effectiveness of the controller and the
parameter detection system, a final experiment with the robot
following the human in front of the human was conducted, in
which a volunteer performed the eight-shaped path shown in
Fig. 16. During the execution of turns the robot follows the humans
on the external side when he/she is making a curve (Fig. 15a).
The human path and the expected robot’s path (solid line) can be
observed in Fig. 16. It is also shown in Fig. 16 the start and the end
marks of the human path; the humanwalks in a straight line before
entering the eight-shaped curve. It is noteworthy that the eight-
shaped curve is analyzed in three phases: first, a semicircle path
(human turning left); second, a circle path (human turning right);
and third, a last semicircle path (human turning left). This way, it
is possible to analyze the performance of the controller in straight
lines and in curved paths.

Fig. 17 shows the IMU and LRF sensor data obtained during the
proposed experiment. Although there are periodic (and tridimen-
sional) oscillations of the pelvis during the gait and considering
that the locomotion was performed in an eight-shaped path, the
robot kept a continuous and stable orientation while following,
such as shown by ψr (gray line in Fig. 17a).

Fig. 17b shows the raw signal obtained from the gyroscope
placed on the human pelvis (gray line) and the filtered signal (black
line). A second order Butterworth low-pass filter (cutoff frequency
of 1 Hz) was used to reject high frequency components that are
not associated to the gait cadence. As it can be seen, no significant
delay was observed in this application.

The legs detection was adequate during the whole experiment
as depicted in Fig. 17c (angle detection) and Fig. 17d (distance
detection). The values of angular positions of the legs, measured
from the robot, were in the range between−40° and 40° (Fig. 17c).
These bounds belong to the range of detection previously defined
[−60°, 60°]. In this experiment, themaximum interaction distance
was set to 2 m and the desired distance dd (Section 2.1) was set to
0.9 m. Accordingly, the legs distancemeasurements were between
0.4 and 1.2 m during the whole the experiment (Fig. 17d).

Fig. 18 shows snapshots of different instants of the experiment
illustrated in Fig. 16. It lasted about 80 s. From the beginning and
up to the fifteenth second, the human walked in a straight line
(Fig. 18a). After that, the human began to turn left (ψh in Fig. 17a)
entering the eight-shaped path. The first semicircle is performed
up to about the 30th s (Fig. 18b). The human orientation increased
positively in this interval (Fig. 17a), indicating that he was turning
left. The orientation of the legs (LRF data) decreased to 0° (Fig. 17c)
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(b) Pelvic orientation.

(d) Legs orientation.

(f) Human angular velocity.

(h) Angular parameters.

(a) Pelvic angular velocity.

(g) Human and robot orientation.

(c) Legs distance.

(e) Human linear velocity.

Fig. 14. Measurements and estimated parameters for vh 0.3 m/s and ωh−14°/s from the first experiment. (a) Pelvic angular velocity from z-axis gyroscope; (b) Pelvic
orientation from the IMU; (c) Legs distance curves from LRF detection; (d) Legs orientation curves from LRF detection; (e) Estimated vh; (f) Estimated ωh; (g) Estimated ψh
and ψr ; (h) Estimated θ and ϕ angles.
before finishing the first semicircle as the human starts planning
the next circle (Fig. 18c).

This circle is completed before the 60th s (Fig. 18e). In this
interval, the human orientation decreases constantly, as expected
(see Fig. 17a), indicating that the he is turning right. After that, the
angular positions of the leg become 0° again (Fig. 17c) in order to
perform the last semicircle (Fig. 18e).

Finally, the human is back at the beginning of the eight-shaped
curve (Fig. 18f).ψh andψr angles are close to 0° again, as expected
(Fig. 17a).

As aforementioned, all control parameters are detected in every
gait cycle. Some of them are updated at every stepwhile others are
updated at every stride. However the controller variable update is
executed at every step. In the case that human does not perform
another step, for example, when the human suddenly stops, the
parameters are calculated at every second. Finally, Fig. 19 shows
all control data recorded during the proposed experiment. The
parameters estimation algorithm detects approximately 100 steps
from the human in the execution of the proposed path.

In Fig. 19a, from thebeginning andup to almost the stepnumber
20, the human was walking in a straight line, as ψh, ψr and θ
remains close to 0° (Fig. 19a). This way, ϕ (control error) remains
close to 0°, as well. However, d̃ remains near−0.3m (Fig. 19b). As a
result of this, the control action vr(C) and the robot’s actual speed
vr(R) follow vh with a maximum value of approximately 0.3 m/s
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(a) Human and robot paths.

(b) θ .

(c) ϕ.

Fig. 15. Controller simulation. (a) Eight-shaped human path (blue dashed line), and the path of the robot following in front (red dashed line); (b) θ ; and (c) ϕ responses.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 16. Human path (dashed line) in an experiment performing an eight-shaped curve.
(Fig. 19c). Furthermore, the control actionωr(C) and themeasured
velocity ωr(R) remain close to 0°/s (Fig. 19d), as expected.

After the step number 20, the eight-shaped curve starts. From
Fig. 19aψr followsψh continuously, θ is positive when the human
is turning left and negative when the human is turning right, and
ϕ remains close to 0°, as expected.

From Fig. 19b, d̃ was negative in most of the experiment. This
indicates that the human walks forwards and the controller tries
to reach the desired distance (0.9 m). From Fig. 19c, vh was always
lower than 0.5 m/s, however the control action, vh(C), reaches
the robot’s maximum forward speed (0.7 m/s) and also sometimes
the backward speed limit (−0.7 m/s). The controller tries to bring
the control errors to 0. vh(R) is delayed with respect to vh(C)
due to robot dynamics, but this delay does not significantly affect
the performance of the controller response with this experiment
conditions. From Fig. 19d,ωr(C) andωr(R) have adequate tracking
ofωh, but also there is an expected delay betweenωr(C) andωr(R),
which is smaller than the delay between vr(C) and vr(R).

Finally, the trajectory performed during this test is shown
in Fig. 19e. The black dashed line is the human path measured
from the LRF, and the gray line represents the mobile robot path
measured by the robot odometry. The triangles marks represent
the starting and final points of every path.

5. Conclusions and future work

This paper presented a new human–robot interaction strategy
based on the human gait by data fusion from a wearable IMU and
an onboard LRF. Also, a new mobile-robot human controller for
tracking in front of the human with an experimental validation of
the controller performance was presented.

In the experimental study, despite of the continuous oscillation
during the walking, the parameters estimation was precise and
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(a) Human and robot orientation.

(b) Pelvic angular velocity.

(c) Legs orientation.

(d) Legs distance.

Fig. 17. Sensors data of robot following in front experiment performing an eight-shaped curve. (a) Human and robot orientation from IMU and robot odometry respectively.
(b) Pelvic angular velocity from gyroscope (raw data and filtered signal). (c) Leg orientation measured with the LRF sensor. (d) Leg distance measured with the LRF sensor.
Fig. 18. Snapshots of the robot following in front experiment, performing an eight-shaped curve.
unbiased, showing also repeatability with human linear velocity
changes. In the same way, the estimation errors were lower than
10% when the robot performed a curve-shaped path.
This research shows that the proposed control is effective
in assisting a mobile robot to follow a human. A satisfactory
result was obtained in terms of stable performance, through the
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Fig. 19. Control data of robot following in front experiment performing an eight-shaped curve. (a) Angular parameters; (b) Distance parameters; (c) Linear velocities: control
action vr (C) and measured vr (R) and vh; (d) Angular velocities: control action ωr (C), and measured ωr (R) and ωh; (e) Trajectory performed.
tracking algorithms here proposed. The controller was evaluated
with an eight-shaped curve, showing stability of the controller
even with sharp changes in the human path. The controller keeps
the robot continuously following in front of the human gait in
all experiments. It is also shown the good performance of the
controller regarding the robot orientation when it is following the
human turning during the experiments.

One of the advantages of the human-interaction here proposed
is the computational efficiency due to direct measurement of the
human kinematics with the IMU wearable sensor on the pelvis
and the legs detection from the LRF. The detection and human
tracking from the mobile robot is completed in real time and also
in unstructured environments. The reliability of this approach is
guaranteed with the integration of the analysis of human walking
into the control parameters detection.
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