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Abstract
The persistence of coherence in a hybrid dissipative system, which is composed of
superconducting flux-qubits (SFQs) and an electron ensemble, is analyzed. Both the interactions
between the electrons and the SFQs are taken into account. The time evolution of the hybrid
system is discussed in terms of the discrete Wigner function of each subsystem and in terms of
the entropic uncertainty relations. The inclusion of a linewidth, both for the electrons and the
SFQs, influences the coherence of each subsystem and the pattern of spin squeezing of the
corresponding steady state.

Keywords: discrete Wigner functions, entropy squeezing, decoherence, quantum hybrid systems

1. Introduction

The study of macroscopic quantum coherence is a central
issue in the field of quantum information processing and of
quantum computing [1–3]. Quantum technologies allow the
construction of quantum processors with the potential of
carrying out specific tasks at exponentially reduced compu-
tation time. One of the greatest challenges in the development
of a quantum computer is related to the possibility of gen-
erating the superposition and entanglement of quantum states
with controlled decoherence [4–7]. In this direction, a variety
of novel experimental approaches have enabled tests of fun-
damental quantum physics, such as superpositions, entan-
glement, tunneling, and quantum phase transitions [8–10].

In recent years, a great deal of effort has been devoted to
the study of hybrid systems. Hybrid quantum circuits [11] are
built up from two or more physical systems, so as to combine
the best features of each. Typical elements employed in the
design of hybrid quantum circuits are atoms, spins, super-
conducting qubits, cavities, and resonators. As an example,
we can mention the experimental realization of hybrid sys-
tems composed of spins and superconducting circuits, i.e.
spins coupled to superconducting resonators [12], or indirect-
coupling hybrid circuits with nitrogen-vacancy (NV) centers
and a transmon qubit [13]. Another example of this type of

architecture is the hybrid system composed of super-
conducting flux-qubits (SFQs) coupled to electrons in the
form of NV color centers in diamond [14–25]. The theoretical
model proposed by Marcos et al in [15] has been experi-
mentally realized by Zhu et al [16]. The authors of [16], have
reported a strong coherent coupling between a flux qubit and
an ensemble of NV color centers in single-crystal diamond
and the coherent transfer of a single quantum of energy has
been demonstrated. Furthermore, several authors have
explored the possibility of using a hybrid quantum archi-
tecture including coupled flux qubits and an NV center
ensemble. The flux qubits can be considered as the quantum-
computing processor and the NV center, due to its long
coherence time, can be used as the quantum memory [26].
Novel spin-nanomechanical hybrid devices have been pro-
posed [27, 28]. The authors of [27] have considered a hybrid
system, which consists of NV centers in diamond interfaced
with a suspended carbon nanotube carrying a DC current. In
the same vein, the authors of [28] have shown a hybrid
magneto-nano-electromechanical, which is based on a
magnetic-field-induced deflection of an appropriate cantilever
that oscillates between NV spins in diamond.

The analysis of the advantages of these physical systems
includes the interplay between entanglement [29, 30],
squeezing [31, 32], and decoherence [33–37]. Decoherence of
a quantum superposition state arises from the interaction
between the constituent system and the uncontrolled degrees
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of freedom of the environment. Traditionally and generally,
dissipation mechanisms have been considered to have a
negative effect on the performance of the quantum manip-
ulation of mechanical modes [38]. However, in a series of
recent works [39–43], it has been observed that dissipation
can be used to enhance the squeezing properties of the steady
state of different systems, and consequently to obtain sta-
tionary robust states against decoherence. As an example, we
can mention the results that have been presented in [40]. The
authors of [40] have proved that entanglement and spin
squeezing, in a two-axis twisting scheme, can be amplified by
including a dissipation through the linewidth in the spin
states. Similar results have been reported in [25, 42, 43].

As has been demonstrated in different works, the Wigner
quasi-probability distribution or Wigner function [44, 45] has
proved useful to describe the quantum properties of different
physical systems [46]. Among other applications, it has been
extensively used in connection with the study of quantum
tomography [47–52]. Also, it has become a powerful tool to
understand and detect decoherence [34, 53, 54] and quantum
correlations [55, 56]. In the present work, we investigate the
use of the Wigner function formalism to analyze the persis-
tence of coherence for a dissipative system of SFQ coupled to
an ensemble of electrons in the form of NV color centers in
diamond [25, 39, 40, 57, 58]. Also, we analyze the squeezing
properties of the system by studying the entropic uncertainty
relations (EURs) of its constituents [59, 60].

The work is organized as follows. In section 2, we present
the Hamiltonian of the SFQ in interaction with an ensemble of
NV color centers in diamond. In subsection 2.1, the formalism
adopted to study the time evolution of the dissipative hybrid
system is developed. In subsection 2.2, we discuss the prep-
aration of the initial state. The EURs and associated entropic
squeezing parameter are presented in 2.3. In subsection 2.4, we
review the definition of the SU(2) Wigner function in connec-
tion with the decoherence properties of the system. The results
of our calculations are presented and discussed in section 3.
Finally, our conclusions are drawn in section 4.

2. Formalism

We shall study a hybrid system composed of an array of SFQs
coupled to an ensemble of electrons in the form of NV color
centers in diamond [14–17, 23, 25]. The coupling of these two
subsystems is possible due to the similarity in their energy
scales, which are of the order of a few gigahertz. The long
coherence times of the NV-centers ensemble [61] and the
experimental facilities in the construction of different SFQ
arrays [62], turned this hybrid system into a potential quantum-
computing device. The SFQ subsystem can be used to perform
the qubit operations of a quantum computer, while the electron
ensemble can be used as the memory of the device.

The coupling of a flux qubit to an ensemble of NV
centers in diamond, have been achieved experimentally by the
authors of [16]. They have prepared a sample of diamond
containing NV centers by ion implantation in 12C with (001)
surface orientation. This diamond crystal was glued on top of

the superconducting circuit with the 12C-implanted (001)
surface facing the flux qubit. The flux qubit-NV ensemble
coupled system was measured by detecting the qubit state
using a read-out DC SQUID.

An extension of this setup has been presented by the
authors of [23]. They have proposed constructing an array of
flux qubits and placing a diamond crystal with NV centers
embedded on it. Adjacent flux qubits are connected via
auxiliary tunable coupler qubits. Each of the flux qubits
couples to the crystal. The coupler qubit does not couple to
the NV, because it is far detuned from the flux qubits and
consequently from the NV spins as well. The spin-flux qubit
interaction is mediated by the magnetic field that stems from
the persistent currents of the flux qubits. With this model in
mind, the Hamiltonian of the system can be written as (see
appendix)

H H H H H , 1SSFQ int= + + + gˆ ˆ ˆ ˆ ˆ ( )
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The term HSFQ
ˆ of equation (2) is the Hamiltonian of the

SFQs. The set of operators, , ,x k y k z k, , ,s s s{ˆ ˆ ˆ } obey the su(2)
algebra. The energy of the superfluid flux qubit at site k, E kqb, ,
and the parameters cos ka( ) and sin ka( ), can be written in terms
of the energy bias k and tunnel splitting parameter kD as
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In terms of the persistent current in the qubit at site k, I kp, , and
of the external flux threading the qubit loop, kex,F , the energy
bias is given by I2 3 2k k kp, ex, 0 = F - F( ), being 0F =

e1 2( ) is the flux quantum. The coupling strength between
qubits in the sites k and k¢ is given by Jk k, ¢.

The electron-spin ensemble is described by the term HS of
equation (3). It takes into account that an NV center has a
ground state with spin 1 and a zero-field splitting D=2.88 GHz
between the 1, 0ñ∣ and 1, 1 ñ∣ states. If an external magnetic
field, along the crystalline axis of the NV center, is applied an
additional Zeeman splitting between 1, 1 ñ∣ sub-levels occurs.
Then, it is possible to isolate the subsystem form by 1, 0ñ∣ and
1, 1ñ∣ , so that the NV center can be modeled by a two-level
system [15, 63–66]. The operators S S S, ,x y z{ ˆ ˆ ˆ } of equation (3)
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are Pauli spin operators, components of the total spin, S, of the
electrons. The electron ensemble Hamiltonian consists of a one-

axe twisting (OAT) term [67], DSz
2ˆ and a Lipkin-type interac-

tion E S Sx y
2 2
-( ˆ ˆ ) [68–77].

We shall study the mechanism of interaction among the
SFQ and electron-spin ensemble proposed in [16]. It is given
by the term Hint of equation (4).

To take into account dissipative effects due to the finite
lifetime, equation (5), both of the the spins (electronic states)
and the SFQ, we have introduced the corresponding line-
widths sg and qbg ), respectively.

Finally, the proposed Hamiltonian, equation (1), can be
exactly diagonalized on the basis obtained from the direct
product of the states of basis of the electron ensemble,

N k,S Sñ{∣ }, and of the SFQ, N k, jqb qb, ñ{∣ { }. That is
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We have defined S S iSx y= ˆ ˆ ˆ and ij x j y j, , ,s s s= ˆ ˆ ˆ , as
usual. The states corresponding to an ensemble of NS electrons,

N k,S S >{∣ }, are labeled with the parameter kS, which can run
from 0 to the number of spins (electrons) of the system, NS. The
basis of the SFQ is formed by the different possible arrays,
k jqb,{ }, of Nqb superconducting flux qubits, N k, jqb qb, ñ∣ { } .

2.1. Time evolution

We want to study the time evolution of the hybrid system
under the action of the non-Hermitian Hamiltonian H of
equation (1). We shall follow the formalism of [25, 78–80].

The first step is the construction of a bi-orthonormal
basis, ,F ñ F ñb a{∣ ∣ }, from the eigenvectors of H and of H†,
respectively. Consequently, the vectors of the bi-orthonormal
basis obey the condition dáF F ñ =a b ab∣ .

We shall consider a general initial state, Iñ∣ . Next, we
shall evaluate the mean value of an operator Ô at time t,
which is given by

O I O Ie e . 8H t Hti iá ñ = á ñ- ˆ ∣ ˆ ∣ ( )ˆ ˆ†

2.2. Initial condition

Let us study the time evolution of an initial state composed by
a coherent spin state for the NV-centers ensemble, I Sñ∣ , and of
a particular state of the form N k,qb qb ñ∣ { } (equation (7)) for the
SFQ array. That is

I I I , 9Sqbñ = ñ Ä ñ∣ ∣ ∣ ( )
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+
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with z e tan 2S
i

SS q= - f- ( ), where the angles ,S Sq f( ) define
the direction n sin cos , sin sin , cosS S S S S Sq f q f q=

 ( ). The

coherent state, I Sñ∣ , obeys the condition n I S IS S S Sñ = - ñ
ˆ · ∣ ∣ ,

with S S SS , ,x y z=ˆ ( ˆ ˆ ˆ ) and S N 2S= [81].

2.3. Spin squeezing

Squeezing is a property related to the minimization of the
variance of an operator, beyond the uncertainty limit, at the
expense of the enhancement of the variance of its com-
plementary operator. The definition of a squeezing parameter is
not unique, as it depends on the relevant degree of freedom of
the system under consideration. Several definitions have been
proposed over the years in other systems to characterize spin
squeezing. Among them, we can mention the proposal of
Wineland et al [82] in the context of spectroscopy and the
extensively used squeezing parameter constructed by Sørensen
et al [83] to detect squeezing from an entanglement criterion.
Another squeezing parameter has been proposed by Kitagawa
and Ueda [67], to characterize the squeezing properties of a
system composed by particles with spin s 1 2= . More
recently, the authors of [9, 84, 85], discussed the definition of
the so-called nematic-spin squeezing in dealing with a system
composed by particles of spin s=1. The extension to a system
of particles of spin s=J, J 1 2> , has been advanced in [86].

In this work, we shall look at the squeezing properties of
the hybrid system by studying the information entropy of
each subsystem [87–91] and its related EUR [59, 60].

Given a general quasi-spin operator, T̂, with components
T T T, ,x y z{ ˆ ˆ ˆ }, we shall define a set of orthogonal axes
n n n, ,x y z¢ ¢ ¢{ }, such that the z¢axis is along the direction of Tá ñ
of the quasi-spins. In terms of the information entropy, H Ts( ),
the EUR reads [32, 92–94] as

e e
e

e
, 12H T H T
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H T
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z
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where, Pj h( ) is the expectation value of the reduced density
matrix Tr on the j-th eigenstate of the operator Tη. As usual,

we assume I Ie eH Hi it tr = ñá-ˆ ∣ ∣ˆ ˆ †
.

A state is said to be entropic squeezed in the η-direction
if the information entropy H Th¢( ) satisfies

e e e 1. 15E
H T f N H Tzz h¢ = <¢h ¢( ) ( )( ) ( ) ( )

We shall apply the definitions of the two previous
sections to describe the squeezing properties of the electron
ensemble (T S= ) and qubit system (T s= ).

2.4. Decoherence and SU(2) Wigner functions

The interaction between the SFQ array and the electron
ensemble should lead to the decoherence of each subsystem
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[33, 34]. This effect is known as environment decoherence. It
leads to a rapid cancellation of the off-diagonal terms of the
local density matrix. In order to analyze the degree of deco-
herence of our physical system, we shall use the formalism of
Wigner functions [44–46].

Since the pioneering works of Wigner [44] and Weyl
[45], a lot of work has been devoted to the generalization of
the Wigner function formalism in order to address different
physical situations [46]. In particular, Stratanovich has
introduced the quasi-distribution probability on a sphere,
which has received the name SU(2) Wigner function [95].
The development of discrete Wigner function formalism has
been advanced by Luis and Perǐna [96]. The application of
this formalism on the SU(2) group can be found in [97–100].

Let us briefly present the formalism we have followed
[96, 100]. Given the reduced density matrix of each comp-
onent of the hybrid system, Rr (R = NV for the electron
ensemble, R = qb for the SFQ array), and its discrete SU(2)
Wigner function can be computed as
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In the previous expression, we have separated the contrib-
ution from the diagonal and off-diagonal terms of the reduced
density matrix to the SU(2) Wigner function explicitly. A
cancellation of the non-diagonal component of the SU(2)
Wigner function, W ,R

ND q f( ), should be a direct consequence
of the effect of decoherence on the system.

3. Results and discussion

We shall present and discuss the results we have obtained
from the study of the system modeled by the Hamiltonian of
equation (1). The calculations have been performed by
adopting the parameters given in [16, 23] for the SFQ- and the
electron ensemble-sectors. We have fixed the coupling con-
stants of the electron ensemble to the values D = 2.88 (GHz)
and 2 10S

5g = ´ - (GHz). The adopted value of sg is con-
sistent with a coherence time of the electron ensemble
T 10S  (μ sec) [16, 61]. For the SFQ, we have fixed the
values of the coupling constants to 2.40kD = (GHz) and

1.6k = (GHz), so that E 2.89k k kqb,
2 2= + D = (GHz),

with k N1, , qb= ¼ [62]. We have adopted a value of qbg ,
which is consistent with the time of coherence reported in
[62] T 2qb = (μ sec), 4 10qb

3g = ´ - (GHz). As the initial
state we use a coherent state for the electron ensemble, with

40q p= and 00f = , and for the SFQ the state prepared as
N k, 1, 1, ,1jqb qb, = ¼ ñ∣ { } { } (equation (7)).

Let us first discuss the squeezing properties of each
subsystem in the absence of coupling between the electron
ensemble and SFQ.

In figure 1 (a), we show the value of the entropic
squeezing parameters of the electron ensemble, for the sta-
tionary state (t TS ), as a function of the coupling constant E
of the Lipkin sector of equation (3), for a fixed value of the
OAT constant, D. The corresponding values are given in units
of decibels. We have studied an electron ensemble with
NS = 15 electrons. The results correspond to t=400 (μ sec).
It is clear that there is the appearance of two well-defined
regions delimited by E D 1< . For values of E D 1< , the
stationary state of the electron ensemble evolves into a
squeezed state, while for E D 1> , the stationary state is no
longer a squeezed state. This result can be understood by
observing that, to the leading order in the number of spins, the
Hamiltonian HS of equation (3) can be mapped into a bosonic
Hamiltonian of the form

H h SDb b SE b b2 .B 0
2 2= - + +( )† †

HB has the structure of the squeezed harmonic oscillator
Hamiltonian. Its lowest eigenstate is a squeezed state for
E D< [101]. When the dissipative term Hγ is taken into
account, an initial coherent state evolves into a pointer state
[102], which for E D< behaves as a squeezed state. For the
sake of completeness, we plot the stationary behavior of
the component Sz of the spin of the electron ensemble. We
have checked that the mean value of the total spin, Sá ñ, for the
steady state points in the z direction. In the case of E D< it
tends to the value S 2- . If E D> the values of Szá ñ, Sx

2D ,

Figure 1. The stationary value of the entropic squeezing parameter,
equation (15), of the electron ensemble as a function of the Lipkin
coupling constant, in the absence of coupling with the flux qubits, is
shown in (a). The values are given in units of decibels. The behavior
of the stationary mean value of the z component of the spin for
the electron ensemble, Szá ñ, as a function of the ratio E/D is
presented in (b). We have taken NS = 15 electrons, D = 2.88 (GHz),

2 10S
5g = ´ - (GHz), and t=400 (μ sec) (t TS ).
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and Sy
2D vary with E/D, which is reflected in the behavior of

xEz ¢( ) and yEz ¢( ).

Figure 2 shows the entropic squeezing parameters of the
stationary state of the SFQ as a function of the site-coupling
constant of equation (5), J Jk k, =¢ , at a fixed value of
E Ekqb, qb= . The corresponding values are given in units of
decibels. We have chosen an SFQ ensemble with N 3qb = ,
and the results correspond to t=8 (μ sec) (t Tqb ). The
results presented in figure 2 indicate that, due to the site–site
interaction of the qubits, the stationary state evolves into a
squeezed state. This can be understood in terms of the SQF
sector of the Hamiltonian HSFQ of equation (2), which can be
approximately written as

H H J s s s s, .z
k

z k z
k

z kSFQ eff,SFQ eff
2

,
2

,å å» » - =ˆ ˆ ( ˆ ˆ ) ˆ ˆ

The dominant term of Heff,SFQ is an OAT interaction. This
naturally leads to a stationary squeezed state.

In figure 3, we explore the behavior of the stationary state as
a function of the number of particles. In (a), we show the results
for the electron ensemble, with N 3, 5, 15, 25, , 155S = ¼ .
The coupling constant for the Lipkin-type interaction was fixed
to the value E = 0.26 (GHz). In (b), the results obtained for the
SFQ are displayed. The site–site coupling constants were fixed at
J J 1.6k k, = =¢ (GHz). The squeezing properties of the sta-
tionary state of the electron ensemble, as well as those of the
SFQ, persist with the increase in the number of particles.

Next, we present the squeezing properties of the hybrid
system when the interaction between the electron ensemble
and SFQ, equation (4) is turned on. We have fixed the

coupling constant at the value gk = 0.1 (GHz), for
k 1, 2, 3= [16].

The time dependence of the entropic squeezing para-
meters of each component of the hybrid system is shown in
figure 4. The system consists of N 3qb = and NS = 15. Figures
4 (a) and (b) correspond to the results obtained for the elec-
tron ensemble. Both (c) and (d) display the results obtained
for the SFQ. The coupling constants are fixed at the values
E = 0.26 (GHz) and J J 1.6k k, = =¢ (GHz). The curves of (a)
and (c) have been calculated in the absence of coupling
between both subsystems, while those of (b) and (d) have
been calculated by taking into account the interaction between
the electron ensemble and the SFQ, Hint of equation (4). From
these results, it is concluded that the coupling between elec-
trons and the SFQ slightly enforces the squeezing properties
of each subsystem.

In what follows, we shall discuss the decoherence
properties of the proposed physical system. The theory of
decoherence addresses the manner in which some quantum
systems become classical due to entanglement with the
environment [54]. Only one preferred state survives con-
secutive interactions with the environment, the so-called
pointer state [102]. The rest of the states are eliminated. In
this context, we shall analyze the time evolution of the dis-
crete Wigner SU(2) function, both for the electrons and the
SFQ. In particular, we are interested in the non-diagonal part
of the Wigner function, W ,ND q fr ( ) of equation (17), which is

Figure 2. Stationary value of the entropic squeezing parameter of
equation (15), of the SFQs as a function of the site-coupling
constant, in the absence of coupling with the electron ensemble. The
values are given in units of decibels. We have chosen an electron
ensemble with N 3qb = SFQs and fixed the coupling constants

2.40kD = (GHz) and 1.6k = (GHz), that is E 2.89qb = (GHz),
and with 4 10qb

3g = ´ - (GHz). The values have been obtained at

t=8 (μ sec) (t Tqb ).

Figure 3. Stationary value of entropic squeezing parameters in the
absence of coupling between the electron ensemble and SFQs
(gk = 0 (GHz)), as a function of the number of particles of each
subsystem. In (a) the results obtained for the electron ensemble, with
N 3, 5, 15, 25, , 155S = ¼ are shown. The coupling constants for
the electron sector have been fixed at the values D = 2.88 (GHz),
E = 0.26 (GHz) and 2 10S

5g = ´ - (GHz). In (b), the results
obtained for the SFQs are displayed. The coupling constants for the
SFQ sector have been fixed at the values 2.40kD = (GHz) and

1.6k = (GHz), that is E 2.89qb = (GHz) and 4 10qb
3g = ´ -

(GHz), with the site-coupling constants J J 1.6k k, = =¢ (GHz).
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computed from the off-diagonal terms of the reduced density
matrix of each subsystem.

The SU(2) Wigner function for the electron ensemble, at
different instants of time, is shown in figure 5. Diagrams (a)–(f)
present the results obtained in the absence of coupling to the
SFQ, while for (g)–(l) the interaction with the SFQ is taken into
account. In (a), (c), (e), (g), (i), and (k) we show the results
obtained for the SU(2) Wigner function. In (b), (d), (f), (h), (j),
and (l) the non-diagonal contribution to the SU(2) Wigner
function is displayed for the same values of time. The para-
meters are those of figure 4. The contour curves presented in
(a), (b), (g), and (h) correspond to the results obtained at t=0
(μ sec). Contour curves (c), (d), (i), and (j) correspond to t=62
(μ sec). Finally, contour curves (e), (f), (k), and (l) correspond
to t=400 (μ sec).

Figure 6 shows the behavior, for different instants of
time, of the SU(2) Wigner function for the SFQ. The results
are presented in the same way as in figure 5, for t=0 (μ sec),
1.2 (μ sec), and 4 (μ sec), respectively.

From figures 5 and 6 it can be observed that, even in the
stationary state, the contribution of the off-diagonal matrix
elements of the reduced density matrix does not vanish. This
non-vanishing behavior of the non-diagonal terms of the

Wigner function indicates that the system shows, in the sta-
tionary state, some degree of coherence. This effect is
enforced by the interaction between the electron ensemble
and the SFQ.

From the results presented, we observed that dissipative
effects can contribute to the enhancement of entanglement
and of spin-squeezing properties of the corresponding sys-
tems [40, 58]. The experimental achievement of squeezing of
a canonical variable, x

2z ¢, implies that quantum memory and
metrology applications gain by an increased signal-to-noise
ratio [41, 63].

Similar results have been advanced in [25] and [42]. In
[25], the squeezing and decoherence properties of the system
modeled by the Hamiltonian of equation (1) were analyzed in
terms of the squeezing parameter of Kitagawa and Ueda and
of the study of the off-diagonal elements’ reduced density
matrix of each subsystem, respectively. The authors of [42]
have studied the stationary limit of a system composed of a

Figure 4. Behavior, as a function of time, of the entropy squeezing
parameters of each component of the hybrid system. The system
consists of N 3qb = and NS = 15. The interaction coupling constants
are fixed at the values E = 0.26 ([GHz) and J J 1.6k k, = =¢ (GHz).
Both (a) and (b) correspond to the results obtained for the electron
ensemble. Both (c) and (d) displayed the results obtained for the
SFQ. The coupling constants are given in the captions to figure 3.
The curves shown in (a) and (c) have been obtained in the absence of
coupling between both subsystems, while for the results of (b) and
(d) the coupling constants of Hint of equation (4) was fixed at the
value gk = 0.1 (GHz), k 1, 2, 3= .

Figure 5. Behavior of the SU(2) Wigner function for the electron
ensemble, at different instants of time. Diagrams (a)–(f) present the
results obtained in the absence of coupling to the SFQ, while for (g)–
(l) the interaction with the SFQ is taken into account. In (a), (c), (e),
(g), (i), and (k) we show the results obtained for the SU(2) Wigner
function. In (b), (d), (f), (h), (j), and (l) the non-diagonal contribution
to the SU(2) Wigner function is displayed for the same values of
time. The parameters are those of figure 4. The contour curves
presented in (a), (b), (g), and (h) correspond to the results obtained at
t=0 (μ sec). Contour curves (c), (d), (i), and (j) correspond to
t=62 (μ sec). Finally, contour curves (e), (f), (k), and (l)
correspond to t=400 (μ sec).
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SFQ with an ensemble of NV centers by using the master
equation formalism. They concluded that dissipative effects
favor both the squeezing properties and coherence of the
system.

4. Conclusions

In this work, we have studied the time evolution of a hybrid
dissipative system consisting of SFQs coupled to an electron
ensemble in the form of NV color centers in diamond. We
have taken into account the site–site interaction between the
SFQ, as well as the interaction between the SFQ and the
electrons. We have analyzed the squeezing properties and
decoherence properties of both systems as a function of time,
particularly the steady state of the system. In the absence of
interaction between the SFQ and electrons, the initial SFQ
state evolves into an entropic squeezed state. The steady state
of the electron ensemble evolves into an entropic squeezed
state depending on the ratio of the coupling constants of the
Lipkin-type interaction to the OAT coupling constant, E/D. If
E D 1< , the stationary state is an entropic squeezed state.
For realistic values of the coupling constants, the steady state

of both subsystems preserves the squeezing properties as the
number of particles is increased. When the interaction
between the SFQ and the electron ensemble is turned on, the
steady state remains squeezed. Also, the non-diagonal part of
the Wigner function does not vanish. This fact indicates that
the off-diagonal matrix elements of each reduced density
matrix have not been completely washed out by the interac-
tion between the SFQ and electrons. Thus, the hybrid system
remains nonclassical and preserves some degree of coherence
in the stationary regimen. Similar results have been advanced
in [25, 42].
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Appendix

As has been proposed in different works [16, 23, 103–105],
the Hamiltonian of an array of SFQs can be written, on the
basis of clockwise and anticlockwise qubit-persistent-cur-
rents, as

H s s h J s s
1

2
, 19

k

N

k x k k z k
k k

k k

N

k k z k z kSFQ
1

, ,
,

, , ,

qb qb

å å= D + +
= ¢

¹ ¢

¢ ¢ˆ ( ˆ ˆ ) ˆ ˆ ( )

where s s s, ,x k y k z k, , ,{ˆ ˆ ˆ } are Pauli spin-1/2 operators. The
energy bias is given by I2 3 2k k kp, ex, 0 = F - F( ), where I kp,

is the persistent current in a qubit at site k, kex,F is the external
flux threading the qubit loop, and e1 20F = ( ) is the flux
quantum. The parameter kD stands for the tunnel splitting,
while Jk k, ¢ denotes the coupling strength between qubits in the
sites k and k¢, respectively.

This Hamiltonian can be diagonalized by using the
transformation [16, 25, 94]
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The set of operators, , ,x k y k z k, , ,s s s{ } and s s s, ,x k y k z k, , ,{ },
obey the su(2) algebra, being Ecos k k kqb,a = , sin ka =

Ek kqb,-D , and E k k kqb,
2 2= + D .

Following the work of [16], we shall study the following
mechanism of interaction between the SFQ and electron-spin
ensemble:

H g s S

g S

1

2
,

1

2
cos sin . 21

k

N

k z k x

k

N

k k z k k x k x

int
1

,

1
, ,

qb

qb

å

å a s a s

=

= +

=

=

ˆ ˆ

( ( ) ˆ ( ) ˆ ) ˆ ( )

Figure 6. Behavior, for different instants of time, of the SU(2)
Wigner function for the SFQ. Results are presented in the same way
as in figure 5, for t=0 (μ sec), 1.2 (μ sec), and 4 (μ sec),
respectively.
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