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Type A surfaces are the locally homogeneous affine surfaces which can be locally 
described by constant Christoffel symbols. We address the issue of the geodesic 
completeness of these surfaces: we show that some models for Type A surfaces are 
geodesically complete, that some others admit an incomplete geodesic but model 
geodesically complete surfaces, and that there are also others which do not model 
any geodesically complete surface. Our main result provides a way of determining 
whether a given set of constant Christoffel symbols can model a geodesically 
complete surface.
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1. Introduction

An affine surface is a pair M := (M, ∇) where ∇ is a torsion free connection on the tangent bundle 
of a smooth 2-dimensional surface M . Let �x = (x1, x2) be local coordinates on M . Adopt the Einstein 
convention and sum over repeated indices to expand ∇∂xi∂xj = Γij

k∂xk in terms of the Christoffel symbols
Γ = (Γij

k); the condition that ∇ is torsion free is then equivalent to the symmetry Γij
k = Γji

k. We say that 
M is locally homogeneous if given any two points of M , there is the germ of a diffeomorphism Φ taking one 
point to another with Φ∗∇ = ∇. The locally homogeneous affine surfaces have been classified by B. Opozda 
[11]; we refer to T. Arias-Marco and O. Kowalski [1] for the corresponding classification if the torsion tensor 
is permitted to be non-zero; see also [5,6,8–10,12] for related work.

Theorem 1.1 (Opozda). Let M = (M, ∇) be a locally homogeneous affine surface which is not flat. Then 
at least one of the following three possibilities holds, which are not exclusive, and which describe the local 
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geometry:

Type A: There exist local coordinates (x1, x2) so that Γij
k = Cij

k is constant.
Type B: There exist local coordinates (x1, x2) so that Γij

k = (x1)−1Cij
k where Cij

k is constant.
Type C: ∇ is the Levi-Civita connection of a metric of constant sectional curvature.

We say that M is Type A or Type B or Type C depending on which possibility holds in Theorem 1.1. 
There are no surfaces which are both Type A and Type C. There are surfaces which are both Type A and 
Type B. Any surface which is both Type B and Type C is modeled either on the hyperbolic plane or on the 
Lorentzian hyperbolic plane.

Let ρ(ξ, η) := Tr(σ → R(σ, ξ)η) be the Ricci tensor. Although in general the Ricci tensor can be non-
symmetric for an affine surface, ρ is symmetric if M is Type A. The Ricci tensor encodes all the geometry 
in dimension 2; ρ = 0 if and only if the geometry is flat. We shall restrict for the remainder of this paper to 
Type A surfaces and shall consider in a subsequent paper Type B surfaces; since we shall always assume M
is not flat, the Ricci tensor is non-zero. We say that M is a symmetric space if ∇R = 0 or, equivalently since 
we are in the 2-dimensional setting, if ∇ρ = 0. If C := {Cij

k} is a collection of constants with Cij
k = Cji

k, 
let

MC := (R2,∇C) where ∇C
∂xi

∂xj = Cij
k∂xk .

The translations act transitively on R2 preserving ∇C so this is a homogeneous geometry. Such an affine 
surface will be said to be a Type A model. The general linear group GL(2, R) acts on the set of Type A
models by change of basis or, equivalently, by the linear action on the parameter space S2(R2) ⊗ R

2; two 
indices are down and one index is up. Let ρC be the associated Ricci tensor. We say that two Type A models 
MC and MC̃ are linearly isomorphic if they are isomorphic modulo the action of GL(2, R). Let M = (M, ∇)
be a Type A affine surface. We can find a Type A atlas of open sets {Uα}, i.e. local coordinates (x1

α, x
2
α), 

and constant local Christoffel symbols Cα so that ∇∂xi
α
∂xj

α
= Cα,ij

k∂xk
α
. Since M is locally homogeneous, 

we can take Cα = C to be independent of α. In this setting, MC is said to be a model for M. We refer to 
[3] for the proof of the following observation:

Lemma 1.2.

(1) If M is a Type A affine surface, then any Type A atlas is real analytic.
(2) If MC and MC̃ are Type A models with Rank(ρC) = Rank(ρC̃) = 2, then MC and MC̃ are isomorphic 

if and only if they are linearly isomorphic.

Introduce the following Type A models by giving the corresponding Christoffel symbols; in the interests 
of brevity we only list the non-zero Christoffel symbols Cij

k for i ≤ j and set Cji
k := Cij

k if i > j.

C1 := {C11
1 = −1, C12

1 = −1
2}, C2 := {C12

1 = −1
2},

C3 := {C11
1 = −1, C22

1 = −1}, C±1,δ := {C11
2 = ±1, C12

1 = 1
2 , C12

2 = δ
2}.

Denote the corresponding Type A models by M1, M2, M3, and M±,δ, respectively. By replacing x1 by 
−x1, we may replace C±1,δ by C±1,−δ; thus we shall assume δ ≥ 0. A direct computation shows ρC1 and ρC2

are negative semi-definite, ρC3 is positive semi-definite, ρC+,δ
is negative definite, and ρC−,δ

is indefinite. We 
refer to [3,4] for the proof of the following result; it shows, in particular, that Lemma 1.2 (2) can fail if the 
Ricci tensor has rank 1 since M1 is not linearly isomorphic to M2 but is isomorphic to M2.
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Lemma 1.3. M1, M2, and M3 are symmetric spaces. Any Type A model which is a symmetric space is 
linearly isomorphic to M1, M2, or M3. Mi is not linearly isomorphic to Mj for i �= j. M1 is isomorphic 
to M2 but not to M3.

A curve σ is said to be a geodesic if it satisfies the geodesic equation ∇σ̇σ̇ = 0. In any local coordinate 
chart, this means that

ẍk
α + Cij

kẋi
αẋ

j
α = 0 .

An affine Type A model MC is said to be geodesically complete if any geodesic extends to have domain all 
of R; otherwise MC is said to be geodesically incomplete. Conversely, MC is said to be essentially geodesically 
complete if there exists a Type A surface which is modeled on MC which is geodesically complete; otherwise 
MC is said to be essentially geodesically incomplete. It is clear that MC is geodesically complete implies 
MC is essentially geodesically complete and similarly MC is essentially geodesically incomplete implies MC
is geodesically incomplete. It will follow from Theorem 1.5 that up to linear equivalence, the only Type A
models which are geodesically incomplete but essentially geodesically complete are M1 and M3.

Ansatz 1.4. Let σa,b(t) := (a, b) · log(t). The geodesic equations for a Type A model then reduce to the 
following pair of quadratic equations:

a = C11
1a2 + 2C12

1ab + C22
1b2,

b = C11
2a2 + 2C12

2ab + C22
2b2 .

(1.1)

Thus Equation (1.1) has a solution with (a, b) �= (0, 0) implies the associated Type A model is geodesically 
incomplete; this is a purely algebraic condition that can be studied using the quadratic formula.

The following is the main result of this paper.

Theorem 1.5. Let MC = (R2, Cij
k) be a Type A model.

(1) If the Ricci tensor has rank 1, then:
(a) If ∇R �= 0, then MC is essentially geodesically incomplete.
(b) M2 is geodesically complete.
(c) M1 is geodesically incomplete and essentially geodesically complete.
(d) M3 is geodesically incomplete. Let M̃3 be defined by taking Γ22

1 = x1 and the remaining Christof-
fel symbols zero. M̃3 is modeled on M3 and is geodesically complete. Thus M3 is essentially 
geodesically complete.

(2) If the Ricci tensor has rank 2, then following conditions are equivalent:
(a) MC is geodesically incomplete.
(b) MC is essentially geodesically incomplete.
(c) There exists a geodesic of the form σ = (a, b) log(t) with (a, b) �= (0, 0).
(d) MC is not linearly equivalent to M−,δ for 0 ≤ δ < 2.

(3) No two models in the family {M2, M3, M−,δ}0≤δ<2 are locally isomorphic.

The geodesic structures for M2, M−,δ for δ = 0, δ = 1.8, and M̃3 are depicted below.
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This gives rise to a simple algorithm to test if a given model MC is essentially geodesically incomplete. 
If the rank of the Ricci tensor is 1, then MC is essentially geodesically incomplete if and only if ∇ρ �= 0. 
If the rank of the Ricci tensor is 2, M is essentially geodesically incomplete if and only if there exists a 
non-trivial geodesic of the form σ(t) = (a, b) · log(t). Here is a brief outline to this paper. In Section 2 we 
prove Theorem 1.5 (1), in Section 3, we prove Theorem 1.5 (2), and in Section 4, we prove Theorem 1.5 (3).

2. Models where the rank of the Ricci tensor is 1

We say that X is an affine Killing vector field on an affine manifold N = (N, ∇) if and only if LX(∇) = 0
where L denotes the Lie derivative; we refer to Kobayashi and Nomizu [7, Chapter VI] for additional 
characterizations of this condition. If P ∈ N , let K(P ) be the space of germs of affine Killing vector fields 
based at P and let K be the space of global affine Killing vector fields; K(P ) and K are finite dimensional 
Lie algebras. If N is simply connected and locally homogeneous, every germ of an affine Killing vector field 
extends to a global Killing vector field so we may identify K with K(P ) for any P .

2.1. The proof of Theorem 1.5 (1a)

Suppose that MC is a Type-A model where the Ricci tensor has rank 1 and that MC is not a symmetric 
space. We argue as follows to show that MC is essentially geodesically incomplete.

By Lemma 2.3 of [3], Rank(ρ) = 1 implies that we can make a linear change of coordinates to ensure 
C11

2 = 0, C12
2 = 0, and ρ = ρ22dx

2 ⊗ dx2. Suppose that C22
2 = 0. A direct computation then shows 

that ∇ρ = 0. Consequently C22
2 �= 0. Let σ(t) := (x1(t), (C22

2)−1 log(t)). The geodesic equation ẍ2 +
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C22
2ẋ2ẋ2 = 0 is then satisfied; the resulting ODE for x1 can then be solved, at least locally. Since ρ has 

Rank 1, ρ22 �= 0. Let κ(t) := ρ(σ̇, σ̇) = (tC22
2)−2ρ22; the x1 coordinate plays no role. We suppose there exists 

a geodesically complete Type A affine surface M which is modeled on MC. We argue for a contradiction. 
Since M is modeled on MC , we can copy a portion of σ(t) into M. The function κ(t) then extends to a 
real analytic function on all of R which is false. �

Suppose that MC is a symmetric space. By Lemma 1.3, MC is linearly isomorphic to Mi for some i
with 1 ≤ i ≤ 3. We examine these 3 cases seriatim.

2.2. The proof of Theorem 1.5 (1b) – the model M2

Since C12
1 = −1

2 is the only non-zero Christoffel symbol, the geodesic equations are ẍ2 = 0 and ẍ1 −
ẋ1ẋ2 = 0. Define a real analytic function on R2 by setting

h(t; d) :=
∞∑

n=1

dn−1tn

n! =
{

t if d = 0
edt−1

d if d �= 0

}
.

We then have h(0; d) = 0 and ḣ(t; d) = edt so ḣ(0; d) = 1. If σa,b,c,d(t) is the solution to the geodesic 
equations with σa,b,c,d(0) = (a, b) and σ̇a,b,c,d(0) = (c, d), then

σa,b,c,d(t) = (a, b) + (c · h(t; d), dt) .

Thus this geometry is geodesically complete. This proves Theorem 1.5 (1b). We have Expa,b(c, d) = (a, b) +
(c · h(1, d), d). Since h(1, d) �= 0 for any d, the exponential map is a diffeomorphism from the tangent space 
at (a, b) to R2. �
2.3. The proof of Theorem 1.5 (1c) – the model M1

Since the only non-zero Christoffel symbols are C11
1 = −1 and C12

1 = −1
2 , the geodesic equations 

become ẍ1 = ẋ1ẋ1 + ẋ1ẋ2 and ẍ2 = 0. This can be solved by taking σ(t) = (−1, 0) log t. Thus this geometry 
is geodesically incomplete. Note that since ρ(σ̇, σ̇) = 0, the argument used to Theorem 1.5 (1a) does not 
apply. The fact that M1 and M2 are locally isomorphic follows from Lemma 1.3; thus M1 is essentially 
geodesically complete by Theorem 1.5 (1b). �
2.4. The proof of Theorem 1.5 (1d) – the model M3

Since the only non-zero Christoffel symbols are C11
1 = −1 and C22

1 = −1, the geodesic equations become 
ẍ1 = ẋ1ẋ1+ẋ2ẋ2 and ẍ2 = 0. As for the geometry M1, this can be solved by taking σ(t) = (−1, 0) log t. Thus 
this geometry is geodesically incomplete. We complete the proof by showing M̃3 is geodesically complete 
and modeled on M3.

We make a non-linear change of coordinates. Set u1 = e−x1 and u2 = x2. This defines a diffeomorphism 
Φ between R2 and R+ × R. We have

du1 = −e−x1
dx1, du2 = dx2, ∂u

1 = −ex
1
∂1, ∂u

2 = ∂2,

∇∂u
1 ∂

u
1 = ex

1∇∂1{ex
1
∂1} = e2x1{(1 + xΓ11

1)∂1 + xΓ11
2∂2},

∇∂u
1 ∂

u
2 = −ex

1∇∂1∂2 = −ex
1{xΓ12

1∂1 + xΓ12
2∂2},

∇∂u∂u
2 = ∇∂2∂2 = xΓ22

1∂1 + xΓ22
2∂2,
2
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uΓ11
1 = −(1 + xΓ11

1) · ex1 = 0, uΓ11
2 = xΓ11

2 · e2x1 = 0,
uΓ12

1 = xΓ12
1 = 0, uΓ12

2 = −xΓ12
2 · ex1 = 0,

uΓ22
1 = −xΓ22

1 · e−x1 = u1, uΓ22
2 = xΓ22

2 = 0.

These are the Christoffel symbols defining M̃3. We have M̃3 is isomorphic to M3 on R+ × R which is the 
range of the diffeomorphism. We will complete the proof by showing that M̃3 is geodesically complete and 
that it is locally homogeneous.

The geodesic equations for M̃3 become ü1 +u1u̇2u̇2 = 0 and ü2 = 0. We solve these equations with initial 
conditions σa,b,c,d(0) = (a, b) and σ̇a,b,c,d(0) = (c, d) by taking

σa,b,c,d(t) :=
{

(a cos(dt) + c
d sin(dt), b + dt) if d �= 0

(a + ct, b) if d = 0

}
.

This shows that M̃3 is complete. The exponential map at (a, b) takes the form

Expa,b(c, d) =
{

(a cos(d) + c
d sin(d), b + d) if d �= 0

(a + c, b) if d = 0

}
.

If d = π, then Expa,b(c, π) = (−a, b + π) and the exponential map is neither 1-1 nor onto.
We use Lemma 3.6 of [3] to see:

K(M3) = Span
R
{∂1, ∂2, e

x1
cos(x2)∂1, e

x1
sin(x2)∂1}

= Span
R
{u1∂u

1 , ∂
u
2 , cos(u2)∂u

1 , sin(u2)∂u
1 } .

Let

ξ1 := u1∂u
1 , ξ2 := u1∂u

1 + cos(u2)∂u
1 , ξ3 := u1∂u

1 − sin(u2)∂u
1 ,

η1 := ∂u
2 , η2 := ∂u

2 + sin(u2)∂u
1 , η3 := ∂u

2 + cos(u2)∂u
1 .

These are affine Killing vector fields on R+ × R. Since the structures are real analytic, these are affine 
Killing vector fields on all of R2. We verify that [ξi, ηi] = 0. Fix P . If u1(P ) �= 0, then ξ1(P ) and η1(P ) are 
linearly independent. By the Frobenius Theorem, we can change to coordinates w1, w2 such that ξ1 = ∂w

1
and η1 = ∂w

2 near P . Since ∂w
1 and ∂w

2 are affine Killing vector fields, translations preserve the geometry 
and the geometry is Type A near P [Lemma 1 of [1]]. If u1(P ) = 0 but cos(u2(P )) �= 0, a similar argument 
pertains using {ξ2, η2}. Finally, if u1(P ) = 0 and cos(u2(P )) = 0, then necessarily sin(u2(P )) �= 0 and we 
can repeat the argument using {ξ3, η3}. This shows M̃3 is locally homogeneous. Since M̃3 is modeled on 
M3 over R+ × R, M̃3 is modeled on M3 everywhere. If we use the diffeomorphism Φ to identify M3 with 
R

+ × R in M̃3, then the line u1(P ) = 0 is the boundary of M3; this requires the delicate treatment given 
above. �
3. Models where the Ricci tensor has rank 2

Theorem 1.5 (2) will follow from the following assertions:

Lemma 3.1. Let MC be a Type A model with Rank(ρ) = 2 such that MC is geodesically incomplete. Then 
MC is essentially geodesically incomplete.
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Lemma 3.2. If MC is a Type A model with Rank{ρ} = 2 which does not admit a geodesic of the form 
σ(t) = (a, b) log(t) for (a, b) �= (0, 0), then MC is linearly isomorphic to M−,δ for 0 ≤ δ < 2.

Lemma 3.3. If 0 ≤ δ < 2, then M−,δ is geodesically complete.

The remainder of this Section is devoted to the proof of these results; throughout it, let MC be a Type A
affine model whose Ricci tensor has rank 2.

3.1. A genericity result

We will use the following result to normalize our coordinate systems; this will simplify subsequent argu-
ments by avoiding the necessity to consider special cases.

Lemma 3.4. Suppose that Rank(ρ) = 2. Then we can change coordinates to ensure that Cij
k �= 0 for all i, 

j, and k.

Proof. We want to show that there exists T ∈ GL(2, R) such that (T ∗C)ijk �= 0 for all i, j and k. Suppose 
to the contrary that (T ∗C)221 = 0 for all T ∈ GL(2, R). Set Tε(x1, x2) := (x1 + εx2, x2) = (w1, w2). We 
compute

dw1 = dx1 + εdx2, dw2 = dx2, ∂w1 = ∂x1 , ∂w2 = −ε∂x1 + ∂x2 ,

(T ∗
ε C)221 = C(∂w2 , ∂w2 , dw1) = C22

1 + ε(C22
2 − 2C12

1) + ε2(C11
1 − 2C12

2) + ε3C11
2 .

Since a non-trivial polynomial of degree at most 3 has at most 3 roots, we obtain:

C22
1 = 0, C22

2 = 2C12
1, C11

1 = 2C12
2, C11

2 = 0 .

We compute

ρ =
(

(C12
2)2 C12

1C12
2

C12
1C12

2 (C12
1)2

)
.

Thus det(ρ) = 0 so the Ricci tensor does not have rank 2 which is false. Thus we obtain (T ∗
εC)221 = 0 for 

at most 3 values of ε. Change coordinates to ensure C22
1 �= 0. Let Sε(x1, x2) := (x1, εx1 + x2) = (u1, u2). 

We compute

du1 = dx1, du2 = εdx1 + dx2, ∂u1 = ∂x1 − ε∂x2 , ∂u2 = ∂x2 ,

(S∗
εC)221 = C22

1, (S∗
εC)222 = C22

2 + εC22
1,

(S∗
εC)121 = C12

1 − εC22
1,

(S∗
εC)122 = C12

2 + ε(C12
1 − C22

2) − ε2C22
1,

(S∗
εC)111 = C11

1 − 2εC12
1 + ε2C22

1,

(S∗
εC)112 = C11

2 + ε(C11
1 − 2C12

2) + ε2(C22
2 − 2C12

1) + ε3C22
1 .

Since C22
1 �= 0, all these polynomials are non-trivial. There are only a finite number of zeros of each of 

these polynomials. Thus for generic ε, all the Christoffel symbols are non-zero. �
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3.2. Geodesics of the form σ(t) = (a, b) log(t) for (a, b) �= (0, 0)

The geodesic equations for the curve σ are given in Equation (1.1). If we can find a solution to these 
equations with (a, b) �= (0, 0), then M is geodesically incomplete. Set

Ei(a, b) := a2C11
i + 2abC12

i + b2C22
i

to rewrite Equation (1.1) in the form:

a = E1(a, b) and b = E2(a, b) . (3.1)

We assume a �= 0 and set b = λa. Equation (3.1) becomes

a = a2E1(1, λ) and aλ = a2E2(1, λ) i.e. 1 = aE1(1, λ) and λ = aE2(1, λ) .

We eliminate a in these equations to obtain a = 1
E1(1,λ) and a = λ

E2(1,λ) . For this ansatz to work, we need 
to be able to solve the equations:

E3(λ) := λE1(1, λ) − E2(1, λ) = 0, E1(1, λ) �= 0, E2(1, λ) �= 0 . (3.2)

Lemma 3.5. Normalize the coordinate system as in Lemma 3.4. Then E1(1, λ) and E2(1, λ) have degree 2 
in λ. If E1(1, λ) and E2(1, λ) do not have a common real root, then the geometry of the underlying Type A
model is geodesically incomplete.

Proof. We have

E1(1, λ) = C11
1 + 2λC12

1 + λ2C22
1,

E2(1, λ) = C11
2 + 2λC12

2 + λ2C22
2,

E3(λ) = −C11
2 + λ(C11

1 − 2C12
2) + λ2(2C12

1 − C22
2) + λ3C22

1 .

(3.3)

Since C22
1 �= 0 and C22

2 �= 0, E1(1, λ) and E2(1, λ) have degree 2 in λ while E3(λ) has degree 3 in λ. 
Furthermore, since C11

1 �= 0 and C11
2 �= 0, λ = 0 is not a root of E1(1, λ), E2(1, λ), or E3(λ). Choose a 

real root λ0 �= 0 of the cubic E3(λ). If E1(1, λ0) = 0, then E2(1, λ0) = 0 so E1(1, λ) and E2(1, λ) have a 
common root which is false. If E2(1, λ0) = 0, since λ0 �= 0, E1(1, λ0) = 0 which again is false. Thus we can 
satisfy the conditions of Equation (3.2) which implies the geometry is geodesically incomplete. �
3.3. The proof of Lemma 3.1

Let MC be a Type A model with Rank(ρ) = 2 such that MC is geodesically incomplete. We wish to show 
that MC is essentially geodesically incomplete. Suppose to the contrary that there exists a Type A surface 
M = (M, ∇) which is geodesically complete and which is modeled on MC and argue for a contradiction. 
By passing to the universal cover, we may assume M is simply connected and therefore that any local affine 
Killing vector field extends to a global affine Killing vector field.

Since the Ricci tensor has rank 2, Theorem 3.4 of Brozos-Vázquez et al. [3] shows that K(MC) =
Span

R
{∂x1 , ∂x2}. Let P ∈ M , and let {ξ1, ξ2} be a basis for K(P ). Extend the ξi to globally defined affine 

Killing vector fields. Since dim{K(Q)} = 2 for any Q ∈ M , we conclude that {ξ1(Q), ξ2(Q)} is a basis for 
K(Q); {ξ1, ξ2} is a global frame for TM . Since the model MC is incomplete, there exists a geodesic σ(t) in 
MC which is not defined for all t; we suppose (a, b) for b < ∞ to be a maximal parameter range. Copy a 
piece of σ into M to define a geodesic σM. We may assume, without loss of generality, that ξi(σM(0)) = ∂i
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and hence ξi(σM)(t) = ∂i for t near 0. Since M is geodesically complete, the domain of σM is R. Expand 
σ̇M = κ1,M(t)ξ1(σ(t)) + κ2,M(t)ξ2(σ(t)). The functions κi,M(t) are then real analytic and defined on all of 
R. Returning to the model MC, we may expand σ̇ = κ1(t)∂1 + κ2(t)∂2; since we are working in the real 
analytic context and since ξi(σM)(0) = ∂i, κi(t) = κi,M(t) so κi extends to a real analytic function on all 
of R. In particular, the κi extend smoothly to t = b. Since

lim
t→b

σ(t) = σ(0) +
b∫

t=0

(κ1(t), κ2(t))dt ,

we conclude that σ is smooth at t = b and hence σ extends beyond t = b which is false. This contradiction 
shows that in fact MC is essentially geodesically incomplete. �
3.4. The proof of Lemma 3.2

Let MC be a Type A model with Rank{ρ} = 2 which does not admit a geodesic of the form σ(t) =
(a, b) log(t) for (a, b) �= (0, 0). We must show that MC is linearly isomorphic to M−,δ for 0 ≤ δ < 2. 
Normalize the coordinate system as in Lemma 3.4. The ansatz of Lemma 3.5 fails and therefore E1(1, λ)
and E2(1, λ) have a common root. Suppose E1(1, λ0) = 0 and E2(1, λ0) = 0. We may factor

E1(1, λ0) = C22
1(λ− λ0)(λ− λ1) and E2(1, λ0) = C22

2(λ− λ0)(λ− λ2) .

We use Equation (3.3) to determine the Christoffel symbols and express the geodesic equation in the form:

ẍ1 + C22
1(ẋ2 − λ0ẋ

1)(ẋ2 − λ1ẋ
1) = 0 and ẍ2 + C22

2(ẋ2 − λ0ẋ
1)(ẋ2 − λ2ẋ

1) = 0 . (3.4)

We set u := −ẋ1 and v := −ẋ2 to work in phase space. Equation (3.4) can be rewritten in the form:

u̇ = E1(u, v) = ξ1(u, v)ξ2(u, v) and v̇ = E2(u, v) = ξ1(u, v)ξ3(u, v)

where ξi(u, v) = αiu + βiv and (αi, βi) �= (0, 0). We may change variables so that u1 = ξ1(u, v) and v1 is 
chosen suitably (we could, for example, take v1 = −β1u +α1v but the choice is irrelevant for the moment). 
The geodesic equations become

u̇1 = u1η2(u1, v1) and v̇1 = u1η3(u1, v1) where ηi(u, v) = α1,iu + β1,iv .

Suppose that β1,2 = 0 so in the new coordinate system we have that C12
1 = 0, and C22

1 = 0. This 
implies ρ = (C11

1C12
2 + C11

2C22
2 − C12

2C12
2)dx1 ⊗ dx1 which is false as ρ has rank 2. Consequently 

β1,1 �= 0 so {u1, η2(u1, v1)} are linearly independent linear functions. We change variables setting u2 = u1
and v2 = η2(u1, v1). This permits us to write the geodesic equations in the form:

u̇2 = u2v2 and v̇2 = u2(α̃u2 + β̃v2) .

If α̃ = 0 and β̃ = 0, then in the new coordinate system C11
2 = 0 and C12

2 = 0. This implies ρ =
(−C12

1C12
1 + C11

1C22
1 + C12

1C22
2)dx2 ⊗ dx2, which contradicts our assumption that ρ has rank 2. So 

if α̃ = 0, then β̃ �= 0 and, by rescaling u2 appropriately and dropping the subscripts to simplify the 
notation, the geodesic equations can be written in the form ẍ1 = ẍ2 = ẋ1ẋ2, which admit the solution 
σ(t) = (−1, −1) log(t), in contradiction with our assumption. Thus α̃ �= 0, the geodesic equations have the 
form
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ẍ1 + ẋ1ẋ2 = 0 and ẍ2 + ẋ1(C11
2ẋ1 + C12

2ẋ2) = 0 ,

and we can rescale x1 to ensure C11
2 = ±1, showing that MC is linearly isomorphic to M±,δ.

We examine M+,δ. Let σ(t) = (a, 1) ·log(t). The geodesic equations become −a +a = 0 and −1 +a2+δa =
0. We use the quadratic formula to solve the second equation setting a = 1

2 (−δ ±
√
δ2 + 4). Thus this 

possibility is eliminated.
We examine M−,δ with δ2 ≥ 4. Let σ(t) = (a, 1) · log(t). This time the geodesic equations become 

−a + a = 0 and −1 − a2 + δa = 0. The quadratic formula yields a = 1
2 (δ ±

√
δ2 − 4). Thus this possibility 

is eliminated if δ2 ≥ 4.
Thus MC is linearly equivalent to M−,δ for δ2 < 4. By replacing x1 by −x1 if necessary, we can always 

assume δ ≥ 0 and thus 0 ≤ δ < 2. �
3.5. The proof of Lemma 3.3

We must show that if 0 ≤ δ < 2, then M−,δ is geodesically complete. Set u = −ẋ1 and v = −ẋ2 so we 
work in phase space. Let X(u, v) := (uv, u(−u + δv)). Then σ is a geodesic if and only if (u̇, v̇) = X(u, v). 
Thus we are examining the flow curves of the vector field X. As a guide to the intuition, we present a picture 
of the flow curves of the vector field X when δ = 1.

Let P ∈ R
2. By the Fundamental Theorem of Ordinary Differential Equations, there exists a unique curve 

γ = γP defined for |t| < ε so that γ̇P = X(γP ) and γP (0) = P . The corresponding geodesic σ is then found 
by solving the ODE σ̇ = γ with an appropriate initial condition. Note that if X(P ) = 0, then we may take 
γP (t) = P to be the constant curve. Consequently if γ(t) is a flow curve for X and if X(γ(t)) = 0 for any t, 
then γ(t) is the constant curve. Note that X(u, v) = 0 if and only if u = 0. Thus flow curves can not cross 
the vertical axis; either u(γ(t)) > 0 or u(γ(t)) < 0 for all t in the domain or (u(t), v(t)) is constant.

If v = 0, then v̇ = −u2. Thus v is strictly monotonically decreasing near the horizontal axis. Once a 
flow curve has left the first quadrant, it is trapped in the fourth quadrant. Similarly once a flow curve has 
left the second quadrant it is trapped in the third quadrant. The picture given above suggests that positive 
vertical axis is a repulsive fixed point set and the negative vertical axis is an attractive fixed point set; flow 
curves should exist for all time and pass from the positive vertical axis to the negative vertical axis. This is 
in fact the case as we now show.

Let α := v̇
u̇ = −u+δv

v be the slope of the flow curve. A direct computation shows that

α̇ = v−2 {(−u̇ + δv̇)v − (−u + δv)v̇}
= v−2 {−uv2 + u2(−u + δv)

}
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= v−2u
{
−v2 − u2 + δuv

}
.

The assumption that 0 ≤ δ < 2 permits us to estimate using the Cauchy–Schwarz inequality that u(t)2 +
v(t)2 − δu(t)v(t) ≥ εv(t)2 for some ε > 0. Consequently:

α̇(t) ≤ −ε|u(t)| if u(t) > 0 and v(t) �= 0 . (3.5)

We examine the behavior of the flow curves in each quadrant; the first quadrant is the most difficult to study. 
We suppose that γ is a flow curve for the vector field (uv, u(−u + δv)) with initial condition γ(0) = (u0, v0). 
If u0 = 0, then γ is constant. Thus we assume u0 �= 0. We assume γ is incomplete and let [0, T ) be a maximal 
domain. If the range of γ is trapped in a compact set K, then there exist tn → T so γ(tn) → (uT , vT ) exists. 
Since any flow curve with initial condition near (uT , vT ) extends for a fixed minimal time, this would permit 
us to extend γ past t = T which is impossible. Thus γ must escape to infinity.

Case 3.1. The first quadrant We suppose that u(0) = u0 > 0, v(0) = v0 > 0, and α(0) = α0 > 0. We 
suppose these conditions pertain on all of [0, T ) and argue for a contradiction. In the first quadrant we have 
u̇ > 0 and consequently u is monotone increasing. We apply Equation (3.5). The slope of the flow curve is 
monotonically decreasing. The slope is positive by assumption when t = 0. Thus the flow line lies under the 
tangent line and we have an estimate of the form

v(t) < v0 + α0u(t) . (3.6)

We have u is monotone increasing. If u remains bounded as t → T , then Equation (3.6) shows that v is 
bounded from above. Since by hypothesis v is non-negative, both u and v are bounded so the curve is 
trapped in a compact region which is false. Thus limt→T u(t) = ∞. We use Equation (3.6) to estimate

1
v(t) > 1

v0+α0u(t) and − 1
v(t) < − 1

v0+α0u(t) .

Since u is monotone increasing, we can use the parameter s = u(t). We have

∂sα = α̇(t)
u̇(t) ≤ − ε

v(t) ≤ − ε

v0 + α0s
,

lim
t→T

α(t) = lim
s→∞

α(t(s)) = α(0) +
∞∫

s=u0

∂sαds

≤ α(0) −
∞∫

s=u0

ε

v0 + α0s
ds = −∞ .

Thus it is not possible that α(t) > 0 for all t ∈ [0, T ) and we must have α(t) = 0 for some t ∈ [0, T ).
We restart the curve with u(0) = u0 > 0, v(0) = v0 > 0, and α(0) = α0 ≤ 0. Since the slope is monotone 

decreasing, we may restart the process and assume in fact α(0) < 0. Suppose that v(t) > 0 on [0, T ). 
Since α is monotone decreasing, this implies the curve is trapped in the triangle bounded by the positive 
vertical axis, the positive horizontal axis, and the tangent line which has negative slope. This is impossible. 
Consequently, the curve crosses the positive horizontal axis and escapes into the fourth quadrant where it 
is trapped.
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Case 3.2. The fourth quadrant We have u̇ = uv < 0 and v̇ = u(−u + δv) < 0. Thus both u and v are 
monotone decreasing. The slope of the tangent line is positive and decreasing. Thus the curve is trapped 
above the tangent line, below the positive horizontal axis, and to the right of the negative vertical axis. This 
is a compact region so this is impossible.

Case 3.3. The second and third quadrants Suppose u(t) < 0. We compute:

∂t{u2(t) + v2(t)} = 2u(t)u̇(t) + 2v(t)v̇(t)

= 2u(t)u(t)v(t) + 2v(t)(−u(t)u(t) + δu(t)v(t)) = 2δu(t)v(t)2 ≤ 0 .

Thus the radial distance to the origin is non-increasing and the curve is trapped in a quarter circle which 
is impossible. �
Remark 3.6. The analysis of Bromberg et al. [2] gives a criterion for examining when a quadratic vector 
field is complete; this is clearly relevant to the study we presented in Lemma 3.3 and parallels the algorithm 
we used there. We chose to present an independent derivation as the focus of this paper is quite different. 
We wished to show that the ansatz of considering geodesics of the form σ(t) = (a, b) · log(t) gave a complete 
answer to the question of geodesic completeness; a Type-A model is geodesically incomplete if and only if 
there exists a geodesic of this form, i.e. Equation (1.1) can be satisfied for (a, b) �= 0. We also wished to 
study the relationship between geodesic incompleteness, essential geodesic incompleteness, and symmetric 
geometry. Thus we needed a more refined geometric analysis than is presented by Bromberg et al. and, in 
any event, we wished to keep this paper as self-contained as possible.

4. The moduli space

The geometries M−,δ for 0 ≤ δ < 2 form a 1-parameter family of geodesically complete models such that 
the Ricci tensor has rank 2 and signature (1, 1); thus these are distinct from the models M2 and M3 where 
the Ricci tensor has rank 1. The moduli spaces of Type A structures with non-singular Ricci tensor were 
examined in [4] where a complete set of invariants was given. Let

ρ̌ij := Γik
lΓjl

k, Σ := Trρ{ρ̌} = ρij ρ̌ij , Ψ := det(ρ̌)/ det(ρ).

Assume the Ricci tensor has rank 2. By Lemma 1.2 the structure group is GL(2, R). Consequently, Σ and 
Ψ are affine invariants. It was shown in [4] that (Σ, Ψ) together with the signature of the Ricci tensor form 
a complete set of invariants for the associated moduli spaces. Thus, for example, two Type A moduli spaces 
Mi with indefinite Ricci tensor are isomorphic if and only if

(Σ(M1),Ψ(M1)) = (Σ(M2),Ψ(M2)) .

We compute that (Σ(M−,δ), Ψ(M−,δ)) = (−3 +2δ2, 2). Thus, in particular, M−,δ is isomorphic to M−,δ̃ if 
and only if δ = ±δ̃. Since the Ricci tensor of M2 is negative semi-definite, the Ricci tensor of M3 is positive 
semi-definite, and the Ricci tensor of M−,δ has signature (1, 1), we may conclude that no two models in the 
family {M2, M3, M−,δ} for 0 ≤ δ < 2 are locally isomorphic. We show below the moduli space M(1, 1) of 
Type A affine surfaces where the Ricci tensor is indefinite, i.e. has signature (1, 1). The moduli space is the 
simply connected region of the plane which is bounded on the left (resp. right) by the curve σ−(t) (resp. 
σ+(t)) where

σ±(t) :=
(
±4t2 ± 1

2 + 2, 4t4 ± 4t2 + 2
)

.

t
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We indicate below the segment (−3 +δ2, 2) for 0 ≤ δ < 2 as a thick black segment; the far left hand endpoint 
corresponds to δ = 0. We have also shown below the segment (−3 + δ2, 2) for 2 ≤ δ as a dashed curve; it is 
an asymptotic lower bound to the bounding curve σ+(t); σ+(t) → 2 as t → 0.
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