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h i g h l i g h t s

• Statistical quantifiers are compared in their ability to describe feature of the route towards the classical limit.
• The normalized Cressie–Read and relative Tsallis ones are shown to be equivalent.
• The Tsallis quantifier is seen to provide a better description than the Kullback–Leibler one.
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a b s t r a c t

Our protagonists are (i) the Cressie–Read family of divergences (characterized by the pa-
rameter γ ), (ii) Tsallis’ generalized relative entropies (characterized by the q one), and, as a
particular instance of both, (iii) the Kullback–Leibler (KL) relative entropy. In their normal-
ized versions, we ascertain the equivalence between (i) and (ii). Additionally, we employ
these three entropic quantifiers in order to provide a statistical investigation of the classi-
cal limit of a semiclassical model, whose properties are well known from a purely dynamic
viewpoint. This places us in a good position to assess the appropriateness of our statistical
quantifiers for describing involved systems. We compare the behaviour of (i), (ii), and (iii)
as one proceeds towards the classical limit. We determine optimal ranges for γ and/or q.
It is shown the Tsallis-quantifier is better than KL’s for 1.5 < q < 2.5.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Entropic quantifiers (see as examples Refs. [1–4], and references therein) are useful in the study of time series’ underlying
dynamics. Systems that are characterized by either long-range interactions, long-termmemories, ormulti-fractality are best
described by a generalized statistical mechanics’ formalism [5] usually alluded to as deformed, Tsallis’ q-statistics. The basic
associated entity is the entropy [q ∈ R (q ≠ 1)]

Sq =
1

(q − 1)

n
i=1

pi

1 − piq−1 , (1)

pi being probabilities associated with the n different system-configurations. The entropic index (or deformation parameter)
q describes the deviations of Tsallis entropy from the standard Boltzmann–Gibbs–Shannon-one. One has

S = −

n
i=1

pi ln pi. (2)
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Shannon’s entropyworks best for systems composed of either independent subsystems or interacting via short-range forces,
whose subsystems can access all the available phase space [6]. For systems exhibiting long-range correlations, memory, or
fractal properties, Tsallis’ entropy becomes the most convenient quantifier [6–16].

In another vein, we have the Cressie–Read (CR) family of power divergences, defined through a class of additive convex
functions. The CR power divergence measure encompasses a broad family of test statistics that leads to a large family of
likelihood functions. They constitute a family of pseudo-distance measures from which to derive empirical probabilities
associated with indirect noisy micro and macro data [17].

In order to assess how good these quantifiers are to statistically describe complex scenarios, we will apply the above
mentioned quantifiers to a celebrated semiclassical system in its route towards the classical limit [18,19]. The system’s
dynamics exhibits regular zones, chaotic ones and other regions that, although not chaotic, display complex features. The
system has been exhaustively investigated from a purely dynamic viewpoint [19] and also from a statistical one [20–22].
This last kind of study has a pre-requisite: how to extracted information from a time series (TS) [23]. The data at our disposal
always possess a stochastic component due to noise [24,25], so that different extraction-procedures attain distinct degrees
of quality. We will employ the Bandt and Pompe’s approach [26], that determines the probability distribution associated to
time series on the basis of the nature of the underlying attractor (see Appendix for the mathematical details).

Summing up, we will use the normalized versions of Tsallis relative entropy [9,27] and Cressie–Read family of diver-
gences [17], to which we add Kullback–Leibler’s relative entropy. It will be seen that the normalized CR coincides with the
normalized Tsallis relative entropy for a special relationship between q and γ . With these entropies we will compare (i) the
probability distribution functions (PDFs) associated to the system’s dynamic equation’s solutions in their route towards the
classical limit [19] with (ii) the PDF associated to the classical solutions.

The relative entropies mentioned above are discussed in Section 2, which briefly recapitulates notions concerning the
Tsallis relative entropy, the Kullback–Leibler relative entropy and the CR-divergence family of entropic functionals. As a
test-scenario, the semiclassical system and its classical limit are described in Section 3, and the concomitant results are
presented in Section 4. Finally, some conclusions are drawn in Section 5.

2. Kullback–Leibler relative entropy, Tsallis relative entropy and Cressie–Read family of divergences

The relative entropies (RE) quantify the difference between two probability distributions P and Q [28]. They provide an
estimation of how much information P contains relative to Q and measure the expected number of extra bits required to
code samples from P when using a code based on Q , rather than using a code based on P [28]. They can also be regarded as
entropic distances, alternativemeans for comparing the distribution Q to P . The best representative is the Kullback–Leibler’s
(KL) one, based on the Shannon canonical measure (2). For two normalized, discrete probability distribution functions (PDF)
P = (p1, . . . , pn) and Q = (q1, . . . , qn) (n > 1), one has

DKL(P,Q ) =

n
i=1

pi ln

pi
qi


, (3)

with DKLsn(P,Q ) ≥ 0. DKL(P,Q ) = 0 if and only if P = Q . One assumes that either qi ≠ 0 for all values of i, or that if one
qi = 0, then pi = 0 as well [29]. In such an instance people take 0/0 = 1 [29] (also, 0 ln 0 = 0, of course). It is convenient to
workwith a normalized KL-version, for the sake of a better comparison between different results. In thisway the quantifier’s
values are restricted to the [0, 1] interval, via division by its maximum allowable value. If we divide D by ln n, expression
(3) becomes

DN
KL(P,Q ) =

1
ln n

n
i=1

pi ln

pi
qi


, (4)

with 0 ≤ DN
KL ≤ 1. We will work with Eq. (4). KL can be seen as a particular case of the generalized Tsallis relative entropy

[9,27]

Dq(P,Q ) =
1

q − 1

n
i=1

pi


pi
qi

q−1

− 1


, (5)

when q → 1 [9,27]. Dq(P,Q ) ≥ 0 if q ≥ 0. For q > 0 one has Dq(P,Q ) = 0 if and only if P = Q . For q = 0 one has Dq(P,Q )
= 0 for all P and Q .

We pass now to define the Cressie–Read (CR) family of divergence measures [17]:

I(P,Q , γ ) =
1

γ (γ + 1)

n
i=1

pi


pi
qi

γ

− 1


, (6)

where γ is a parameter that indexes members of the CR family. CR differs from Dq(P,Q ) because of the condition I(P,Q , γ )
≥ 0, for all γ . In the two special cases where γ = 0 or −1, the notation I(P,Q , 0) and I(P,Q , −1) are to be interpreted as
the limits, limγ → 0 or limγ → −1, respectively [17]. The γ = 0 case, corresponds to DKL(p, q) [17], mimicking what happens
with Dq(P,Q ) when q → 1. On the other hand, I(P,Q , −1) = DKL(Q , P) [17].
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If one wishes to employ normalized Dq(P,Q ) and I(P,Q , γ ) versions for comparison purposes, we must consider two
cases. So as to normalize the expression of Dq(P,Q ) given by Eq. (5), (a) if q ≥ 1, we divide by (nq−1

− 1)/(q− 1) in the case
of computing Dq(P,Q ) for the certainty vs. the equiprobability case and (b) if 0 ≤ q < 1, we divide by (n−q

− 1)/(q − 1) in
the case of computing it for the equiprobability vs. the certainty. We obtain

DN
q (P,Q ) =

1
nq−1 − 1

n
i=1

pi


pi
qi

q−1

− 1


, q ≥ 1, (7a)

DN
q (P,Q ) =

1
n−q − 1

n
i=1

pi


pi
qi

q−1

− 1


, 0 ≤ q < 1. (7b)

The relation 0 ≤ DN
q (P,Q ) ≤ 1. DN

q (P,Q ) = 0 holds if and only if P = Q .
To normalize the expression (6), we must consider γ ≥ 0 (or γ < 0) in our studies and divide by (nγ

− 1)/γ (γ + 1)
in the case of computing I(p, q, γ ) for the certainty vs. the equiprobability case (or by (n−(γ+1)

− 1)/γ (γ + 1) for the
equiprobability vs. the certainty). We get

IN(P,Q , γ ) =
1

nγ − 1

n
i=1

pi


pi
qi

γ

− 1


, γ ≥ 0, (8a)

IN(P,Q , γ ) =
1

n−(γ+1) − 1

n
i=1

pi


pi
qi

γ

− 1


, γ < 0. (8b)

One has 0 ≤ IN(P,Q , γ ) ≤ 1. Also, IN(P,Q , γ ) = 0, if and only if P = Q . It is easy to see, and this is our first result, that
IN(P,Q , γ ) coincides with DN

q (P,Q ) by setting γ = q − 1. In this way, the normalized Tsallis relative entropy can be also
defined or extended to be nonnegative for all q.

3. Classical–quantum transition

This is a really important issue. The classical limit of quantummechanics (CLQM) can be viewed as one of the frontiers of
physics [30–34], being the origin of exciting discussion (see, for example, Refs. [30,31] and references therein). An interesting
sub-issue is that of ‘‘quantum’’ chaotic motion. Recent advances made by distinct researchers are available in Ref. [35] and
references therein. Another related interesting sub-issue is that of the generalized uncertainty principle (GUP) [36,37]. Zurek
Habib [32–34] and others investigated the emergence of the classical world from QuantumMechanics.

We are interested here in a semiclassical perspectives, for which several directions can be found exist: the historical
WKB and Born–Oppenheimer approaches, etc. The two-interacting systems, considered by Bonilla and Guinea [38], Cooper
et al. [18], and Kowalski et al. [19,39], constitute composite models in which one system is classical and the other is quantal.
This makes sense when the quantum effects of one of the two systems are negligible in comparison to those of the other
one [19]. Examples encompass Bloch equations, two-level systems interacting with an electromagnetic field within a cavity,
and collective nuclear motion. We are concerned belowwith a bipartite system representing the zero-thmode contribution
of a strong external field to the production of charged meson pairs [18,19], whose Hamiltonian reads

Ĥ =
1
2


p̂2

mq
+

PA2

mcl
+ mqω

2x̂2


. (9)

x̂ and p̂ above are quantum operators, while A and PA are classical canonical conjugate variables. The term ω2
= ωq

2
+ e2A2

is an interaction one introducing nonlinearity, with ωq a frequency. mq and mcl are masses, corresponding to the quantum
and classical systems, respectively. As shown in Ref. [39], when faced with Eq. (9), one has to deal with the autonomous
system of nonlinear coupled equations:

d⟨x̂2⟩
dt

=
⟨L̂⟩
mq

;
d⟨p̂2⟩
dt

= −mq ω2
⟨L̂⟩

d⟨L̂⟩
dt

= 2


⟨p̂2⟩
mq

− mq ω2
⟨x̂2⟩


dA
dt

=
PA
mcl

dPA
dt

= −e2mq A⟨x̂2⟩

L̂ = x̂p̂ + p̂x̂, (10)

derived from Ehrenfest’s relations for quantum variables and from canonical Hamilton’s equations for classical ones [39].
To investigate the classical limit one needs also to consider the classical counterpart of the Hamiltonian (9), in which all



170 A.M. Kowalski et al. / Physica A 422 (2015) 167–174

variables are classical. In such case, Hamilton’s equations lead to a classical version of (10). One can consult Ref. [39] for
further details. The classical equations are identical in form to Eqs. (10), after replacing quantum mean values by classical
variables. The classical limit is obtained considering the limit of a ‘‘relative energy’’ [19]

Er =
|E|

I1/2ωq
→ ∞, (11)

where E is the total energy of the system and I is an invariant of the motion described by the system (10). I relates to the
Uncertainty Principle:

I = ⟨x̂2⟩⟨p̂2⟩ −
⟨L̂⟩2

4
≥

h̄2

4
. (12)

To tackle this system one appeals to numerical solution. The pertinent analysis is effected by plotting quantities of interest
against Er , that ranges in [1, ∞]. For Er = 1 the quantum system acquires all the energy E = I1/2ωq and the quantal and
classical variables get located at the fixed point (⟨x̂2⟩ = I1/2/mqωq, ⟨p̂2⟩ = I1/2mqωq, ⟨L̂⟩ = 0, A = 0, PA = 0) [39]. Since
A = 0, the two systems become uncoupled. For Er ∼ 1 the system is of an almost quantal nature, with a quasi-periodic
dynamics [19].

As Er augments, quantum features are rapidly lost and a semiclassical region is entered. From a given value Er cl, the mor-
phology of the solutions to Eqs. (10) begins to resemble that of classical curves [19]. One indeed achieves convergence of
Eqs. (10)’s solutions to the classical ones. For very large Er -values, the system thus becomes classical. Both types of solutions
coincide. We regard as semiclassical the region 1 < Er < Er cl. Within such an interval we highlight the important value
Er = ErP , at which chaos emerges [39]. We associate to our physical problem a time-series given by the Er -evolution of
appropriate expectation values of the dynamical variables and use entropic relations so as to compare the PDF associated
to the purely classical dynamic solution with the semiclassical ones, as these evolve towards the classical limit.

4. Numerical results

Since we have verified the equivalence between Tsallis’ and CR’s normalized results, we can content ourselves with
depicting only the former ones.Weparameterize things thenwith q anduse Eqs. (7). Note that (7b) is valid for all q < 1. In our
numerical studywe have usedmq = mcl = ωq = e = 1. As for the initial conditions needed to tackle Eqs. (10), we employed
E = 0.6. Thus, we fixed E and then varied I in order to determine the distinct values of Er . We employed 55 different values
for I . Further, we set ⟨L⟩(0) = L(0) = 0, A(0) = 0 (for the quantum and for the classical instances), while x2(0) and
⟨x2⟩(0) take values in the intervals (0, 2E), (E −

√
E2 − I, E +

√
E2 − I), respectively, with I ≤ E2. Here, ErP = 3.3282 and

Er cl = 21.55264. At ErM we encounter a maximum of the quantifier called statistical complexity, and ErM = 8,0904.
Remember that our ‘‘signal’’ represents the system’s state at a given Er . Sampling this signal we can extract several PDFs

using the Band and Pompe technique (see Appendix), for which it is convenient to adopt the largest D-value that verifies the
condition D! ≪ M (see Appendix). Such value is here D = 6, because wewill be concerned with vectors whose components
comprise at leastM = 5000 data-points for each orbit. For verification purposes,we also employedD = 5,without detecting
appreciable changes.

In evaluating our relative entropies, our P-distributions are extracted from the time-series for the different Er ’s, while
Q is associated to the classical PDF. We consider only the case q ≥ 1. Figs. 1, 2, and 3 represent the Kullback divergence
DN
KL(P,Q ) and the generalized relative entropy DN

q (P,Q ) (i.e., the (pseudo) distance (psd) between PDFs) for different values
of q. All curves show that (i) the maximal psd’s between the pertinent PDFs are encountered for Er = 1, corresponding to
the purely quantal situation and (ii) that they grow smaller as Er augments, tending to vanish for Er → ∞. Of course, one
finds that the results depend upon q. We highlight in our plots special Er -values whose great dynamical significance was
pointed out above. These are ErP (chaos begins), Er cl (start of the transitional zone), and ErM [40].

As a general trend, when q grows, the size of the transition region diminishes and that of the classical zone grows. Results
are acceptable for the Kullback divergence and for q = 1.5, as depicted in Figs. 1, although the size of the transition region
looks overestimated if one considers the location of Er cl. Things improve for q = 2 (Fig. 2).We can assert that our description
is optimal for 1.5 < q < 2.5. The description, instead, lose quality for q ≥ 2.5. The classical region grows too much. It starts
at Er < Er cl (see Fig. 3(a)). Starting with q = 5 (see Fig. 3(b)), the transition region disappears for all practical purposes.

In Fig. 4 we plot the ratio DN
q (P,Q )Er=6/DN

q (P,Q )Er=1, vs. q. The Er in the denominator is that of the purely quantum
case. The one in the numerator corresponds to the middle-transition region. A similar ratio is displayed in Fig. 5, but for a
numerator corresponding to Er = 10.5247. In both plots the KL divergence is included (q = 1). We observe in our graphs
that relative entropies diminish as q grows. This happens more rapidly in the transition than in the quantum zones. The
diminution rate grows with Er .

5. Conclusions

We have shown that the normalized CR divergences IN(P,Q , γ ) coincide with the Tsallis relative ones, DN
q (P,Q ). The

equivalence is given by the relation γ = q − 1, for γ ≥ −1 (or q ≥ 0). By means of this relation, the normalized Tsallis
relative entropy can be also found to be nonnegative for all q. Thus, it suffices to investigate the behaviour of DN

q (P,Q ).
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Fig. 1. (a) The normalized Kullback divergence DN
KL(P,Q ) is plotted vs. Er . (b) Normalized generalized relative entropy DN

q (P,Q ) vs. Er for q = 1.5. We
observe that (i) themaximal distance (pseudodistance) between the pertinent PDFs is encountered for Er = 1, corresponding to the purely quantal situation
and (ii) that it grows smaller as Er augments, tending to vanish for Er → ∞. Results are acceptable for both curves, although the size of the transition
region looks overestimated if one considers the location of Er cl .

Fig. 2. DN
q (P,Q ) is plotted vs. Er for q = 2. As in Figs. 1, the maximal distance (pseudodistance) is encountered for Er = 1. Distance (pseudodistance)

grows smaller as Er augments. The description of the three dynamical regions is optimal.
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Fig. 3. DN
q (P,Q ) is plotted vs. Er for (a) q = 3 and (b) q = 5. As in Figs. 1 and 2, the maximal distance (pseudodistance) is encountered for Er = 1 and it

grows smaller as Er augments. The description instead lose quality. In Fig. 3(b), the transition region disappears for all practical purposes.

Fig. 4. We plot the ratio between DN
q (P,Q ) (for Er = 6) and that for Er = 1 (both for the same q), i.e., DN

q (P,Q )Er=6/DN
q (P,Q )Er=1 , vs. q. The KL divergence

is the particular instance q = 1. Relative entropies diminish as q grows, but this happens more rapidly in the transition than in the quantum zone.

The physics involved is that of a special bipartite semiclassical system that represents the zero-thmode contribution of a
strong external field to the production of chargedmeson pairs [18,19]. The system is endowedwith three dynamical regions,
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Fig. 5. We plot the ratio between the DN
q (P,Q ) corresponding to Er = 10.5247 and Er = 1, i.e., DN

q (P,Q )Er=10.5247/DN
q (P,Q )Er=1 , vs. q. (KL is the q = 1

case.) As in Fig. 4, we observe that relative entropies diminish more rapidly in the transition than in the quantum zone as q grows. The diminution rate
grows with Er .

as characterized by the values adopted by the parameter Er . We have a purely quantal zone (Er ≃ 1), a semiclassical one, and
finally, a classical sector. The two later ones are separated by the value Er cl (see Section 3). In evaluating relative entropies
((4) and (7)), the P-PDF’s are extracted from time series associated to different Er -values, while Q is always the PDF that
describes the classical scenario. We are thus speaking of ‘‘distances’’ between the PDF’s extracted in the path towards the
classical limit and the classical PDF.

Our first result in this respect is that the maximum distance is attained for the purely quantum case Er = 1, as one
would expect. Also, this distance decreases as Er augments, tending to vanish for Er → ∞. A second result is that the ap-
propriateness of the statistical description depends upon q, being related to howwell the transition zone is represented. For
1 ≤ q ≤ 1.5, the size of this zone is overestimated,while for q ≥ 2.5 it is underestimated. This conclusion arises by consider-
ation, in both cases, of the location of Er cl. For q ≥ 2.5, things seriously deteriorate. In particular, for q > 5 the transition re-
gion entirely disappears. Our representation becomes thus optimal for 1.5 < q < 2.5. Accordingly, Tsallis’ quantifier in this
q-interval is seen to provide a better process’ description than the Kullback–Leibler one (identified here as the one for q = 1).

Appendix

A.1. PDF based on Bandt and Pompe’s methodology

To use the Bandt and Pompe [26] methodology for evaluating the probability distribution P associated with the time
series (dynamical system), one starts by considering partitions of the pertinent D-dimensional space that will hopefully
‘‘reveal’’ relevant details of the ordinal structure of a given one-dimensional time series S(t) = {xt; t = 1, . . . ,M}, with
embedding dimension D > 1 and time delay τ .

We will take here τ = 1 as the time delay [26] and be interested in ‘‘ordinal patterns’’, of order D [26,41], generated by

(s) →

xs−(D−1), xs−(D−2), . . . , xs−1, xs


, (A.1)

which assigns to each time the D-dimensional vector of values at times s, s − 1, . . . , s − (D − 1). Clearly, the greater the
D-value, the more information on the past is incorporated into our vectors. By ‘‘ordinal pattern’’ related to the time (s), we
mean the permutation π = (r0, r1, . . . , rD−1) of [0, 1, . . . ,D − 1] defined by

xs−rD−1 ≤ xs−rD−2 ≤ · · · ≤ xs−r1 ≤ xs−r0 . (A.2)

In this way the vector defined by Eq. (A.1) is converted into a unique symbol x̂i. Thus, a permutation probability distribution
Px = {p(x̂i), i = 1, . . . ,D!} is obtained from the time series xi. The probability distribution P is obtained once we fix the
embedding dimension D and the time delay τ . The former parameter plays an important role for the evaluation of the
appropriate probability distribution, since D determines the number of accessible states, D!, and tells us about the necessary
lengthM of the time series needed in order to work with a reliable statistics, i.e. it must be D! ≪ M . In particular, Bandt and
Pompe [26] suggest for practical purposes to work with 3 ≤ D ≤ 7. For more details see Ref. [41].
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