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We consider two types of graph domination—{k}-domination and k-tuple domination, for a 
fixed positive integer k—and provide new NP-complete as well as polynomial time solvable 
instances for their related decision problems. Regarding NP-completeness results, we solve 
the complexity of the {k}-domination problem on split graphs, chordal bipartite graphs and 
planar graphs, left open in 2008. On the other hand, by exploiting Courcelle’s results on 
Monadic Second Order Logic, we obtain that both problems are polynomial time solvable 
for graphs with clique-width bounded by a constant. In addition, we give an alternative 
proof for the linearity of these problems on strongly chordal graphs.
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1. Introduction

Due to its large range of applications, many varia-
tions and extensions of the classical domination prob-
lem in graphs have been defined and studied. In general, 
these problems can be stated as follows: given a graph 
G = (V (G), E(G)), A ⊆ R and B = (bv )v∈V (G) ∈ R

|V (G)|
+ , an 

A, B-dominating function of G is a function f : V (G) → A
such that f (N[v]) ≥ bv for each v ∈ V (G), where f (U ) =∑

u∈U f (u), for U ⊆ V (G) and N[v] is the closed neighbor-
hood of v , i.e. the set of vertices at distance at most 1 
from v . The weight of f is given by w( f ) = f (V (G)), and 
let W A,B(G) denote the minimum possible value of w( f ).

This work is focused on two variations of the classi-
cal domination problem. Let k ∈ Z+ and bv = k for each 
v ∈ V (G). When A = {0, 1}, f is a k-tuple dominating func-
tion and W A,B(G) is the k-tuple domination number of G
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denoted by γ×k(G) and introduced by Harary and Haynes 
in [16]. Notice that a k-tuple dominating function of G
can be equivalently seen as a subset D of V (G) such that 
|N[v] ∩ D| ≥ k for every v ∈ V (G). When A = {0, 1, . . . , k}, 
f is a {k}-dominating function and W A,B(G) is the {k}-dom-
ination number of G denoted by γ{k}(G) and introduced 
by Bange et al. [3]. As usual, these definitions induce the 
study of the following decision problems for fixed k ∈ Z+:

k-TUPLE DOMINATION (k-DOM)

Instance: A graph G , j ∈N.
Question: Does G have a k-tuple dominating function of 
weight at most j?

{k}-DOMINATION ({k}-DOM)

Instance: A graph G , j ∈N.
Question: Does G have a {k}-dominating function of 
weight at most j?

When k = 1, both problems concern the usual notion of 
a dominating function. The corresponding decision prob-
lem (DOM) has been widely studied, see for instance [4,5,
7,8,10–12,15].
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Table 1
Complexity table for k-DOM and {k}-DOM for fixed k ∈ Z+ . “NP-c”, “P” 
and “?” mean NP-complete, polynomial and open problem, respectively.

Class DOM 
(k = 1)

k-DOM 
(fixed k ∈ Z+)

{k}-DOM 
(fixed k ∈ Z+)

Strongly chordal P [7] P [20] P [18]
Bounded 

clique-width
P [11] ? ?

Split NP-c [4] NP-c [20] ?
Planar NP-c [15] NP-c (2 ≤ k ≤ 6) 

[18]
?

Chordal NP-c [5] NP-c [20] ?
Bipartite NP-c [12] NP-c [20] NP-c [17]
Bipartite Planar NP-c [10] ? ?
Chordal Bipartite NP-c [8] NP-c [18] ?

For fixed k ∈ Z+ , k-DOM is NP-complete for doubly 
chordal graphs and for dually chordal graphs, but {k}-DOM 
is polynomial time solvable on both classes [18]. Regarding 
graph classes with a limited number of P4-partners, the 
three problems are polynomial time solvable for cographs 
[18], DOM and k-DOM are polynomial time solvable for 
P4-tidy graphs ([11] and [13], respectively), but the com-
plexity of {k}-DOM is unknown for this class. Finally, it is 
known that DOM is polynomial time solvable for graphs 
with bounded tree-width [2] and this is also the case for 
both, k-DOM and {k}-DOM [1].

The main purpose of this work is to study the un-
known complexities concerning k-DOM and {k}-DOM for 
fixed k ∈ Z+ that are shown in Table 1. Some of these 
unknown results were left as open questions by Lee and 
Chang in [18]. Also, we focus on determining graph classes 
on the frontier between the hard and easy cases.

Some of the results in this work, specifically the one 
concerning bounded tree-width graphs, appeared without 
proofs in [1].

2. Background

All the graphs in this paper are finite, undirected and 
simple. Given a graph G , let V (G) and E(G) denote its ver-
tex and edge sets, respectively. For any v ∈ V (G), N[v] is 
the closed neighborhood of v in G .

For any positive integers n, m, we denote by Kn and Cn

the complete graph and the cycle with n vertices respec-
tively, and by Kn,m the complete bipartite graph on n + m
vertices.

Given a graph G and S ⊆ V (G), the subgraph of G in-
duced by S is the graph with vertex set S and all edges of 
G whose endpoints are both contained in S .

A chord of a cycle C in a graph G is an edge uv not 
in C such that u and v lie in C . A graph G is chordal if it 
does not contain a chordless cycle Cn , for n ≥ 4. A bipartite 
graph is chordal bipartite if each cycle of length at least 6 
has a chord.

A clique (stable set) in a graph is a set of pairwise adja-
cent (non-adjacent) vertices. A graph G is split if its vertex 
set admits a partition into a clique Q and a stable set S . 
Notice that every split graph is chordal.

For disjoint graphs G and H and v ∈ V (G), G[H/v]
denotes the graph obtained by the substitution in G of v
by H , i.e. V (G[H/v]) = (V (G) ∪ V (H)) − {v} and
E(G[H/v])
= E(H) ∪ {e : e ∈ E(G) and e is not incident with v}

∪ {uw : u ∈ V (H), w ∈ V (G) and w is adjacent

to v in G}.
For graphs G and H , the strong product G � H is defined 

on the vertex set V (G) × V (H), where two vertices (u1, v1)

and (u2, v2) are adjacent in G � H if and only if u1 = u2
and v1 v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G), or v1 v2 ∈
E(H) and u1u2 ∈ E(G).

The vocabulary {E} consisting of one binary relation 
symbol E is denoted by τ1. For a graph G , G(τ1) denotes 
the presentation of G as a τ1-structure < V , E >, where V
is the domain of the logical structure (V (G)) and E is the 
binary relation corresponding to the adjacency matrix of G .

Regarding graph properties, if a formula can be defined 
using vertices and sets of vertices of a graph, the logical 
operators OR, AND, NOT (denoted by ∨, ∧, ¬), the logi-
cal quantifiers ∀ and ∃ over vertices and sets of vertices, 
the membership relation ∈ to check whether an element 
belongs to a set, the equality operator = for vertices and 
the binary adjacency relation adj, where adj(u, v) holds if 
and only if vertices u and v are adjacent, then the formula 
is expressible in τ1-monadic second-order logic, MSOL(τ1) 
for short.

An optimization problem P is a LinEMSOL(τ1) optimiza-
tion problem over graphs, if it can be defined in the fol-
lowing form: Given a graph G presented as a τ1-structure 
and evaluation functions f1, . . . , fm associating integer val-
ues to the vertices of G , find an assignment z to the free 
variables in θ such that

∑
1≤i≤l

1≤ j≤m

aij|z(Xi)| j

= opt

⎧⎪⎪⎨
⎪⎪⎩

∑
1≤i≤l

1≤ j≤m

aij|z′(Xi)| j : θ(X1, . . . , Xl)

is true for G and z′

⎫⎪⎪⎬
⎪⎪⎭

,

where opt is either Min or Max, θ is an MSOL(τ1) for-
mula having free set variables X1, . . . , Xl , aij : i ∈ {1, . . . , l}, 
j ∈ {1, . . . , m} are integer numbers and |z(Xi)| j is used as 
a short notation for 

∑
a∈z(Xi)

f j(a) (|A| indicates the car-
dinality of the finite set A). More details can be found for 
example in [11].

It has been shown that MSOL(τ1) is particularly useful 
when combined with the concept of the graph parameter 
clique-width as the following theorem—first stated in [11]
and then reinforced in [21]—shows:

Theorem 1. (See [11,21].) Let q be a constant and C(q) be a class 
of graphs of clique-width at most q. Then every LinEMSOL(τ1) 
problem on C(q) can be solved in polynomial time.
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3. Polynomial instances

In [9], Brešar et al. proved that γ{k}(G) = γ×k(G � Kk)

for any graph G and k ≥ 1. As a consequence, we can state:

Remark 2. Let k ∈ Z+ be fixed and F and S be two 
graph classes such that if G ∈ F then G � Kk ∈ S . If
k-DOM is polynomial (linear) time solvable on S , then
{k}-DOM is polynomial (linear) time solvable on F . Be-
sides, if {k}-DOM is NP-complete on F then k-DOM is 
NP-complete on S .

In the remainder of this section, we study the compu-
tational complexity of k-DOM and {k}-DOM on two graph 
classes that satisfy the hypothesis of Remark 2, specifi-
cally graphs with clique-width bounded by a constant and 
strongly chordal graphs.

The result for graphs with clique-width bounded by a 
constant follows from the fact that k-dominating functions 
can be stated in MSOL(τ1). We can prove:

Theorem 3. Let k ∈ Z+ , q be a constant and C(q) be a class 
of graphs of clique-width at most q. Then k-DOM and {k}-DOM 
can be solved in polynomial time on C(q).

Proof. We first prove that finding the k-tuple domination 
number of a given graph is a LinEMSOL(τ1) optimization 
problem. In other words, we wish to prove that finding a 
minimum sized subset of vertices of the given graph sat-
isfying that in every closed neighborhood there is at least 
k elements of this subset is a LinEMSOL(τ1) optimization 
problem.

Given a graph G presented as a τ1-structure G(τ1)

and one evaluation function (the constant function that 
associates 1’s to the vertices of G) and denoting by 
X1(v) the atomic formula indicating that v ∈ X1, find 
an assignment z to the free set variable X1 in θ such 
that |z(X1)|1 = min{|z′(X1)|1 : θ(X1) holds for G and z′}, 
where θ(X1) = ∀v 

(∧
1≤r≤k Ar(X1, v, u1, . . . , ur)

)
, with 

A1(X1, v, u1) := ∃u1 [X1(u1) ∧ (adj(v, u1) ∨ v = u1)], and 
for each r > 1

Ar(X1, v, u1, . . . , ur)

:= ∃ur

⎡
⎣X1(ur) ∧ (adj(v, ur) ∨ v = ur)

∧
∧

1≤i≤r−1

¬(ur = ui)

⎤
⎦ .

From Theorem 1, k-DOM can be solved in polynomial 
time on C(q).

To prove the polynomiality of {k}-DOM on C(q), we first 
notice that we can obtain equivalently G � Kk by perform-
ing a substitution in G of every vertex by Kk , for each fixed 
k ∈ Z+ . Also, we take into account that cwd(G[H/v]) =
max{cwd(G), cwd(H)}, for every pair of disjoint graphs G
and H and v ∈ V (G) [11]. Since cwd(Kk) ≤ 2 for every k, if 
G is a graph in C(q), q ≥ 2, then G � Kk is in C(q). Hence, 
from Remark 2, {k}-DOM can be also solved in polynomial 
time on C(q), for q ≥ 2. As the result is trivial for q = 1, 
the result is proved. �
We turn to strongly chordal graphs, which are graphs 
characterized by the existence of a strong elimination or-
dering [14].

It is clear that if every induced subgraph of G has a 
simple vertex, then every induced subgraph of G � Kk has 
a simple vertex, for fixed k ∈ Z+ . In other words, if G
is a strongly chordal graph and k ∈ Z+ , then G � Kk is 
strongly chordal. As Table 1 shows, it is already known that 
{k}-DOM is linear time solvable on strongly chordal graphs, 
provided a strong elimination ordering of the input graph 
[18]. By applying Remark 2 when F and S are both the 
class of strongly chordal graphs and the fact that k-DOM is 
linear time solvable on strongly chordal graphs [20], we al-
ternatively obtain that {k}-DOM is linear time solvable on 
this graph class.

In the following section, among others NP-completeness 
results, we prove that the linearity for {k}-DOM on strongly 
chordal graphs does not extend to chordal graphs, by prov-
ing that it is NP-complete on split graphs.

4. NP-completeness results

As already mentioned, {k}-DOM is NP-complete for gen-
eral graphs. In this section we first analyze the computa-
tional complexity of this problem on another subclass of 
chordal graphs. Actually, we prove that for every k ∈ Z+ ,
{k}-DOM remains NP-complete on split graphs. We be-
gin by providing the following property of {k}-dominating 
functions.

Lemma 4. Let G be a graph and k ∈ Z+ be fixed. Let u, v ∈
V (G) be distinct such that N[u] ⊆ N[v]. There exists a mini-
mum {k}-dominating function f̂ of G such that f̂ (u) = 0.

Proof. Let u, v ∈ V (G) such that N[u] ⊆ N[v]. Firstly, we 
observe that every minimum weight {k}-dominating func-
tion f of G satisfies f (u) + f (v) ≤ k. Else, the weight of 
the {k}-dominating function f ′ of G defined by f ′(v) = k, 
f ′(u) = 0 and f ′(w) = f (w) for w �= u and w �= v is 
strictly smaller than the weight of f .

Next, let f be a minimum weight {k}-dominating func-
tion of G . If f (u) �= 0 we define f̂ (v) = f (u) + f (v), 
f̂ (u) = 0, and f̂ (w) = f (w) for w �= u and w �= v . It 
is immediate to check that f̂ is also a minimum weight 
{k}-dominating function of G , and the lemma follows. �

As a consequence of Lemma 4, we can prove:

Theorem 5. For every fixed k ∈ Z+ , {k}-DOM is NP-complete 
on split graphs.

Proof. Clearly, {k}-DOM on split graphs is in NP.
We reduce {k}-DOM on a general graph to {k}-DOM on 

a split graph. Given a graph G with vertex set V (G) =
{v1, . . . , vn}, we construct a split graph H with vertex 
partition (Q , S), where Q = {q1, . . . , qn} induces a com-
plete graph and S = {s1, . . . , sn} is a stable set, and for all 
i, j ∈ {1, . . . , n}, qi s j ∈ E(H) if and only if vi v j ∈ E(G) or 
i = j (see Fig. 1).

We use the above construction to prove that γ{k}(G) =
γ{k}(H).
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Fig. 1. Split graph H obtained from a graph G .

On the one hand, for all i ∈ {1, . . . , n}, N[si] ⊆ N[qi]. 
Then, from Lemma 4, there exists a minimum weight 
{k}-dominating function f of H such that f (S) = 0. We de-
fine the function f̂ : V (G) → {0, . . . , k} by f̂ (vi) = f (qi) for 
all i ∈ {1, . . . , n}. From its definition, f̂ is a {k}-dominating 
function of G . Hence, γ{k}(G) ≤ γ{k}(H).

Conversely, let f be a minimum weight {k}-dominating 
function of G . In this case, we define f ′ : V (H) →
{0, . . . , k} such that for all i ∈ {1, . . . , n} f ′(si) = 0 and 
f ′(qi) = f (vi). It is not difficult to check that f ′ is a 
{k}-dominating function of H . Hence, γ{k}(G) ≥ γ{k}(H). �

As every split graph is also a chordal graph, we obtain 
that {k}-DOM is NP-complete on chordal graphs.

We notice that when G is a chordal graph, G � Kk also 
is, for every positive integer k. On the other hand, it is 
clear that k-DOM on chordal graphs is in NP. Then, follow-
ing Remark 2, the NP-completeness of {k}-DOM on chordal 
graphs implies the NP-completeness of k-DOM on chordal 
graphs, firstly proved in [20].

In the remainder, we address the question of determin-
ing the computational complexity of {k}-DOM for planar 
graphs proposed in [18], by proving that the problem is 
not easily solvable even for bipartite planar graphs, unless 
P = NP.

We begin by providing the exact value of the {k}-dom-
ination number of the complete bipartite graph K2,m , for 
every m ≥ k. Notice that K2,m is planar and also chordal 
bipartite.

Theorem 6. For every fixed k ∈Z+ and m ≥k ≥2 , γ{k}(K2,m) =
k +

⌈
k
2

⌉
.

Proof. Suppose that the bipartition of K2,m is {u1, u2} and 
{w1, . . . , wm}. We first remark that, for any {k}-dominating 
function f of K2,m , the following facts are straightforward:

i. Since f (N[w j]) ≥ k for all j ∈ {1, . . . , m},

f (w j) ≥ k − t, for all j ∈ {1, . . . ,m}, (1)

where t = f (u1) + f (u2). Hence, w( f ) = f (u1) +
f (u2) +

m∑
j=1

f (w j) ≥ t + (k − t)m.

ii. Since f (N[ui]) = f (ui) +
m∑

j=1
f (w j) ≥ k for each i =

1, 2,

m∑
j=1

f (w j) ≥ max{k − f (u1),k − f (u2)}. (2)
Fig. 2. H(G).

On the one hand, we define the function g : V (K2,m) →
{0, . . . , k} such that g(u1) = g(w1) =

⌈
k
2

⌉
, g(u2) =

⌊
k
2

⌋
and g(w j) = 0 for all j ∈ {2, . . . , m}. It is clear that g is 
a {k}-dominating function of K2,m with weight w( f ) =
k +

⌈
k
2

⌉
. Thus γ{k}(K2,m) ≤ k +

⌈
k
2

⌉
.

On the other hand, when k ∈ {2, 3} and m = k the 
result easily follows. For the remaining cases, let f be 
a {k}-dominating function of K2,m . Suppose t ≤ k − 1. 
If k ∈ {2, 3} and m ≥ k + 1 then, from (1) w( f ) ≥ t +
(k − t)(k + 1) = (k − t + 1)k ≥ 2k > k +

⌈
k
2

⌉
. If k ≥ 4, 

then, again from (1) w( f ) ≥ t + (k − t)k = t + k2 − tk =
k2 − t(k − 1) ≥ k2 − (k − 1)2 > k +

⌈
k
2

⌉
.

Then f cannot be a minimum {k}-dominating function. 
This implies that, for every minimum {k}-dominating func-
tion f of K2,m ,

f (u1) + f (u2) ≥ k. (3)

Let f̃ be a minimum {k}-dominating function of K2,m . 

From (2), 
m∑

j=1
f̃ (w j) = max{k − f̃ (u1), k − f̃ (u2)}. With-

out loss of generality, we assume f̃ (u1) ≤ f̃ (u2). Then, 
γ{k}(K2,m) = w( f̃ ) = k + f̃ (u2), and from (3), γ{k}(K2,m) ≥
k +

⌈
k
2

⌉
. �

Now, we introduce another graph construction as fol-
lows: given a fixed integer k ≥ 2 and a graph G , we de-
fine a graph H(G) by adding to each vertex v ∈ V (G) a 
graph H v , isomorphic to K2,k+1, such that the bipartition 
of H v is {u1

v , u2
v} and {w1

v , . . . , wk+1
v } and also an edge 

v w1
v . An example of this construction is given in Fig. 2.
Clearly, when G is a bipartite planar graph, H(G) also 

is. In the same way, when G is a chordal bipartite graph, 
H(G) also is. Besides, it is clear that the construction of 
H(G) can be done in polynomial time. In the following re-
sult we provide a formula to evaluate the {k}-domination 
number of H(G) in terms of the {

⌊
k
2

⌋
}-domination num-

ber of G .

Theorem 7. Let G be a graph and k ≥ 2 a fixed integer. If H(G)

is the graph constructed from G as above (see Fig. 2), then

γ{k}(H(G)) = γ{
⌊

k
2

⌋
}(G) +

(
k +

⌈
k

2

⌉)
|V (G)|.
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Proof. Let g : V (G) →{0, . . . , k} be a minimum { 
⌊

k
2

⌋
}-dom-

inating function of G . We define ĝ : V (H(G)) → {0, . . . , k}
as follows: for each v ∈ V (G), ĝ(v) = g(v), ĝ(w1

v) =
ĝ(u1

v) =
⌈

k
2

⌉
, ĝ(u2

v) =
⌊

k
2

⌋
and ĝ(w j

v) = 0 for all j ∈
{2, . . . , k + 1}. It is not hard to see that ĝ is a {k}-domi-
nating function of H(G). Therefore,

γ{k}(H(G)) ≤ w(ĝ) = γ{
⌊

k
2

⌋
}(G) +

(
k +

⌈
k

2

⌉)
|V (G)|.

To see the reverse inequality, let ĥ : V (H(G)) → {0,

. . . , k} be a {k}-dominating function of H(G). We con-
struct a {k}-dominating function f̂ of H(G) such that 
w( f̂ ) ≤ w(ĥ), according to the following procedure. For 
each v ∈ V (G):

Case 1: ĥ(w1
v) ≥

⌈
k
2

⌉
. Observe that ĥ(u1

v) + ĥ(u2
v) +

ĥ(w2
v) ≥ k which implies ĥ(V (H v)) ≥ k +

⌈
k
2

⌉
. Then, 

we define f̂ (u1
v) = f̂ (w1

v) =
⌈

k
2

⌉
, f̂ (u2

v) =
⌊

k
2

⌋
,

f̂ (w j
v) = 0 for all j ∈ {2, . . . , k + 1}, f̂ (v) = min{ĥ(v) +

ĥ(w1
v) −

⌈
k
2

⌉
, k}.

Case 2: 1 ≤ ĥ(w1
v) ≤

⌈
k
2

⌉
− 1. Denote t = ĥ(u1

v) + ĥ(u2
v). 

Assume first that t ≤ k − 1. Since ĥ(u1
v) + ĥ(u2

v) +
ĥ(w j

v) ≥ k for j ∈ {2, . . . , k + 1}, then ĥ(w j
v) ≥ k − t for 

j ∈ {2, . . . , k + 1}. This implies ĥ(V (H v) − {w1
v}) ≥ t +

(k − t)k = k2 − t(k −1) ≥ 2k −1. Therefore, ĥ(V (H v)) ≥
2k − 1 + ĥ(w1

v) ≥ 2k.

Now, let t ≥ k. Observe that 
k+1∑
j=1

ĥ(w j
v) ≥ max{k −

f (u1
v), k − f (u2

v)}. Without loss of generality, we as-
sume f (u1

v) ≤ f (u2
v). Then, ĥ(V (H v)) ≥ k + f (u2

v) ≥
k +

⌈
k
2

⌉
.

In both cases, we define f̂ (u1
v) = f̂ (w1

v) =
⌈

k
2

⌉
,

f̂ (u2
v) =

⌊
k
2

⌋
, f̂ (w j

v) = 0 for all j ∈ {2, . . . , k + 1} and 

f̂ (v) = ĥ(v).
Case 3: ĥ(w1

v) = 0. From Theorem 6 and the fact that the 
subgraph induced by V (H v) − {w1

v} is isomorphic to 
K2,k , ĥ(V (H v)) ≥ k +

⌈
k
2

⌉
.

As in the previous case, we define f̂ (u1
v) = f̂ (w1

v) =⌈
k
2

⌉
, f̂ (u2

v) =
⌊

k
2

⌋
, f̂ (w j

v) = 0 for all j ∈ {2, . . . , k + 1}
and f̂ (v) = ĥ(v).

From its construction, f̂ is a {k}-dominating function 
of H(G) such that w( f̂ ) ≤ w(ĥ), as desired. Besides, in all 
cases f̂ (w1

v) =
⌈

k
2

⌉
for all v ∈ V (G) which implies that 

the restriction of f̂ to G is a {
⌊

k
2

⌋
}-dominating function 

of G . As f̂ (V (H v)) = k +
⌈

k
2

⌉
for all v ∈ V (G), we have 

w( f̂ ) ≥ γ{
⌊

k
2

⌋
}(G) +

(
k +

⌈
k
2

⌉)
|V (G)| which implies

γ{k}(H(G)) ≥ γ{
⌊

k
⌋
}(G) +

(
k +

⌈
k

2

⌉)
|V (G)|. �
2

Fig. 3. Graphs G1, G2 and G3.

Clearly, {k}-DOM is in NP on chordal bipartite graphs 
and on bipartite planar graphs. As DOM is NP-complete on 
both graph classes, from Theorem 7 we immediately ob-
tain that {2}-DOM and {3}-DOM also are. Finally, applying 
Theorem 7 recursively, we can state:

Corollary 8. For each k ∈ Z+ fixed, {k}-DOM is NP-complete on 
chordal bipartite graphs and on bipartite planar graphs.

It is proved in [18] that k-DOM is NP-complete on pla-
nar graphs, for every fixed k, with 2 ≤ k ≤ 6. The next the-
orem shows that the result holds even on bipartite planar 
graphs, for every fixed k, with 2 ≤ k ≤ 4 (see the remark 
below).

First, we observe that, combining elementary properties 
of planar graphs and bipartite graphs, in any bipartite pla-
nar graph there is a vertex of degree less or equal 3. This 
implies the following fact:

Remark 9. For a bipartite planar graph and an integer 
k ≥ 5, there is no k-tuple dominating function.

Theorem 10. For every fixed k ∈ Z+ with k ≤ 4, k-DOM is NP-
complete on bipartite planar graphs.

Proof. It is known that DOM is NP-complete on bipartite 
planar graphs [10].

Clearly, k-DOM on bipartite planar graphs is in NP. 
We then reduce k-DOM on bipartite planar graphs to 
(k − 1)-DOM on bipartite planar graphs in polynomial 
time.

Taking into account Remark 9, it only makes sense to 
consider k-DOM for the values 2 ≤ k ≤ 4. Then, let G =
(V , E) be a bipartite planar graph and k be an integer with 
2 ≤ k ≤ 4.

Also, let Gk−1 be the bipartite planar graphs given in 
Fig. 3, having vertex set {1, . . . , 2k−1}.

We construct a bipartite planar graph H(G) according 
to the following procedure:

1. To each v ∈ V (G), we add a graph G v with vertex set 
{1v , . . . , 2k−1

v }, isomorphic to Gk−1.
2. Without loss of generality, suppose that 1v is a vertex 

in the outer face of G v . For each v ∈ V (G), we add the 
edge v1v .

It is clear that the construction of H(G) can be done in 
polynomial time.
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Table 2
Complexity table for k-DOM and {k}-DOM for fixed k ∈ Z+ . “NP-c”, “P” 
mean NP-complete and polynomial problem, respectively.

Class DOM 
(k = 1)

k-DOM 
(fixed k ∈ Z+)

{k}-DOM 
(fixed k ∈ Z+)

Bounded 
clique-width

P [11] P P

Split NP-c [4] NP-c [20] NP-c
Planar NP-c [15] NP-c (2 ≤ k ≤ 6) 

[18]
NP-c

Chordal NP-c [5] NP-c [20] NP-c
Bipartite NP-c [12] NP-c [20] NP-c [17]
Bipartite Planar NP-c [10] NP-c (2 ≤ k ≤ 4) NP-c
Chordal Bipartite NP-c [8] NP-c [18] NP-c

Let f be a (k − 1)-tuple dominating function of G
and define f̃ : V (H) → {0, 1} such that f̃ (v) = f (v) for 
v ∈ V (G) and f̃ (u) = 1 for u ∈ ⋃

v∈V (G)

V (G v ). It turns out 

that f̃ is a k-tuple dominating function of H(G). Then 
γ×k(H(G)) ≤ γ×k−1(G) + 2k−1|V (G)|.

Conversely, let f̃ be a k-tuple dominating function of 
H(G). Notice that f̃ (u) = 1 for u ∈ ⋃

v∈V (G)

V (G v ). Define 

f : V (G) → {0, 1} such that f (v) = f̃ (v) for v ∈ V (G). It 
is not difficult to see that f is a (k − 1)-tuple dominat-
ing function of G and w( f ) = w( f̃ ) − 2k−1|V (G)|. Thus 
γ×k−1(G) ≤ γ×k(H(G)) − 2k−1|V (G)|.

Hence we have proved that γ×k(H(G)) = γ×k−1(G) +
2k−1|V (G)| and the result follows. �
5. Concluding remarks

Observe that Theorem 3 not only allowed us to prove 
that fixed k, k-DOM and {k}-DOM can be solved in poly-
nomial time on graphs with clique-width bounded by a 
constant, but also generalizes previous results, for instance 
the one in [19] concerning trees and also the result in [13]
concerning P4-tidy graphs.

We left as an open question whether the approach 
given by Remark 2 can be used to obtain the complexity of
k-DOM and {k}-DOM for other proper subclasses of chordal 
graphs that are characterized by certain elimination or-
dering. Power chordal graphs [6] constitute a promising 
example.

To summarize, on the one hand we have enlarged the 
family of graph classes for which both problems are lin-
ear time solvable. On the other hand, we have solved all 
complexities left open in Table 1, as Table 2 shows.
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