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Abstract8

Understanding the multi-physics phenomena associated with blade dynamics constitutes9

a fundamental factor for the continuous development of wind-turbine technology and the10

optimization of the efficiency of wind farms. Large size differences between wind-tunnel11

models and full scale prototypes preclude the proper extrapolation of experimental data,12

especially when several coupled physical phenomena are acting simultaneously; thus the13

need of an advanced Virtual Test Environment where innovative designs could be tested at14

reasonable computational cost.15

We present a novel approach that we call the Dynamic Rotor Deformation - Blade El-16

ement Momentum model (DRD-BEM), which effectively takes into account the effects of17

the complex deformation modes of the rotor structure mentioned above. It is based on a18

combination of two advanced numerical schemes: First, a model of the structural response19

of composite blades, which allows full representation of the complex modes of blade de-20

formation at a reduced computational cost; and second, a novel aerodynamic momentum21

model where all the velocities, forces, and geometrical features involved are transformed22

by orthogonal matrices representing the instantaneous deformed configuration, which fully23

incorporates the effects of rotor deformation into the computation of aerodynamic loads.24

Results of validation cases for the NREL-5MW Wind Reference Turbine are presented25

and discussed.26

Keywords:27

Wind turbine, Innovative interference model, Blade aeroelastic modeling28

1. Introduction29

A better understanding of the multi-physics phenomena associated with blade dynamics30

constitutes a fundamental factor for the continuous development of wind-turbine technology31
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and the optimization of the efficiency of wind farms. The complex combination of fluctuating32

loads under which blades operate, and the large size differences between wind-tunnel models33

and full scale prototypes preclude the proper extrapolation of experimental data, specially34

when several coupled physical phenomena are acting simultaneously. These are the reasons35

why advanced computer modelling of the interaction of the fluid, the structure, the control-36

system, and the electromechanical devices are so important to the design of innovative wind37

turbines, and to the optimization of their siting and operational procedures.38

For many years, the wind-turbine industry has been increasing their use of computer39

models for rotor structural design and aerodynamic optimization. Nevertheless, the complex40

multi-physics interactions inherent to the coupled aeroelastic problem of rotor dynamics still41

challenge the capacities of available simulation codes. If the current tendency of the wind42

turbine market goes on, the size of the state of the art turbine will keep growing, and so the43

need of an advanced Virtual Test Environment where innovative turbine designs could be44

tested at full-scale conditions at reasonable computational cost.45

This upscaling process may be accompanied by the introduction of lighter (and less stiff)46

blade designs that aim at reducing the costs of manufacture and materials, or the appearance47

of adaptive-blade designs where the aeroelastic modes of deformation are used to achieve48

control actions without the need for expensive actuators. Coupling between bending and49

twisting can be used to reduce extreme loads and improve fatigue performance (for a detailed50

discussion on the Adaptive-Blade concept see [1]). Thus, the next-generation of advanced51

wind turbine blades will likely be characterized by large displacements of the blade sections,52

either due to light-blade flexibility, adaptive bend-twist coupling design, or pre-conforming53

processes where specific curvatures are given to the blade axis (i.e. coning-wise/sweeping-54

wise). Those displacements will be accompanied by large rotations of the blade sections55

whose alignment will no longer be perpendicular to the rotor’s radial direction. All these56

factors point to a future scenario where the actual geometry of the wind-turbine rotor will57

change dynamically during normal operational conditions. This means that the actual rotor58

configuration will differ from the hypothesis on which the modelling theories commonly used59

today are based, and this situation will become worse as blades get more and more flexible.60

Current techniques to simulate the aeroelastic dynamics of wind turbine blades range61

from using reduced-order models to full 3D ones in order to solve both problems, structure62

and aerodynamics, in a coupled way.63

In reduced-order schemes, the structure is usually modeled as a Bernoulli or Timoshenko64

beam, either by means of space or modal discretization. Space discretization schemes are65

based in typical partial differential equation approximation methods like finite differences66

or finite elements. In modal discretization a limited finite number of deformation modes are67

kept in the solution. In both cases the continuous nature of the problem is dimensionally68

reduced from a 3D domain into a 1D one and the solution is obtained in a finite dimensional69

space. The selection of the method has direct effect on the accuracy and level of description70

of the simulated structural response. Reduced-order models for the flow problem are usually71

based on interference methods based on integral formulations of the flow equations in the72

form of conservation laws or on simplified flow equations, as in vortex methods. In the most73

common case, the flow problem is usually solved by some implementation of the well-known74
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Blade Element Momentum (BEM) model. Combining both structural and flow reduced75

models, a fully non-linear coupled scheme is obtained (see [2] for a comprehensive discussion).76

This technique gives origin to traditional aeroelastic approaches like the FAST-Aerodyn77

suite [3, 4, 5] or further developments like, for example, Kallesøe and Hansen [6], Xudong78

et al. [7]. Other implementations of reduced order models include different combinations79

of structural and flow models like Jeong et al. [8] or Yu and Kwon [9] where a full 3D80

flow model is combined with a beam structural model. Even though it is possible to do81

full 3D simulations for the flow problem in one hand, and 2D-shell or full-3D simulations82

for the blade structure on the other, where a higher level of description could be achieved83

for each physical aspect individually, a separate solution of the two physical phenomena84

misses crucial aspects of the coupled multi-physics problem that are essential for a complete85

representation of the blade dynamics. In addition, full-3D simulations of the coupled multi-86

physics problem (see, for example, Bazilevs et al. [10, 11]) as a whole are expensive in87

terms of computational cost, which limits the possibilities of simulating a large number of88

cases where different designs are tested in a variety of scenarios under different operational89

conditions and/or different control-strategies. The latter being very important in the search90

for optimization of the operational performance of the individual turbine. If we add to this91

the development of improved collective strategies for the wind-farm as a whole, the role92

of reduced-order models for the blade dynamics becomes even more important. Acting as93

Actuator Line Models (ALM) [12] integrated into a global flow scheme that simulates the94

flow domain of the entire wind farm, they offer the possibility of a feasible solution for95

whole-farm simulations without incurring a computational cost that would be prohibitive.96

Thus, reduced-order aeroelastic models have the distinct advantage of providing a full97

insight into the actual coupled multi-physics dynamic, with less computational cost and98

a much faster solution. Nevertheless, the accuracy of classical reduced-order aeroelastic99

techniques is limited by the fact that both, the flow and the structural models, can only100

partially reflect the effects of the mutual feedback introduced, from one side, by the rotor101

deformation on the aerodynamic loads on the blade sections, and from the other, by the102

effect of that load change on the structural deformation itself. That is, important features103

affecting the coupling of the multi-physics problem (like blade section displacement and104

alignment) are still not fully represented.105

To overcome these limitations and achieve a higher level of description, we developed106

a code based on a combination of two advanced numerical schemes: First, a model of the107

structural response of heterogeneous composite blades (see Otero and Ponta [13]), which108

allows a full representation of the complex modes of blade deformation and substantially109

reduces the computational effort required to model the structural dynamics at each time110

step. Second, a novel aerodynamic momentum model where all the velocities, forces, and111

geometrical features involved are transformed by orthogonal matrices representing the in-112

stantaneous deformed configuration, which fully includes the effects of rotor deformation113

into the computation of aerodynamic loads. This approach, which we call the Dynamic114

Rotor Deformation - Blade Element Momentum model (DRD-BEM), effectively takes into115

account the effects of the complex deformation modes of the rotor structure captured by the116

sophisticated structural model mentioned above; and it is the subject of the present paper.117
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2. The DRD-BEM model118

2.1. Theoretical background and historical context119

Since the 1970s several aerodynamic interference models have been proposed and ex-120

tensively used in modelling both horizontal- and vertical-axis wind turbines. Models can121

be generally classified in two distinctive families: First, the Stream-Tube modelling family,122

based upon equating the forces on the blades to the change of momentum on one or more123

stream-tubes enclosing the swept area of the rotor (whose action is represented by one or124

more actuator disks placed across each tube); and second, the Vortex modelling family,125

based upon vortex representations of the blades and their wakes (see Ponta and Jacovkis126

[14] for a detailed historical discussion in the context of vertical axis rotors).127

Among the models of the stream-tube family, we find the well known BEM model men-128

tioned above, which is widely used in many applications dealing with the design and analysis129

of horizontal-axis wind turbine rotors (see [15] and [16] for a comprehensive description of130

the classical implementation of the BEM technique). Although originally proposed almost131

a century ago [17, 18], the BEM model is still a typical aerodynamic component on state-of-132

the-art approaches for the aeroelastic analysis of wind turbine rotors, a fact shown by the133

substantial amount of works published on the subject recently. Over the years, there have134

been improvements and corrections to achieve better results, but the basic BEM theoreti-135

cal principles remain practically unchanged. Some examples of works published during the136

last decade which proposed modifications to the method include: Crawford [19] who ana-137

lyzed the applicability of BEM theory for coning rotors Lanzafame and Messina [20] who138

considered different mathematical representations of the lift and drag coefficients and their139

effect when applied to BEM model. Lanzafame and Messina [21] who presented a way of140

including the effect of centrifugal pumping into BEM model modifying the lift coefficient,141

Madsen et al. [22] who proposed modifications of the BEM model comparing analytical and142

numerical results from other aerodynamical models, Dai et al. [23] who presented a modi-143

fied Leishman-Beddoes [24] dynamic stall model in combination with BEM model, and Vaz144

et al. [25] who presented a model based on BEM theory for the horizontal-axis wind turbine145

design, taking into account the influence of the wake.146

The classical mathematical formulation of BEM is based on a series of expressions using147

trigonometric functions to project velocities and forces, and it is constructed in such a way148

that implies the assumption of blade sections being perpendicular to a radial line contained149

in the rotor’s plane. This means that classic BEM cannot take into account misalignments150

of the blade sections, which leads to a misrepresentation of the effects of the large deforma-151

tions associated with flexible blades on the computation of aerodynamic forces. Moreover,152

the basics of the momentum theory remain valid when large deformations are present (i.e. ,153

the principle of equating the aerodynamic forces on a set of blade elements to the change of154

momentum through a set of annular actuators associated with a corresponding set of con-155

centric stream-tubes). Nevertheless, when the blade deforms, the thickness of the individual156

stream-tubes associated with each blade element are no longer constant, as the axis of the157

blade element also changes its alignment with respect to the radial line. This means that158

the area of the corresponding annular actuator will also be misrepresented. Hence, a new159

4



mathematical formulation is required to, first, project the velocities onto the the coordinate160

system aligned with the blade section, second, re-project backwards the resulting forces from161

the blade element onto the coordinate system aligned with the annular actuator, and third162

recalculate the area of the annular actuator in a way that takes into account the deformation163

of the rotor.164

Like its classic counterpart, the DRD-BEM model presented here also belongs to the165

so-called stream-tube family of interference models. Nevertheless, a complete mathematical166

reformulation was developed to make it able to fully represent rotor-deformation effects at167

a level of description compatible with advanced structural models. The DRD-BEM can168

be thought of as a novel interference model of the stream-tube family on which all the169

aerodynamic effects associated with the misalignment of the blade airfoil sections, and the170

variations in shape, size, and orientation of the annular actuator are taking into account.171

As it was mentioned above, this is achieved by transforming the incident-velocity and the172

aerodynamic-force vectors through different coordinate systems. These start from the system173

aligned with the incident wind, up to the system aligned with the instantaneous position174

and attitude of the blade section (i.e. with axes defined by the chord-normal, chord-wise,175

and span-wise directions). These change-of-coordinate transformations are performed by a176

set of successive orthogonal matrices acting as linear operators. This technique allows us to177

automatically include not only the misalignment caused by instantaneous blade deformation178

and/or pre-conforming manufacturing processes, but also the misalignments caused by the179

action of the different mechanical devices that control yaw, pitch, and azimuthal (main180

shaft) rotation. Even changes in wind direction, and eventual design features like tilt- or181

coning-angle variations, could be included in the same way, using a consistent mathematical182

formulation for the whole set of phenomena. Hansen [26] also employed orthogonal matrices183

to compute the effects of yaw, tilt, and azimuthal rotation on wind velocities. As mentioned184

above, we add several more matrices to the chain of transformations to compute a full 3-185

D representation of the relative velocity field as seen by the blade element, as well as the186

backward transformation of the resulting forces and the area of the annular actuator, in a187

way that takes into account the deformation of the rotor.188

Figure 1 shows a schematics of the instantaneous position of a generic blade element189

and its span-wise length, δl, which are projected into the hub coordinate system, h, defined190

according to the standards from the International Electrotechnical Commission (IEC) [27]191

(see figure 2, and the discussion about expressions 9 to 12 in section 2.4). Thus, the actual192

area of the annular actuator swept by the blade element, defined by the radial thickness193

δrh and the radius rh, is constantly updated. It is important to note that, even though194

we are aligning the h coordinate system with the hub, the stream-tube itself is going to be195

initially aligned with the direction of the incident wind, and then is going to be deflected196

after passing through the annular actuator. The amount of that deflection will depend on197

the forces exerted by the actuator on the flow particles (see discussion about expression 1198

in section 2.4).199
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Figure 1: Schematic view of the dynamic generation of the annular actuator swept by a blade element
(constructed in base on a scheme presented in Burton et al. [16] for the classical BEM formulation).

wind

zh

xh
yh

Figure 2: (b) Schematic representation of the hub coordinate system according to standards from the
International Electrotechnical Commission (IEC) [27]
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Figure 3: Example of a blade internal structure typical of current commercial types. The main structural
member is a box-spar characterized by a significant build-up of material on the spar cap zone between the
shear webs. The exterior shell and the shear webs are both of balsa-core sandwich construction with triaxial
fiberglass laminate(from Griffin [28]).

2.2. Blade structural model: The dimensional-reduction technique for beams200

Before describing in detail the procedure for the DRD-BEM, a brief account of the201

main features of the Generalized Timoshenko Beam Model (GTBM), which we used for202

the analysis of the blade structure, will be provided. For a detailed description of the203

implementation of our model and a comprehensive discussion on its historical background,204

the reader is referred to Otero and Ponta [13] and the references therein. That publication205

also includes results of the application of our code to the analysis of vibrational modes of206

composite laminate wind-turbine blades.207

The need for advanced beam models stems from the fact that rotor blades are slender208

structures that may be studied as beams, which implies substantial savings in computational209

effort with respect to a full 3-D analysis. Nevertheless, due to the complex layout of their210

internal structure and the heterogeneous distribution of material properties (see figure 3211

from Griffin [28], where a typical example of a blade internal structure is shown), blades are212

challenging to model by traditional beam theories (e.g. Bernoulli or standard Timoshenko).213

Moreover, because of their ad hoc kinematic assumptions, blade analysis by traditional beam214

theories may introduce significant errors, especially when they are vibrating at wavelengths215

that are shorter than their length [29]. The GTBM technique is designed to overcome these216

limitations.217

Originally proposed by Prof. Hodges and his collaborators [30, 31], the GTBM is a218

dimensional reduction technique for complex beams that may have a curved and/or twisted219

shape that uses the same variables as the traditional Timoshenko beam theory, but where the220

hypothesis that the beam sections remain planar after deformation is abandoned. Instead,221

a 2-D finite-element mesh is used to interpolate the real warping of the deformed section,222

and a mathematical procedure is used to rewrite the strain energy of the 3-D body in terms223

of the classical 6 variables of the traditional 1-D Timoshenko theory for beams (i.e. the224

extensional strain, the two transverse shear strains, the torsional curvature, and the two225

bending curvatures). The complexity of the blade-section geometry and/or its material226
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properties are reduced into a stiffness matrix for the equivalent 1-D beam problem, which227

is solved along a reference-line, L, that represents the axis of the beam on its original228

configuration (see figure 4). The procedure ensures that the strain energy of the reduced229

1-D model is equivalent to the actual strain energy of the 3-D structure in an asymptotic230

sense.231

Original 

Configuration 

Deformed 

Configuration 

L
zL

xL

yL

yl xl

zl

l 

Planar Beam 

Section  

Warped Beam 

Section 

Solution of 1!D Model for 

Equivalent Beam  

(full 6 x 6 stiffness matrix) 

Dynamic!part variables: vstr ,  str , Fstr , Mstr 

Kinematic!part variables: ustr , ClL  

Figure 4: Schematic representation of the Generalized Timoshenko Beam Model for a generic beam section:
views of the reference-lines, the beam sections, and the respective coordinate systems before and after
deformation. The solution of the 1-D problem for the equivalent beam is indicated schematically, together
with the variables involved in each one of its two parts. Note the warping of the originally planar section
after deformation had occurred.

From the numerical point of view, elimination of the ad hoc kinematic assumptions of the232

traditional Timoshenko theory produces a fully populated 6x6 symmetric stiffness matrix for233

the 1-D beam, instead of only the 6 individual stiffness coefficients of the traditional theory.234

This means that now the 6 modes of deformation are fully coupled, and it is why this235

technique is referred to as a generalized Timoshenko theory. Thus, bending and transverse236

shear in two directions, extension, torsion, and the coupled modes of deformation (like237

bending-torsional or bending-bending) are fully represented in a consistent theoretical frame.238

Essentially, through the GTBM we are able to decouple a 3-D nonlinear elasticity problem239

into a linear 2-D cross-sectional analysis (that may be solved a priori), plus a nonlinear 1-D240
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unsteady problem for the equivalent beam that we solve at each time step of the aeroelastic241

analysis through an advanced ODE algorithm. The a priori 2-D analysis can be performed in242

parallel for many cross sections along the blade span, calculating the 3-D warping functions,243

and finding the stiffness matrix for the 1-D problem for the equivalent beam. Once the244

history of deformation for the ODE solution of the 1-D beam problem is obtained, the245

associated 3-D fields (displacements, stresses, and strains on the blade sections) at each time246

step can be recovered, a posteriori, using the 3-D warping functions calculated previously.247

In figure 4, a system of coordinates intrinsic to the beam section, (xL, yL, zL), is used248

to represent the kinematic and dynamic variables along the original reference-line L. The249

intrinsic system follows the deformation of the beam into the instantaneous configuration l250

to become (xl, yl, zl). When this technique is applied to blades, the intrinsic system remains251

aligned to the blade sections in the chord-normal, chord-wise, and span-wise directions.252

Thus, even for the case of large displacements and rotations of the blade sections, this253

technique allows for accurate tracking of the position and alignment of the airfoil sections254

as a natural outcome of the solution of a 1-D finite-element problem. Besides, there are no255

constraints on the shape of the original reference line. L could be curved in any direction256

(i.e. twisted or bent), which allows modelling pre-conformed blades with a curved design257

(see further discussion about the CLb matrix on section 2.4).258

The solution of the 1-D model for the equivalent beam, as schematically indicated in259

figure 4, is itself divided in two parts: one dynamic and one kinematic, each with their re-260

spective set of equations (see Otero and Ponta [13] for a comprehensive description, including261

the complete mathematical derivations).262

The dynamic part is written in terms of 4 vectorial quantities (i.e. 12 variables): the263

so-called generalized velocities of vibration of the beam sections (which include the 3 linear264

velocities vstr and the 3 angular velocities ωstr); plus the so-called generalized forces on265

the beam section (which include the axial and the 2 shear forces Fstr, plus the torsional266

and the 2 bending moments Mstr). The 6 components of the generalized forces are directly267

related with the 6 variables of the Timoshenko theory through the 6x6 stiffness matrix for268

the equivalent beam mentioned above. The dynamic equations are essentially nonlinear, and269

could be either solved iteratively in a linearized mode to get steady-state solutions, or as a270

system of ordinary differential equations (ODEs) by means of an adaptive variable timestep271

ODE solver to get time dependent solutions.272

The dynamic part of the solution also includes the inertia properties of the blade. Like273

the elastic properties discussed previously, these too are dimensionally-reduced to produce274

a 6×6 inertia matrix for the equivalent beam at each position along the reference-line. This275

matrix contains the mass per unit length, and the moments of inertia of first and second276

order for each blade section along the span. These are obtained from a two-dimensional277

integration performed over the area of each blade section which takes into account the details278

of its shape and its distribution of material properties. In this way, a full three-dimensional279

representation of the inertia properties of the blade are introduced into the dynamic solution.280

When operating in conjunction with the linear and angular velocities (vstr, and ωstr), this281

matrix produces the 6 components of the linear and the angular momentum of the vibrational282

motion of the blade sections, and the inertia forces and moments associated with them. It283
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also allows us to compute the inertia forces associated with the rotation of the main shaft and284

the action of mechanisms like yaw or pitch. Thus, centrifugal, Coriolis, angular, and linear285

acceleration effects are completely accounted for in a full three-dimensional representation286

(see also the discussion about the computation of gravitational forces in section 2.4).287

The kinematic part uses as input the previous solution of the dynamic part to produce the288

displacements, ustr, and the orthogonal matrices ClL representing the rotations of the blade289

sections from the original configuration L to the deformed one l. The kinematic equations290

are highly nonlinear in nature due to the transcendental relations in the parametrization of291

rotations, and are solved through an iterative scheme, either at a steady-state condition, or292

at each step of a time-dependent solution from the ODE algorithm.293

Matrix ClL, being updated at every timestep of the ODE solution of the structural294

model during dynamic simulations, is one of the key variables transferring information be-295

tween the structural and the aerodynamic models, together with the displacements of the296

reference-line ustr, and the linear and angular vibrational velocities of the blade sections (vstr297

and ωstr). On the other hand, aerodynamic load information coming from the aerodynamic298

model is fed into the structural 1-D solution by means of the distributed aerodynamic forces299

due to lift and drag and the aerodynamic pitch moment on the airfoil sections (this topic300

will be covered thoroughly on section 2.4).301

2.3. The Common ODE Framework (CODEF)302

Hitherto, we have seen how our structural model will interact with our aerodynamic303

model providing a comparable level of description to make full use of the advanced capa-304

bilities of both models. This notion of integral dynamic multi-physics modelling through305

an ODE solution in time could be extended to include other aspects that greatly affect the306

dynamics of the rotor and the overall performance of the wind-turbine, like the response of307

the control-system and/or the turbine’s electromechanical devices.308

 

Blade Structure 
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Figure 5: Flow-chart diagram of the Common ODE Framework.
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As mentioned above, the equations of motion for the 1-D finite-element problem of the309

equivalent beam are solved using a nonlinear adaptive ODE solver. This type of solver is310

based on variable-timestep/variable-order ODE algorithms that check the solution by moni-311

toring the local truncation error at every timestep, improving the efficiency and ensuring the312

stability of the time-marching scheme. The differential equations modeling the dynamics of313

the control system and electromechanical devices may be added to the general ODE system,314

with the control and the electromechanical dynamics modifying the boundary conditions for315

the aeroelastic solution and vice-versa. The use of a nonlinear adaptive ODE algorithm as a316

common framework provides a natural way of integrating the solution of all the multi-physics317

aspects of the problem. Figure 5 shows a flow-chart diagram of this global scheme indicating318

the interrelation between the different modules. These modules may be treated individually,319

interfacing with the common ODE routine. Contrary to a monolithic approach, this modular320

design of our multi-physics model substantially simplifies further development of the code321

by the improvement and/or expansion of each submodel independently. This makes possible322

the simultaneous analysis of the aeroelastic problem, together with any innovative control323

strategy involving all physical aspects of the turbine dynamics (mechanical and electrical),324

by means of an integral computationally-efficient solution through a self-adaptive algorithm.325

Moreover, it opens the door in the future for an interconnection of the dynamics of indi-326

vidual turbines into an integral simulation of their collective dynamics within a wind-farm,327

including all physical aspects of turbine-to-turbine interaction: aerodynamic, electrical, and328

collective control at farm-level.329

2.4. DRD-BEM procedure330

The procedure for the DRD-BEM algorithmic sequence consists of the following steps:331

I Modification of the incoming wind by the action of the annular actuator332

We shall start considering the velocity vector of the flow passing through an annular333

actuator aligned with the hub coordinate system h. The components of this velocity334

vector are affected by the axial induction factor a (i.e. , normal to the annular actuator)335

and the tangential induction factor a′, representing respectively the axial velocity deficit336

and the increase in tangential velocity across the actuator. Then,337

Wh =





W∞hx
(1− a)

W∞hy
+ Ω rha

′

W∞hz



 , (1)

is the velocity vector of the wind going through the annular actuator. W∞h is the338

undisturbed wind velocity field referred to the hub coordinate system, Ω is the angular339

velocity of the rotor, and rh is the instantaneous radial distance as shown in figure 1.340

This three-dimensional construction of Wh reflects the fact that the concentric set of341

stream-tubes associated with each blade element is initially aligned with the incident342

wind direction expressed in the h system. Then, the action of the forces exerted by343

the annular actuators on the flow particles will alter their trajectory and deflect the344
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stream-tubes accordingly, which is reflected in the change between the components of345

W∞h and Wh induced by the interference factors.346

For the cases of rotors with tilt, and/or in the presence of changes in yaw angle and wind347

direction, the three-dimensional nature of W∞h will take those effects into account. To348

do this, we use a set of orthogonal matrices to transform the wind velocity defined in a349

coordinate system aligned with the wind itself, W∞wind, into W∞h.350

Orthogonal three dimensional matrices work in a twofold manner: they can act as a lin-351

ear operator transforming vectors between two coordinate systems, or as a mathematical352

representation of a rotation in the three-dimensional space (that is why they usually are353

simply referred to as rotation matrices). The case of coordinate transformation can be354

seen as a rotation of the first coordinate system to make it coincident with the second355

one.356

The first orthogonal matrix that will transform W∞wind into W∞h is called C∆θyaw ,357

which will take into account any misalignment between the wind direction and the358

nacelle orientation, represented by the angle ∆θyaw, and is analogous to a rotation359

around the vertical axis. As a result, the wind velocity pre-multiplied by this matrix360

will be expressed into the nacelle coordinate system. This matrix has the form361

C∆θyaw =





cos(−∆θyaw) sin(−∆θyaw) 0
− sin(−∆θyaw) cos(−∆θyaw) 0

0 0 1



 , (2)

where ∆θyaw = θyaw − θ∞, with θyaw the nacelle orientation and θ∞ the direction of362

the unperturbed wind. The minus sign is due to the fact that ∆θyaw is defined positive363

counter-clockwise according to IEC standards [27], and both θyaw and θ∞ are defined364

positive in clockwise sense from the North as in a compass rose.365

Next, we need to consider the vertical misalignment of the turbine axis introduced by tilt366

angle as defined by IEC standards [27] (see figure 6). The tilting matrix Cθtlt involves367

a rotation around the horizontal axis of the nacelle system, transforming the velocity368

vectors into a coordinate system aligned with its first axis parallel to the turbine shaft.369

Then, the azimuthal orthogonal matrix Cθaz will transform the wind velocity into the370

hub coordinate system h of figure 2, by rotating the blade around the main shaft to its371

instantaneous position. This results on the expression for the unperturbed wind velocity372

referred to the hub coordinate system:373

W∞h =
(

CθazCθtltC∆θyawW∞wind

)

. (3)

II Projection of the velocity vector on the blade section coordinate system374

Moving ahead from the hub’s coordinate system, we add more matrices to the chain of375

transformations to compute the relative velocity as seen by the blade element. Thus,376

Wh will be projected going through several more coordinate systems, from the hub to377

the system aligned with the blade section.378
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Figure 6: Definition of cone and tilt angles for upwind wind turbines, according to standards from the
International Electrotechnical Commission (IEC) [27]

The coning transformation matrix Cθcn is a linear operator taking into account the379

coning angle for the rotor (see figure 6), and is characterized by a rotation around the380

second axis of the hub coordinate system. This could be a fixed angle representing the381

coning of the rotor as a constructive feature (as in the case of the NREL-5MW reference382

wind turbine [32]) or, if a control mechanism based on changing the coning angle is383

included, a variable matrix reflecting any control action in real time; we have included384

both options in our code. For a detailed description of the concept of coning rotors and385

their effects see Jamieson [33], Crawford [19], Crawford and Platts [34].386

Similarly, the pitching transformation matrix Cθp, is related to a rotation around the387

pitch axis of the blade, which is the third axis of the coordinate system resulting from388

the previous coning transformation. The pitch angle θp reflects any change in pitch389

introduced by the actuators of the control system. This leads to the so-called blade390

coordinate system indicated by the b subscript according to IEC standards [27] (see391

figure 7).392

Cθp =





cos(−θp) sin(−θp) 0
− sin(−θp) cos(−θp) 0

0 0 1



 , (4)

with θp = θp0 + θpctrl, the pitch angle, composed by θp0 , a fixed angle set up as a393

constructive feature, and θpctrl, the pitch angle varied by the control system. The minus394

sign appears here due to the sense in which positive pitch angles are defined in the IEC395

standards.396

This same scheme combining as needed a set-up and a control angle could be used within397
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Figure 7: Blade coordinate system according to standards from the International Electrotechnical Commis-
sion (IEC) [27]

the tilt transformation Cθtlt, for turbines that use tilting as a control mechanism. The398

interaction with control and/or electromechanical modules requires a constant update of399

the projection matrices associated with mechanical devices. For example, the azimuth400

matrix Cθaz , besides being used to compute the instantaneous position of the blade dur-401

ing its rotation, can also reflect control actions on the dynamics of the electromechanical402

drive train that affect the rotor’s angular speed Ω.403

In order to get to the coordinate system of the blade section in the instantaneous de-404

formed configuration, (xl, yl, zl), defined along the deformed reference-line l (see fig-405

ure 4), two more transformations are applied after Cθp:406

The orthogonal matrix associated with the first of these transformations is based on the407

geometrical alignment of the blade sections along the span defined at the time when408

the blade was designed and manufactured. As previously mentioned, the blade could409

have pre-conformed curvatures along its longitudinal axis (i.e., the design blade axis410

is no longer rectilinear and the coordinate systems of different blade sections along411

the reference line are no longer aligned with the third axis of system b in figure 7).412

As mentioned above, the intrinsic system L is defined aligned to the blade sections413

in the chord-normal, chord-wise, and span-wise directions. Thus, the abovementioned414

curvatures can reflect either an initial twist along the longitudinal axis (which, in the415

case of a rectilinear blade, coincides with the classical notion of twist of standard BEM416

theory), or a combination of twist plus pre-bending on the other two axes (i.e. coning-417

wise/sweeping-wise). To this end, we compute a transformation orthogonal matrix for418

each position along the original reference line L, which we call CLb, as it relates the419

coordinate system of the blade b with the intrinsic system of coordinates of the blade420
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sections in the original (non-deformed) configuration (xL, yL, zL) defined along line L.421

The orthogonal matrix associated with the second transformation mentioned above, ClL,422

is the one provided by the solution of the kinematic equations on the structural model423

(as explained in section 2.2), which transforms vectors from system L to system l.424

After all these transformations, the velocity vector Wh is expressed into the coordinate425

system of the blade section, and then we add the blade section vibrational velocities426

vstr coming from the structural model, which are already expressed in the l system. At427

this point, we also add the velocity components vmech, associated with the motion of428

the blade section due to the combined action of mechanical devices (like yaw, pitch, and429

azimuthal rotation), also expressed in the l system. Thus, the expression for the wind430

velocity relative to the blade section, Wl, results:431

Wl =
(

ClLCLbCθpCθcnWh

)

+ vstr + vmech. (5)

III Computation of the aerodynamic forces from the Blade Element Theory432

With the magnitude of the wind velocity projection onto the plain of the blade sec-433

tion, Wrel =
√

Wlx
2 +Wly

2, and the angle of attack α, the aerodynamic lift and drag434

forces per unit length of span are computed in the classic way through the aerodynamic435

coefficients of the airfoil section:436

dFlift =
1

2
ρCl Wrel

2 c , dFdrag =
1

2
ρCdWrel

2 c, (6)

where Cl and Cd are the lift and drag coefficients for the corresponding angle of attack, ρ437

is the air density, and c is the chord length of the airfoil section. The total aerodynamic438

load acting on the blade element aligned with relative wind direction has components439

corresponding to the lift and drag forces and is given by440

δFrel =





dFlift

dFdrag

0



 δl, (7)

where δl is the span length of the blade element as shown in figure 1.441

IV Projection of the aerodynamic forces back to the hub coordinate system442

The aerodynamic load δFrel is then projected back onto the h coordinate system by443

reverting the transformation process using the inverse of the same orthogonal matrices444

explained before applied in reversed order. One interesting (and very useful) property445

of orthogonal matrices is that their inverse is equal to their transpose. Hence, the446

aerodynamic load on the blade element expressed in h coordinates is447

δFh = CT
θcn

CT
θp
CT

LbC
T
lLCLthal dFrel δl, (8)
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where CLthal is the matrix that projects the lift and drag forces onto the chord-normal448

and chord-wise directions, which are aligned with the coordinates of l. Expression (8)449

could be re-written as δFh = dFh δl, or in components450

δFh =





δFhx

δFhy

δFhz



 =





dFhx

dFhy

dFhz



 δl, (9)

where dFh = CT
θcn

CT
θp
CT

LbC
T
lLCLthal dFrel.451

V Equating forces from Blade Element Theory and Momentum Theory452

Finally, the components of the force coming from the blade element theory δFh are453

equated to the rate of change of momentum through the corresponding annular actuator.454

The component normal to the annular actuator δFhx
, is equated to the change in mo-455

mentum on W∞hx
associated with the axial interference factor a (see expression 1),456

which after some algebraic manipulation gives457

dFhx
= fth

4π ρ rh
B

(

W 2
∞hx

a (1− a) + (a′Ω rh)
2
) δrh

δl
, (10)

where fth is the combination of the tip and hub loss factors described later in section 2.5,458

and B is the number of blades of the rotor. Here we included the term (a′Ω rh)
2, which459

takes into account the fact that the rotation of the wake causes a pressure drop behind460

the actuator equal to the increase in dynamic head [16]. The term δrh
δl

involves the461

transformation of δl into δrh referred to in section 2.1, which is performed by means of462

the same set of orthogonal matrices already described.463

The tangential component δFhy
, is then equated to the corresponding change momentum464

associated with induction factor a′ which gives465

dFhy
= fth

4π ρ rh
B

|W∞hx
| (1− a) (Ω rh) a

′
δrh
δl

. (11)

VI Iterative solution for the induction factors466

As in the classic BEM, the set of equations (10) and (11) form a nonlinear system where467

the unknowns are the two induction factors a and a′, which needs to be solved by an468

iterative process within each timestep of the aeroelastic solution for each one of the blade469

elements. In traditional implementations of BEM, this is usually solved by functional470

iteration schemes starting from an initial guess value. Given the more complex nature of471

the DRD-BEM, we decided to use an advanced optimization algorithm to improve the472

stability and the speed of convergence of the iterative process. To this end, we rewrote473

equation (10) into an implicit expression for a,474

aRes = dFhx
− fth

4π ρ rh
B

(

W 2
∞hx

a (1− a) + (a′Ω rh)
2
) δrh

δl
, (12)
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and equation (11) into an explicit expression for a′475

a′ =
dFhy

B

fth 4π ρ rh |W∞hx
| (1− a) (Ω rh)

δrh
δl

(13)

Then, we solve for the axial induction factor a, finding the zero of equation (12) by476

minimizing its residual aRes, with expression (13) providing an update of a′ at each477

step of the iteration process that acts as a constraint. For the minimization of the478

residual we use an adaptive algorithm based on a combination of bisection, secant, and479

inverse quadratic interpolation methods. The main advantage of applying this close-480

interval method, instead of the traditional iteration from an initial guess value, is that481

the search is always bracketed between two limiting values that enclose the range where482

the solution is expected. Thus, it avoids the situation where the solution overshoots483

and diverges, or gets trapped into an endless loop. In this way, the convergence criteria,484

as well as the error check, is constantly monitored by an efficient, proven, and highly485

reliable numerical scheme [35, 36].486

VII Computation of the distributed loads on the blade structure487

The next step in the process is to compute the distributed loads and moments acting488

on the blade structure per unit length of span. These forces, expressed on the intrinsic489

system of coordinates at the instantaneous configuration l, constitute the input required490

by the GTBM structural model (see section 2.2). The distributed loads have two main491

components: one associated with the aerodynamic forces, and the other with the gravi-492

tational action.493

Once the iterative solution for the induction factors in step VI achieves convergence, we494

are able to compute the aerodynamic forces acting on each blade section by following495

part of the process from steps I to III, but this time expressing them in system l, that496

is dFl = CLthal dFrel, whose first two components give the chord-normal and the chord-497

wise aerodynamic loads. To these forces we add the aerodynamic moment on the airfoil498

section per unit span-length, which acts around the first axis of l, and is computed499

through the classic formula using the aerodynamic pitch coefficient Cm of the airfoil500

section at the corresponding angle of attack dMaer =
1
2
ρCmWrel

2 c2.501

The three-dimensional contribution of the gravitational action to the distributed forces502

and moments along the span is computed for the instantaneous position and attitude of503

each blade section. To this end, we use the same inertia properties included in the 6×6504

dimensionally-reduced inertia matrix for the equivalent beam, previously described in505

section 2.2. Our code has the capacity to switch the gravitational load on or off according506

to the preferences of the user.507

With these inputs, the structural model is able to produce the dynamic and kinematic508

variables to characterize the rotor deformation, and we then proceed to the next iteration509

of the process.510
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2.5. Dynamic update of corrective factors511

The implementation of the DRD-BEM also contains some additional improvements in512

the form of a dynamic update of correction factors, which in traditional versions of BEM,513

were pre-computed and kept constant along the calculation. Namely:514

• Airfoil aerodynamic data from static wind-tunnel tests are corrected at every timestep515

to consider both rotational-augmentation and dynamic-stall effects. The rotational-516

augmentation correction is based on the well-know models of Du and Selig [37] and517

Eggers [38]. The dynamic-stall model we use is based in the works of Leishman and518

Beddoes [24], Leishman et al. [39] and Leishman and Beddoes [40]; and our code has519

the capacity of switching between three options for its application: It could be applied520

at each step of the iterative solution for the interference factors plus at the computation521

of the aerodynamic loads (i.e. at steps III and VII); it could be applied only during522

the computation of the aerodynamic loads after the iterative solution have converged523

(i.e. only at step VII); or it could be totally switched off.524

• Our code is capable of using multiple data tables for the aerodynamic coefficients525

of the airfoil sections. These multiple data sets could be associated with different526

Reynolds numbers, with the actuation of flow-control devices (like flaps, ailerons, tabs,527

or spoilers), or with any other factor that modifies the original curves of coefficients528

versus angle of attack. The data on the tables are interpolated at every time-step529

providing coefficient values updated to account for the instantaneous aerodynamic530

conditions and/or control actions on the flow-control devices. This feature opens531

interesting possibilities for future studies that we discuss on the concluding section.532

• To ensure the availability of data for a range of angles of attack ±180◦, we use the533

well known extrapolation method proposed by Viterna and Janetzke [41], which is534

also applied in real-time like the other corrections previously mentioned (i.e. they are535

applied at every computation of the aerodynamic forces made in steps III and VII).536

Our model also incorporates several empirical corrections that are typically present in537

state-of-the-art BEM models [see 15, 16]:538

• BEM theory does not account for the influence of vortices being shed from the blade539

tips into the wake on the induced velocity field. These tip vortices create multiple540

helical structures in the wake which play a major role in the induced velocity distribu-541

tion at the rotor. To compensate for this deficiency in BEM theory, a tip-loss model542

originally developed by Prandtl is implemented as a correction factor to the induced543

velocity field [18]. In the same way, a hub-loss model serves to correct the induced544

velocity resulting from vortex being shed from the blade roots at the rotor hub. Both545

are condensed in the fth factor included in equations (10) to (13).546

• Another modification needed in any model based on momentum theory is the correction547

of the thrust on the annular actuator when operating in the so-called “turbulent-wake”548
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Figure 8: Graphical representation of the thrust coefficient CT in function of the axial induction factor a.
The parabolic curve given by conservation of momentum in the stream-tube; Glauert [17] and Buhl [42]
empirical relations fitting Lock et al. [43] experimental data; and the Power-Law fitting proposed here to
minimize the error. The parabolic CT curve form stream-tube theory is shown here affected by a tip-hub
loss factor fth = 0.9 to illustrate the gap-problem on the Glauert approach.

state. This correction plays a key role when the turbine operates at high tip speed549

ratios and the axial induction factor a is greater than 0.5 (in practical implementations,550

this limit is lowered to about 0.3 to 0.45, depending on the corrective curve adopted).551

At a = 0.5, the parabola representing the thrust coefficient CT as a function of a552

reaches its vertex (see figure 8), and beyond that, the basic assumptions of momentum553

theory on a stream-tube become invalid as part of the flow in the far wake starts554

to propagate upstream. Physically, this flow reversal cannot occur and what actually555

happens is that more flow entrains from outside of the wake, creating vortex structures556

and increasing the turbulent activity. This slows down the flow passing through the557

rotor, but the thrust continues to increase.558

Glauert [17] was the first to propose an empirical correction to overcome this limitation559

in momentum theory. He fitted a parabolic function to the experimental data from560

Lock et al. [43] for wind turbines operating in the turbulent wake state. Glauert’s561

fitting function is tangent to the stream-tube CT curve at a = 0.4 (see figure 8).562

Other authors such as Burton et al. [16] and Wilson [44] also proposed alternative563

fitting functions to the experimental data. Nevertheless, a discontinuity between the564

fitting function and the stream-tube CT function appears when correction factors for565

tip and hub losses are taken into account [42]. This discontinuity becomes critical when566

the induction factors are to be obtained by iterative approaches. Buhl [42] proposed567

a new empirical relationship for the thrust coefficient that solves the gap-problem568

by ensuring a tangent matching with the stream-tube CT function regardless if it is569
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affected by corrective factors for tip and hub losses.570

Our model is able to employ different empirical relations fitting the experimental571

data by Lock et al. [43], that could be chosen by a switch in the input. We also572

introduced a new corrective curve based on a Power-Law fitting, which substantially573

reduces the error of approximation to Lock et al. [43] empirical data and also avoids the574

gap-problem as the Power-Law fitting always intercepts the stream-tube CT function575

regardless of the corrective factors for tip and hub losses applied. A full discussion576

on this newly-proposed Power-Law fitting will be the object of a separate paper, as it577

fairly exceeds the scope of the present work. Both Buhl [42] curve and our Power-Law578

fitting are shown in figure 8.579

• The influence of the tower on the flow field around the blade must also be modelled.580

We use the models developed by Bak et al. [45] and Powles [46], which provide the581

influence of the tower on the local velocity field at all points around it. These models582

account for the increase in wind speed around the sides of the tower, the appearance of583

cross-stream velocity components, the deceleration of the flow at the stagnation zone584

upstream of the tower, and the velocity deficit in the separated wake behind it in case585

the rotor operates in a downwind configuration.586

3. Numerical Experimentation587

In this section, we report results of the application of our model to the aerodynamic anal-588

ysis of a rotor based on the 5-MW Reference Wind Turbine (RWT) proposed by NREL [32].589

Based on the REpower 5M wind turbine, the NREL’s RWT was conceived as a benchmark590

turbine for both onshore and offshore installations, and it is a good representative of state-591

of-the-art, utility-scale, multi-megawatt commercial wind turbines. An earlier version of the592

DRD-BEM called the LSR-BEM model was used in combination with the GTBM struc-593

tural model (section 2.2) for the analysis of the aeroelastic steady state and the deformation594

modes of the NREL-RWT’s blades in Otero et al. [47]; and to analyze the performance of595

alternative adaptive designs for the the NREL-RWT blade in Lago et al. [48].596

3.1. Power and Thrust597

According to Jonkman et al. [32], the NREL-RWT’s blades are designed to be actuated598

for pitch control only for wind speeds beyond the nominal (rated) value WN = 11.4 m/s,599

where the goal is to maintain a constant power output and a constant angular speed of the600

rotor. During operation at wind speeds lower than the rated, the pitch remains constant at601

its design value, and the angular speed of the rotor is controlled to keep the tip speed ratio602

at the nominal value of λ = 7.603

The first series of results shows the outcome of our model analyzing the blade under604

steady-state operational conditions when the effects of aeroelastic deformation are included.605

We ran tests for operational conditions at different wind speeds ranging from 3 m/s to 25606

m/s which are, respectively, the cut-in and cut-out design wind speeds for the NREL-RWT.607

Figure 9 shows the power output at different wind speeds, the thrust at the hub, and the608
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power and thrust coefficients. As a validation of our model, we compare results of the609

present study with results for steady state power and thrust from Jonkman et al. [32] and610

Xudong et al. [7]. Jonkman et al. [32] results were obtained by means of the certified FAST-611

Aerodyn suite [3, 4, 5], which are based on the BEM formulation combined with a modal612

beam method for the structural analysis. The work of Xudong et al. [7] presents a method613

for optimizing wind turbine rotors, that relies on their own aeroelastic model to simulate614

the turbine behavior. This aeroelastic model is also based on a combination of BEM and615

modal structural model and was validated against the FLEX code [49].616

Below WN , we applied a rotational speed that gave the design tip speed ratio at the617

corresponding wind speed. Above WN , we computed the pitch control angle for the blades618

at every wind condition that keep both the power output and rotor speed constant at their619

nominal values. In order to strictly reproduce an actual steady-state condition, tilt and620

yaw angles need to be disregarded, as well as the action of gravitational forces. All these621

factors introduce asymmetries in the blade structural loads inducing unsteady aeroelastic622

behaviour along the turning cycle, which our model is capable of detecting. Thus, we applied623

the NREL-RWT’s design tilt angle of 5◦ [32] only for our time-dependent solutions (shown624

later), while the results for steady-state solutions where obtained in the absence of tilt.625

A hub-coning angle of 2.5◦ was applied as specified in the definition of the NREL-RWT’s626

constructive parameters [32].627

At nominal operational conditions, the mechanical power at the rotor’s shaft predicted628

by our model is 5.1916MW. This is slightly lower than the value reported in Jonkman et al.629

[32], which is consistent with the fact that the structural deformation, and the misalignment630

it induces on the blade’s airfoil sections, is now taken into account (see also comments on631

section 4).632

Rotor power results reported by Xudong et al. [7] are similar to our results for most wind633

speeds, while thrust results of both models are slightly higher than ours. This, again, is634

consistent with the fact that none of those models take into account the misalignment of the635

airfoil sections. In table 1, we present results obtained with our model for the tip deflection636

both in and out of the rotor plane. Our results are compared with those of Jonkman et al.637

[32], Xudong et al. [7], Jeong et al. [8], Kallesøe and Hansen [6], and Yu and Kwon [9]. The638

method used by Jeong et al. [8] combines a free wake vortex model with a finite-element639

beam formulation. Kallesøe and Hansen [6] use a nonlinear steady state version of the second640

order Euler-Bernoulli beam model coupled with a BEM model to compute steady state blade641

deformations. Yu and Kwon [9] use an incompressible Navier–Stokes computational fluid642

dynamics solver based on unstructured meshes to solve the flow field around the turbine.643

This method was combined with a nonlinear Euler-Bernoulli cantilever beam undergoing644

spanwise, lead-lag bending, flap bending, and torsional deformations discretized by the finite-645

element method to model the blade structure. The majority of the methods agree quite well646

in terms of the out-of-plane displacement, while the in-plane deflection values are more647

dispersed. As can be seen there is a wide variety of options among the fluid solvers found648

in the literature, but structural models are restricted to classical beam formulations. This649

could be the reason for the different behavior observed for the in-plane and the out-of-plane650

deflections, classical formulations seem to work well for the out-of-plane direction where the651
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Figure 9: DRD-BEM computations for the main parameters of the NREL-RWT rotor in function of wind
speed. From top to bottom: power output, thrust on the rotor’s hub, and power and thrust coefficients.
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Out-of-plane deflection [m] In-plane deflection [m]

Present 3.85 -0.56
Jonkman et al. [32] 5.47 -0.61
Xudong et al. [7] 3.53 -0.21
Jeong et al. [8] 3.76 -0.27
Kallesøe and Hansen [6] 3.24 -0.27
Yu and Kwon [9] 4.72 -0.63

Table 1: In-plane and out-of-plane deflection comparison at nominal working conditions.

blade behaves more like a slender beam. On the other hand, our results seem to indicate652

that in-plane deformation respond to a more complex combination of deformation modes,653

some of them of coupled nature, that can not be captured by classical formulations.654

3.2. Blade pitch control for power limitation at wind speeds above the rated655

As it was mentioned before, blade pitch control for the NREL-RWT only takes place656

for wind speeds above WN . To evaluate our model in the presence of pitch control actions,657

we reproduced the tests reported in Jonkman et al. [32], which include computations of the658

sensitivity of aerodynamic power to blade pitch. Blade-pitch sensitivity is an aerodynamic659

property of the rotor which depends on wind speed, rotor speed, and blade-pith angle. It is660

defined as ∂P/∂θpctr, where P is the output power and θpctr is the pitch control angle.661

Table 2 summarizes the results for the test, columns two and three show the optimum662

pitch angle and ∂P/∂θpctr respectively.663

Wind speed Pitch ∂P/∂θpctr
[m/s] [◦] [MW/rad]

11.4 (rated) 0.00 −12.30
12.0 2.62 −20.16
13.0 5.32 −29.18
14.0 7.48 −33.86
15.0 9.27 −44.80
16.0 10.84 −50.52
17.0 12.30 −56.85
18.0 13.66 −64.09
19.0 14.95 −68.87
20.0 16.20 −72.15
21.0 17.41 −77.94
22.0 18.57 −83.81
23.0 19.68 −89.90
24.0 20.75 −95.65
25.0 21.80 −100.18

Table 2: Sensitivity of aerodynamic power to blade pitch. Generated power and rotor speed are kept constant
at 5.1916 MW and 12.1 rpm respectively.
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3.3. Time-dependent solutions around the nominal operational state664

In what follows we show the results of time-dependent solutions from the application of665

our model to the analysis of the NREL-RWT operating at nominal wind speed. In order to666

isolate the effects of rotor deformation, tilt-angle, and gravitational forces on the aeroelastic667

behaviour of the rotor, in this first set of solutions we applied a constant wind speed over668

the entire rotor area (even though our model is capable of accepting any generic wind-profile669

input). When tilt is considered nil, the power predicted in the temporal solution is coincident670

with the value obtained for the steady state solution, which serves as a validation of the671

consistency of our model in its two different modes of operation. During this process, we672

run our model for 70 revolutions of the rotor with boundary conditions equivalent to the673

steady-state case. After brief warm-up period the time-dependent solution gave the exact674

same value as the steady-state one, with an extremely low relative noise of the order of 10−9
675

to 10−8, which indicates the high order of precision of the method.676

We analysed three cases where the factors of tilt angle, gravitational action, or a com-677

bination of both, affect the symmetry of the loads on the rotor in different ways, inducing678

particular modes of deformation. Figure 10 shows the time-dependent solutions for the679

power output for the three cases mentioned above, plus the flat solution for the case where680

neither tilt nor gravity are considered. For the sake of clarity, we only show a period of 4681

rotor revolutions out of the total of 70 that we ran, but the pattern is repeated exactly over682

the total. Figure 11 shows similar results for the thrust exerted on the hub.683

The effects of tilt in the rotor axis and the action of gravity are revealed by the oscil-684

lating shapes of the time-dependent solutions. The way in which tilt and gravity affect the685

power and the thrust curves is different, because of the main direction in which the two686

loads are applied. That is, the tilt angle affects the aerodynamic load which has a major687

component in the chord-normal direction of the blade section, while the action of gravity has688

a major component in the chord-wise. These different load patterns affect the shape of the689

oscillating curves. To provide some insight into the ways in which these shape alterations690

operate, we studied the time evolution of several representative parameters on individual691

sections along the span of the blades. A complete set of plots covering the entire blade span692

would be impossible to show here due to space limitations, but in figure 12 we show some693

examples for a particular section located at 90 % of the span from the blade root, which is694

quite representative of the general behaviour that we have observed. There, we show time695

evolution of the axial (i.e. the out-of-rotor-plane) displacement of the blade section on the696

hub’s coordinate system ustrhx
, the chord-normal component of the aerodynamic force on the697

blade section dFlx , and chord-wise component dFly . It could be noticed that the oscillating698

pattern of forces on individual sections is much clearer than the ones observed at the rotor,699

with a kind of sinusoidal-like aspect. There is also a phase-shift present in all the plots,700

specially noticeable on the forces. We will return to this topic in our concluding section.701

Another aspect of the fluctuations produced by tilt or gravity on power and thrust is702

that they are not symmetric with respect to the steady-state values computed before, and703

consequently, the mean values of both power and thrust are different when either of these704

factors are present. Table 3 shows a compilation of the mean values of power and thrust for705

the four cases depicted in figures 10 and 11, together with the amplitude of the associated706
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Figure 10: Time-dependent solutions for the power output of the NREL-RWT rotor under different con-
ditions. Top panel: no-tilt aerodinamic loads, with and without gravitational loads. Mid panel: only
aerodynamic loads with a 5◦ tilt. Bottom panel: aerodynamic and gravitational loads with a 5◦ tilt. The
three plots have a range of 4 kW.
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Figure 11: Time-dependent solutions for the thrust exerted on the hub of the NREL-RWT rotor under
different conditions. Top panel: no-tilt aerodinamic loads, with and without gravitational loads. Mid panel:
only aerodynamic loads with a 5◦ tilt. Bottom panel: aerodynamic and gravitational loads with a 5◦ tilt.
The three plots have a range of 160 N.
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Figure 12: Time evolution for some illustrative parameters on the section of blade Nr1 located at 90 %
of the span. From top to bottom: Out-of-rotor-plane displacement ustrhx

, chord-normal component of the
aerodynamic force dFlx , and chord-wise component dFly .
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fluctuations.707

Mean Power Mean Thrust
Case Power Amplitude Thrust Amplitude

P̄ [MW] ∆P [MW] M̄ [kN] ∆M [kN]

Steady State 5.1916 - 660.26 -
Time dependent - Aero No tilt 5.1916 3.4 × 10−9 660.26 3.9 × 10−7

Time dependent - Aero With tilt 5.1403 9.9 × 10−4 656.91 0.0587
Time dependent - Aero + Grav No tilt 5.1897 0.0018 660.19 0.0674
Time dependent - Aero + Grav With tilt 5.1301 0.0031 701.46 0.1324

Table 3: Power and thrust for different cases. Mean values and amplitude of oscillations.

4. Conclusions708

The experiments presented here are mostly intended as validation cases using a well-709

known turbine design that provides an excellent benchmark for comparison. It is important710

to keep in mind that they reflect the fact the we are simulating a relatively stiff blade of clas-711

sical construction, typical of today’s commercial types. This results in relatively moderate712

variations on the predicted behaviour with respect to other models that do not consider the713

full effects of rotor deformation. However, for those cases of innovative blades mentioned in714

the introductory section, where stiffness is likely to be lower (and/or deformation modes to715

be more complex), these differences are going to be much higher, and the full capacities of716

our model more evident.717

Nevertheless, even for this classic blade, there are several manifestations of the effects718

of deformation that could be observed in our data. For instance, comparing the results in719

table 2 with the ones reported by Jonkman et al. [32], we see that our optimum computed720

angles are 1◦ to 1.5◦ smaller. This is again consistent with the fact that our model takes into721

consideration the complex modes of deformation for the blade structure as well as its non722

linear behavior. On the aerodynamic side, the DRD-BEM feeds back the structural model723

with the corresponding re-projection of the aerodynamic loads as the structure deforms.724

What we see here is the result of the effect of the combined deformation modes changing725

the alignment of the blade sections, which causes the aerodynamic forces that produce the726

driving torque to decrease with increasing deformation as the wind speed increases. Thus,727

the pitch control angles required to maintain a constant output power turn out to be smaller728

than the ones predicted with models that do not consider this effects. Similarly, the values729

of blade-pitch sensitivity computed by our model, though in the same order of magnitude,730

are smaller than those predicted by Jonkman et al. [32].731

Results for the time-dependent experiments in figures 10 and 11 show maximum fluc-732

tuations in a range of 160 N for the thrust and 4 kW for the power. These fluctuations733

are small compared with the mean values of both quantities (this is again related with the734

fact that we are simulating a relatively stiff blade). But, it is interesting to note that the735

method is still capable of capturing these small aero-elasto-inertial interactions that reflect736
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on the contribution of the 3 blades to the total power and thrust on the rotor’s hub. This737

is also reflected on the aerodynamic forces on individual blade sections on the external part738

of the blade, whose chord-normal component (mid panel figure 12) is mostly associated739

with the span-wise distributed force contribution to the thrust on the rotor, while its chord-740

wise component (bottom panel figure 12) is mostly associated with the driving torque and741

power output. It can be seen that the asymmetric conditions imposed by the gravitational742

loads and/or tilting of the nacelle produces a clearly different response with respect to the743

symmetric situation where these effects are disregarded. The fact that aero-elasto-inertial744

phenomena are actually being detected is manifested in the phase-shift of the responses745

with respect to the pulsating forcing applied in the cases where gravitation and/or tilt are746

considered.747

As expected for a 3-bladed turbine, the oscillations in power and thrust depicted in748

figures 10 and 11 have a fundamental frequency exactly corresponding to 3 times the rota-749

tional frequency of the rotor. However, when the integrated action of the forces on all the750

individual sections of the 3 blades is put together, small fluctuations appear, indicating the751

presence of other frequencies on the spectrum. These, again, are very subtle for the case of752

the relatively stiff blades of the NREL-RWT. More interesting is the fact that there are clear753

alterations on the shape of the signals which depart from the sinusoidal-like shape shown for754

the distributed forces in figure 12, whose origin could be attributed to the combined effect755

of different phase-shifts on the many sections along the span of the 3 blades. This may be756

an indication that, even in the case where the load fluctuation on individual sections may757

be simple in terms of phase and frequency content, the overall action of the deformation758

modes along the span of the three blades on the rotor would create more complex patterns759

of fluctuation for general parameters on the hub like power, torque, and thrust. This may760

prove important for the design of mechanical components on the drive train like bearings,761

and gear boxes, and for the determination of their expected operational life.762

The capability of our code of capturing even these small fluctuating components on the763

NREL-RWT opens the door to future detailed analysis of this kind of problems in cases764

where those effects would be more substantial. These may include cases of larger blades765

(where the fluctuating forces associated with gravity are likely to become critical in terms766

of fatigue effects [15]); or cases of innovative blades of novel design, like relatively lighter767

blades of softer construction, or adaptive blades with complex aeroelastic combined modes768

of deformation.769
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