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Abstract. An l-hemi-implicative semilattice is an algebra A = (A,∧,→, 1) such that

(A,∧, 1) is a semilattice with a greatest element 1 and satisfies: (1) for every a, b, c ∈ A,

a ≤ b → c implies a ∧ b ≤ c and (2) a → a = 1. An l-hemi-implicative semilattice is

commutative if if it satisfies that a → b = b → a for every a, b ∈ A. It is shown that

the class of l-hemi-implicative semilattices is a variety. These algebras provide a general

framework for the study of different algebras of interest in algebraic logic. In any l-hemi-

implicative semilattice it is possible to define an derived operation by a ∼ b := (a →
b) ∧ (b → a). Endowing (A,∧, 1) with the binary operation ∼ the algebra (A,∧,∼, 1)

results an l-hemi-implicative semilattice, which also satisfies the identity a ∼ b = b ∼ a.

In this article, we characterize the (derived) commutative l-hemi-implicative semilattices.

We also provide many new examples of l-hemi-implicative semilattice on any semillatice

with greatest element (possibly with bottom). Finally, we characterize congruences on

the classes of l-hemi-implicative semilattices introduced earlier and we characterize the

principal congruences of l-hemi-implicative semilattices.

Keywords: Bounded semilattices, Weak implications, Congruences.

1. Introduction

Recall that a structure (A,≤, ·, e) is said to be a partially ordered monoid
if (A,≤) is a poset, (A, ·, e) is a monoid and for all a, b, c ∈ A, if a ≤ b then
a · c ≤ b · c and c · a ≤ c · b. Although commutativity does not play any
special role in the discussion that follow, we shall assume in this article that
all monoids are commutative.

Let us also recall that the residuum (when it exists) of the monoid oper-
ation of a partially ordered monoid (A,≤, ·, e) is a binary operation → on
A such that for every a, b and c in A,

a · b ≤ c if and only if a ≤ b → c.

Note that the previous equivalence can be seen as the conjunction of the
following conditionals:
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(r) If a · b ≤ c then a ≤ b → c and

(l) If a ≤ b → c then a · b ≤ c.

This suggest us to consider binary operations → satisfying either (r) or
(l) above.

We say that a structure A = (A,≤, ·,→, e) is an r-hemiresiduated monoid
if (A,≤, ·, e) is a partially ordered monoid and → is an r-hemiresiduum.
Similarly, we define an l-hemiresiduated monoid. Clearly, every partially
ordered residuated monoid is both an r-hemiresiduated monoid and an l-
hemiresiduated monoid. Some examples of l-hemiresiduated monoids which
in general are not residuated can be found for instance in [18].

Proposition 1.1. Let A = (A,≤, ·,→, e) be a structure such that (A,≤, ·, e)
is a partially ordered monoid. Then A is an l-hemiresiduated monoid if and
only if a · (a → b) ≤ b, for every a, b ∈ A.

Proof. Suppose that A is an l-hemiresiduated monoid and let a, b ∈ A.
Since a → b ≤ a → b then a · (a → b) ≤ b. Conversely, suppose that
a · (a → b) ≤ b for any a, b ∈ A. Let a, b, c ∈ A be such that a ≤ b → c.
Then a · b ≤ b · (b → c) ≤ c, so a · b ≤ c. Therefore, A is an l-hemiresiduated
monoid.

In this work we are interested in l-hemi-implicative semilattices.

Definition 1.2. An algebra A = (A,∧,→, 1) of type (2, 2, 0) is an l-hemi-
implicative semilattice if it satisfies the following conditions:

(H1) (A,∧, 1) is a semilattice with greatest element 1,

(H2) for every a ∈ A, a → a = 1 and

(H3) for every a, b, c ∈ A, if a ≤ b → c then a ∧ b ≤ c.

An l-hemi-implicative semilatice is commutative if a → b = b → a for every
a, b ∈ A.

Notice that (H3) is the condition (l) for the case · = ∧. Also note that
l-hemi-implicative semilattices were called weak implicative semilattices in
[19]. In every l-hemi-implicative semilattice we define the binary operation
↔ by a ↔ b := (a → b) ∧ (b → a). We write hIS for the variety of l-hemi-
implicative semilattices.

Remark 1.3. Let A ∈ hIS and a, b ∈ A. Then a = b if and only if a ↔ b = 1.
We also have that 1 → a ≤ a.

Recall that an implicative semilattice [7,15] is an algebra (A,∧,→) of
type (2, 2) such that (A,∧) is semilattice, and for every a, b, c ∈ H it holds
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that a ∧ b ≤ c if and only if a ≤ b → c. Every implicative semilattice has
a greatest element. In this paper we shall include the greatest element in
the language of the implicative semilattices. We write IS for the variety of
implicative semilattices.

Remark 1.4. Clearly, IS is a subvariety of hIS. Other examples of l-hemi-
implicative semilattices are the {∧,→, 1}-reduct of semi-Heyting algebras
[16,17] (named almost Brouwerian semilattices in [4]) and the {∧,→, 1}-
reducts of RWH-algebras [3], in particular, the {∧,→, 1}-reducts of basic
algebras [1].

From a logical point of view, the variety hIS and its subvarieties fit into
the general setting of semilattice-based logics, as studied in [10]. As such,
the assertional logics associated to these varieties (see [10, Lemma 3]) posses
interesting properties from the abstract algebraic logic theory perspective.
Some particular examples of these logics, already studied in the literature
are, beyond the already classic example of the {∧,→, 1}-fragment of the
intuitionistic logic, the Semi-Intuitionistic Logic [6] and the subintuitionistic
logic corresponding to the subvariety of RWH-algebras [3].

In [12] Jenei shows that the class of BCK algebras with meet is term
equivalent to the class of equivalential equality algebras, and he defines the
equivalence operation ∼ in terms of the implication in the usual way; i.e.,
a ∼ b := a ↔ b. Some of these ideas were generalized and studied for pseudo
BCK-algebras [5,8,13].

In particular, the variety of implicative semilattices is term equivalent to
a subvariety of that of equivalential equality algebras. Let us write ES for
this subvariety. Some properties satisfied by the algebras in ES are:

(a) a ∼ b = b ∼ a,

(b) a ∼ a = 1,

(c) a ∧ (a ∼ b) ≤ b.

On the other hand, implicative semilattices satisfy (b) and (c) above, but
of course not necessarily (a). Hence there seems to be a common frame for
both classes of algebras, where the algebras in IS might be seen as elements
with a commutative implication and the construction a ∼ b := a ↔ b a
sort of symmetrization of the original implication. In this paper we explore
a convenient framework where the aforementioned intuitions could be made
precis. Most results concerning the relation between implicative semilattices
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and the class ES are part of the folklore. However, for the sake of complete-
ness and in order to motivate the introduction of these structures, we shall
recall some basic results in Section 2.

In Section 3 some subvarieties of l-hemi-implicative semilattices are pre-
sented. New examples of l-hemi-implicative semilattices are provided. The
relationship between the variety of l-hemi-implicative semilattices and its
subvariety of commutative elements is studied.

In Section 4 we characterize congruences on the clases of l-hemi-implicative
semilattices introduced in the examples of Section 3 and we describe the
principal congruences of l-hemi-implicative semilattices.

2. Term Equivalence of IS and ES

We start with the following remark.

Remark 2.1. (a) In every implicative semilattice A = (A,∧,→, 1) we have
that (A,∧, 1) is a semilattice with a greatest element and a ↔ a = 1 for
every a ∈ A. We also have that for every a, b, c ∈ A, c ≤ a ↔ b if and
only if a ∧ c = b ∧ c.

(b) Implicative semilattices satisfy a → b = a ↔ (a ∧ b) for every a, b ∈ A.

(c) Consider an algebra A = (A,∧,∼, 1) of type (2, 2, 0) such that (A,∧) is
a semilattice. For every a, b, c ∈ A we consider the following conditions:
(1) a ∧ (a ∼ b) = b ∧ (a ∼ b) and (2) if a ∧ c = b ∧ c then c ≤ a ∼ b.
For every a, b, c ∈ A conditions (1) and (2) are satisfied if and only if we
have that a ∼ b = max {c ∈ A : a ∧ c = b ∧ c} for every a, b ∈ A.

In the following proposition we consider a particular class of algebras.

Definition 2.2. The class ES consists of algebras A = (A,∧,∼, 1) of type
(2, 2, 0) that satisfy the following conditions:

(1) (A,∧, 1) is a semilattice with a greatest element,

(2) a ∼ a = 1,

(3) a ∧ (a ∼ b) = b ∧ (a ∼ b),

(4) if a ∧ c = b ∧ c then c ≤ a ∼ b.

Lemma 2.3. Let A = (A,∧,∼, 1) be an algebra wich satisfies conditions (1),
(2) and (3) of Definition 2.2. Then (4) of Definition 2.2 is equivalent to the
following condition:

(4′) c ∧ ((a ∧ c) ∼ (b ∧ c)) ≤ a ∼ b.
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Proof. Assume the condition (4). Since a∧(c∧((a∧c) ∼ (b∧c))) = b∧(c∧
((a∧c) ∼ (b∧c))) then c∧((a∧c) ∼ (b ∼ c)) ≤ a ∼ b, which is the condition
(4′). Conversely, assume the condition (4′), and suppose that a∧c = b∧c. It
follows from the conditions (2) and (4′) that c = c∧((a∧c) ∼ (b∧c)) ≤ a ∼ b,
so c ≤ a ∼ b.

Notice that ES is a subvariety of the variety of equality algebras, which
was introduced by Jenei [12]. See also [4,8,13].

Proposition 2.4. Let A = (A,∧,∼, 1) ∈ ES. Then (A,∧,→, 1) ∈ IS, where
→ is defined by a → b = a ∼ (a ∧ b).

Proof. In order to prove that (A,∧,→, 1) ∈ IS, we only need to prove
that for every a, b, c ∈ A, a ≤ b → c if and only if a ∧ b ≤ c. Suppose that
a ≤ b → c, i.e., a ≤ b ∼ (b ∧ c). Then a ∧ b ≤ b ∧ (b ∼ (b ∧ c)). It follows
from (3) of Definition 2.2 that b ∧ (b ∼ (b ∧ c)) = (b ∧ c) ∧ (b ∼ (b ∧ c)) ≤ c,
so a ∧ b ≤ c. Conversely, suppose that a ∧ b ≤ c. Then a ∧ b = a ∧ (b ∧ c).
Taking into account (4) of Definition 2.2 we have that a ≤ b ∼ (b ∧ c), i.e.,
a ≤ b → c.

The following corollary follows from Proposition 2.4 and Remark 2.1.

Corollary 2.5. The varieties IS and ES are term equivalent. More explic-
itly, we have:

(1) If A = (A,∧,∼, 1) ∈ ES, then the algebra A∗ = (A,∧,→, 1) ∈ IS, where
→ is defined by a → b := a ∼ (a ∧ b).

(2) If A = (A,∧,→, 1) ∈ IS, then the algebra A+ = (A,∧,∼, 1) ∈ ES, where
∼ is defined by a ∼ b := a ↔ b.

(3) If A ∈ ES, then A∗+ = A,

(4) If A ∈ IS, then A+∗ = A.

A straightforward argument shows that the variety ES above defined is a
subvariety of the variety of equivalential equality algebras considered in [12].
Moreover, the variety of equivalential equality algebras is term equivalent
to the variety of BCK-algebras with meet (see [12, Theorem 2.5]). On the
other hand, as an anonymous referee make us notice, since the variety of
positive implicative BCK-algebras (with meet) satisfying condition (S) is
term equivalent to that of implicative semilattices (see [14, Theorem 8]),
this fact together with the term equivalence for BCK-algebras with meet
provides an alternative way to obtain Corollary 2.5.
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3. l-Hemi-Implicative Semilattices and Commutative
l-Hemi-Implicative Semilattices

In this section we study the variety of l-hemi-implicative semilattices and
some of its subvarieties. We also present some general examples by defin-
ing l-hemi-implicative structures on any semilattice with a greatest ele-
ment. Finally we study the variety whose algebras are commutative l-hemi-
implicative semilattices. The original motivation to consider this variety
follows from the properties of the algebras (A,∧,↔, 1) associated to the
algebras (A,∧,→, 1) ∈ hIS.

There are several ways of defining an l-hemi-implicative structure on
any semilattice with a greatest element. Some of these ways are described
in the examples below. Note that some of these procedures only apply to
semilattices with a greatest element and with bottom.

Example 3.1. Let (A,∧, 1) be a semilattice with the largest element (with
bottom 0, when necessary). We define binary operations → on A each of
which makes the algebra (A,∧,→, 1) an l-hemi-implicative semilattice.

a → b =
{
1 if a = b
0 if a �= b

(1)

a → b =
{
1 if a ≤ b
b if a � b

(2)

a → b =
{
1 if a = b
b if a �= b

(3)

a → b =
{
1 if a ≤ b
a ∧ b if a � b

(4)

a → b =
{
1 if a = b
a ∧ b if a �= b

(5)

a → b =
{
1 if a ≤ b
0 if a � b

(6)

In Example 3.1 we define a binary operation that makes an algebra an
l-hemi-implicative semilattice. In the rest of the paper we shall refer to this
operation as the implication of the algebra. For i = 1, . . . , 6, let Ki be the
class of the algebras in hIS where the implication is given by (i). Note that
every algebra of K2 is a Hilbert algebra with infimum. The class of Hilbert
algebras with infimum is a variety, as it was proved in [2,9] (see also [11]).

Remark 3.2. It can be proved that the classes Ki are not closed under
products; hence, they are not quasivarieties. It would be interesting to have
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an answer for the following general question: which is a set of identities
(quasi-identities) for the variety (quasivariety) generated by Ki?

We denote by hIS4 and hIS5 the subvarieties of hIS defined by the fol-
lowing identities respectively:

(H4) a → (a ∧ b) = a → b,

(H5) (a ∧ b) → b = 1.

Remark 3.3. Let A ∈ hIS4 and a ∈ A. Then a → 1 = 1, since, by (H4), we
have a → 1 = a → (a ∧ 1) = a → a = 1.

Proposition 3.4. It holds that hIS4 � hIS5 � hIS.

Proof. Let A ∈ hIS4 and let a, b ∈ A. Then

(a ∧ b) → b = (a ∧ b) → ((a ∧ b) ∧ b)
= (a ∧ b) → (a ∧ b)
= 1,

so A ∈ hIS5. In order to show that hIS4 is a proper subvariety of hIS5,
consider the boolean lattice B4 of four elements, where x and y are the
atoms, and consider the implication given in (2) of Example 3.1. Then (a ∧
b) → b = 1 for every a, b. However, x → (x∧y) = x → 0 = 0 and x → y = y,
so x → (x ∧ y) �= x → y. Thus, hIS4 is a proper subvariety of hIS5.

Finally we shall show that hIS5 is a proper subvariety of hIS. Consider
B4 with the implication given in (1) of Example 3.1. Then (x ∧ y) → y = 0.
Therefore, the equation (H5) is not satisfied.

Let A ∈ hIS and a, b ∈ A. Notice that if a → b = 1 then a ≤ b because
a = a ∧ 1 = a ∧ (a → b) ≤ b. In the following corollary we characterize the
l-hemi-implicative semilattices in which the converse property does hold.
Corollary 3.5. Let A ∈ hIS. The following conditions are equivalent:

(1) A ∈ hIS5.

(2) For every a, b ∈ A, a ≤ b if and only if a → b = 1.

Proof. Suppose that A ∈ hIS5 and let a ≤ b. Then 1 = (a∧b) → b = a → b.
Conversely, suppose (2) holds. Since a∧b ≤ b then (a∧b) → b = 1. Therefore,
A ∈ hIS5.

Proposition 3.6. The following conditions are satisfied:

(1) Ki ⊆ hIS for i = 1, . . . , 6.

(2) Ki ⊆ hIS4 for i = 4, 6.

(3) Ki ⊆ hIS5 for i = 2, 3.
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Remark 3.7. For the algebras with the implication (1) and (5) of Example
3.1, if the universe of them is not trivial, then (H5) is not satisfied because
(0 ∧ 1) → 1 = 0. For the algebras with the implication (2) and with the
implication (3) of Example 3.1 we have that 1 → (1∧0) = 0 and 1 → 1 = 1,
so (H4) is not satisfied by them.

Lemma 3.8. Let A ∈ hIS and a, b ∈ A. Then a ↔ b = b ↔ a, a ↔ a = 1
and a ∧ (a ↔ b) ≤ b.

We write ChIS for the variety of l.hemi-implicative semilattices. Let A ∈
ChIS and a, b ∈ A. Define the binary operation ⇒ by a ⇒ b := a → (a ∧ b).

Lemma 3.9. Let A ∈ ChIS and a, b ∈ A. Then

(1) a ⇒ a = 1,

(2) a ∧ (a ⇒ b) ≤ b,

(3) a ⇒ (a ∧ b) = a ⇒ b,

(4) If b ≤ a then a ⇔ b = a ⇒ b = a → b, where a ⇔ b := (a ⇒ b)∧(b ⇒ a).

Proof. Let a, b ∈ A. Then a ⇒ a = a → a = 1. Also

a ∧ (a ⇒ b) = a ∧ (a → (a ∧ b))
≤ a ∧ b
≤ b.

By definition of ⇒ we have that a ⇒ (a ∧ b) = a ⇒ b.
Finally we shall prove (4). In order to show this, let b ≤ a. We have that

a ⇔ b = (a ⇒ b) ∧ (b ⇒ a)
= (a → (a ∧ b)) ∧ (b → (b ∧ a))
= (a → b) ∧ (b → b)
= (a → b) ∧ 1
= a → b.

Moreover, a → b = a → (a ∧ b) = a ⇒ b. Thus (4) is proved.

Write ChISE for the subvariety of ChIS whose algebras A = (A,∧,∼, 1)
satisfy the following condition:

(S) a → b = (a → (a ∧ b)) ∧ (b → (a ∧ b)).

Corollary 3.10. The varieties hIS4 and ChISE are term equivalent. More
explicitly, we have:
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(1) If A = (A,∧,→, 1) ∈ ChIS, then the algebra A∗ = (A,∧,⇒, 1) ∈ hIS4,
where ⇒ is defined by a ⇒ b := a → (a ∧ b).

(2) If A = (A,∧,→, 1) ∈ hIS4, then the algebra A+ = (A,∧,∼, 1) ∈ ChISE,
where ∼ is defined by a ∼ b := a ↔ b.

(3) If A ∈ ChISE, then A∗+ = A,

(4) If A ∈ hIS4, then A+∗ = A.

Note that ChISE is a proper subvariety of ChIS, as the following example
shows.

Example 3.11. Let A be the lattice of the following figure:

•1

•a

�������� •b

��������

•c

��������

��������

•0
Define on A the following binary operation:

→ 0 a b c 1
0 1 0 0 0 0
a 0 1 0 c a
b 0 0 1 c b
c 0 c c 1 c
1 0 a b c 1

Straightforward computations show that the algebra A = (A,∧,→, 1) ∈
ChIS. However, a → b = 0, a → (a ∧ b) = c and b → (a ∧ b) = c. Thus, we
obtain that a → b �= (a → (a ∧ b)) ∧ (b → (a ∧ b)). Therefore, A /∈ ChISE.

4. Congruences

In this section we study the congruences for some subclasses of hIS. More
precisely, in Section 4.1 we study the lattice of congruences for the algebras
given in Example 3.1.

Let A ∈ hIS, a, b ∈ A and let θ be a congruence of A. We write a/θ to
indicate the equivalence class of a associated to the congruence θ and θ(a, b)
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for the congruence generated by the pair (a, b). As usual, we say that F is
a filter if it is a subset of A that satisfies the following conditions: 1 ∈ F , if
a, b ∈ F then a ∧ b ∈ F , if a ∈ F and a ≤ b then b ∈ F . We also consider
the binary relation

Θ(F ) = {(a, b) ∈ A × A : a ∧ f = b ∧ f for some f ∈ F}.

Notice that if F is a filter in a semilattice with greatest element, then Θ(F )
is the congruence generated by the filter F . For A ∈ hIS and a, b, f ∈ A we
define the following element of A: t(a, b, f) := (a → b) ↔ ((a∧f) → (b∧f)).

Definition 4.1. Let A ∈ hIS and F a filter of A. We say that F is a
congruent filter if t(a, b, f) ∈ F for every a, b ∈ A and f ∈ F .

The following result was proved in [19].

Theorem 4.2. Let A ∈ hIS. There exists an isomorphism between the lat-
tice of congruences of A and the lattice of congruent filters of A, which is
established via the assignments θ �→ 1/θ and F �→ Θ(F ).

Note that if A ∈ ChIS and a, b, f ∈ F , then t(a, b, f) = (a → b) →
((a ∧ f) → (b ∧ f)).

Corollary 4.3. Let A ∈ ChIS. There exists an isomorphism between the
lattice of congruences of A and the lattice of filters F of A which satisfy
(a → b) → ((a ∧ f) → (b ∧ f)) ∈ F for every a, b ∈ A and f ∈ F . The
isomorphism is established via the assignments θ �→ 1/θ and F �→ Θ(F ).

4.1. Congruences in Algebras of Ki, i = 1, . . . , 6

In this subsection we study the congruent filters associates to any of the
aforementioned classes of algebras.

4.2. Congruent Filters Associated to Algebras in K1 or K6

Let F be a filter of A = (A,∧,→, 1) ∈ hIS, where → is the implication given
by (1) or (6).

Proposition 4.4. F is a congruent filter if and only if F = {1} or F = A.

Proof. Suppose that F is a congruent filter and that F �= {1}. We have
that there exist x, y ∈ A such that x �= y and x/Θ(F ) = y/Θ(F ). Thus,
there is f in F such that x ∧ f = y ∧ f . Suppose that x � y. Since F is a
congruent filter we have that (x → y) → 1 ∈ F . But x � y, so x → y = 0.
Hence, (x → y) → 1 = 0 → 1. However, 0 → 1 = 0 because 0 � 1. Then
we have that 0 ∈ F . Analogously we can show that if y � x then 0 ∈ F by
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considering y → x in place of x → y. Therefore, F = A. It is immediate
that if F = {1} or F = A then F is a congruent filter.

4.3. Congruent Filters of Algebras in K2

Let F be a filter of A = (A,∧,→, 1) ∈ hIS, where → is the implication given
by (2).

Proposition 4.5. F is a congruent filter if and only if it satisfies the fol-
lowing conditions: for every x, y ∈ A and f ∈ F ,

(1) if x � y and x ∧ f ≤ y ∧ f then y ∈ F and

(2) if x � y, x ∧ f � y ∧ f and y � f then y ∈ F .

Proof. Suppose that F is a congruent filter. Let x, y ∈ A and f ∈ F .
Assume x � y and x ∧ f ≤ y ∧ f . Since t(x, y, f) = y ∈ F then we have the
condition (1). Suppose that x � y, x ∧ f ≤ y ∧ f and y � f . Taking into
account that t(x, y, f) = y ∧ f ∈ F we obtain the condition (2).

Conversely, suppose that the conditions (1) and (2) hold. Let x, y ∈ A
and f ∈ F . Suppose that x ≤ y. Since x ∧ f ≤ y ∧ f then t(x, y, f) = 1 ∈ F .
Now suppose now that x � y. Case (a): if x ∧ f � y ∧ f and y ≤ f then
t(x, y, f) = 1 ∈ F . If x ∧ f � y ∧ f and y � f then t(x, y, f) = y ∧ f . By
(2) we have that y ∈ F , so t(x, y, f) ∈ F . Case (b): if x ∧ f ≤ y ∧ f then
t(x, y, f) = y, which belongs to F by (1). Therefore, F is a congruent filter.

4.4. Congruent Filters of Algebras in K3

Let F be a filter of A = (A,∧,→, 1) ∈ hIS, where → is the implication given
by (3).

Proposition 4.6. F is a congruent filter if and only if it satisfies the fol-
lowing conditions: for every x, y ∈ A and f ∈ F ,

(1) if x �= y and x ∧ f = y ∧ f then y ∈ F and

(2) if x �= y, x ∧ f �= y ∧ f and y � f then y ∈ F .

Proof. Assume that F is a congruent filter, and let x, y ∈ A be such that
x �= y. Let f ∈ F . Then t(x, y, f) = y ↔ ((x ∧ f) → (y ∧ f)). Moreover,
t(x, y, f) ∈ F . If x ∧ f = y ∧ f then t(x, y, f) = y ∈ F . Suppose now that
x ∧ f �= y ∧ f and y � f (i.e., y �= y ∧ f). Thus, t(x, y, f) = y ↔ (y ∧ f) =
y ∧ f ∈ F , so y ∈ F .

Conversely, suppose that the conditions (1) and (2) hold. Consider x, y ∈
A and f ∈ F . If x = y then t(x, y, f) = 1 ∈ F . If x �= y then t(x, y, f) = y ↔
((x ∧ f) → (y ∧ f)). If x ∧ f = y ∧ f then t(x, y, f) = y, which belongs to F
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by condition (1). Suppose that x ∧ f �= y ∧ f . Then t(x, y, f) = y ↔ (y ∧ f).
If y ≤ f then t(x, y, f) = 1 ∈ F . If y � f then t(x, y, f) = y ∧ f , which also
belongs to F by condition (2) (because f , y ∈ F ). Hence, F is a congruent
filter.

4.5. Congruent Filters of Algebras in K4

Let F be a filter of A = (A,∧,→, 1) ∈ hIS, where → is the implication given
by (4).

Proposition 4.7. F is a congruent filter if and only if it satisfies the fol-
lowing conditions: for every x, y ∈ A and f ∈ F ,

(1) if x � y and x ∧ f ≤ y ∧ f then x ∧ y ∈ F and

(2) if x � y, x ∧ f � y ∧ f and x ∧ y � f then x ∧ y ∈ F .

Proof. Suppose that F is a congruent filter. Let x � y and x ∧ f ≤ y ∧ f .
Then t(x, y, f) = x ∧ y ∈ F , so we have the condition (1). Suppose that
x � y, x ∧ f � y ∧ f and x ∧ y � f . Then t(x, y, f) = x ∧ y ∧ f ∈ F , so
x ∧ y ∈ F , which is the condition (2).

Conversely, suppose that it holds the conditions (1) and (2). Let x, y ∈ A
and f ∈ F . If x ≤ y then t(x, y, f) = 1 ∈ F . Suppose that x � y. If
x∧f ≤ y∧f then t(x, y, f) = x∧y, which belongs to F by the condition (1).
Suppose that x � y and x∧f � y∧f . Then t(x, y, f) = (x∧y) ↔ (x∧y∧f).
If x ∧ y ≤ f then t(x, y, f) = 1 ∈ F . If x ∧ y � f then t(x, y, f) = x ∧ y ∧ f .
But by condition (2) we have that x ∧ y ∈ F . Therefore, t(x, y, f) ∈ F .

4.6. Congruent Filters of Algebras in K5

Let F be a filter of A = (A,∧,→, 1) ∈ hIS, where → is the implication given
by (5).

Proposition 4.8. F is a congruent filter if and only if it satisfies the fol-
lowing conditions: for every x, y ∈ A and f ∈ F ,

(1) if x �= y and x ∧ f = y ∧ f then x ∧ y ∈ F and

(2) if x �= y, x ∧ f �= y ∧ f and x ∧ y � f then x ∧ y ∈ F .

Proof. Suppose that F is a congruent filter. In order to prove (1) and (2)
consider x �= y. Suppose that x ∧ f = y ∧ f . Then we have that t(x, y, f) =
(x ∧ y) ↔ 1. If 1 ↔ (x ∧ y) = 1 then 1 = x ∧ y, i.e., x = y = 1, which is
an absurd. Then t(x, y, f) = x ∧ y ∈ F . Hence we have the condition (1).
Suppose now that x∧ f �= y ∧ f and x∧ y � f . Hence, t(x, y, f) = (x∧ y) ↔
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(x ∧ y ∧ f). But x ∧ y � f , so t(x, y, f) = x ∧ y ∧ f ∈ F . Thus x ∧ y ∈ F ,
which is the condition (2).

Conversely, suppose that F satisfies the conditions (1) and (2). Let x, y ∈
A and f ∈ F . If x = y then t(x, y, f) = 1 ∈ F . Suppose that x �= y,
so t(x, y, f) = (x ∧ y) ↔ ((x ∧ f) → (y ∧ f)). If x ∧ f = y ∧ f then
t(x, y, f) = x ∧ y, which belongs to F by (1). Suppose that x ∧ f �= y ∧ f ,
so t(x, y, f) = (x ∧ y) ↔ (x ∧ y ∧ f). If x ∧ y ≤ f then t(x, y, f) = 1 ∈ F . If
x ∧ y � f then by (2) we have that x ∧ y ∈ F . But t(x, y, f) = x ∧ y ∧ f .
Thus, t(x, y, f) ∈ F .

4.7. Totally Ordered Posets

Let A = (A,∧,→, 1) ∈ hIS where its underlying order is total. Let x, y, f ∈
A. If f ≤ x ∧ y then t(x, y, f) = (x → y) ↔ 1, if y ≤ f ≤ x then t(x, y, f) =
(x → y) ↔ (f → y), if x ≤ f ≤ y then t(x, y, f) = (x → y) ↔ (x → f)
and if x ≤ f and y ≤ f then t(x, y, f) = 1. Hence, we obtain the following
result.

Proposition 4.9. Let A ∈ hIS such that its underlying poset is a chain and
let F be a filter of A. Then F is a congruent filter if and only if for every
x, y ∈ A and f ∈ F the following conditions hold:

(a) If f ≤ x ∧ y then (x → y) ↔ 1 ∈ F .

(b) If y ≤ f ≤ x then (x → y) ↔ (f → y) ∈ F .

(c) If x ≤ f ≤ y then (x → y) ↔ (x → f) ∈ F .

Corollary 4.10. Let A ∈ Ki, where i = 2, 3, 4, 5, such that the underlying
order of A is total. Then, every filter of A is a congruent filter.

Proof. Let x, y ∈ A and f ∈ F . If f ≤ x ∧ y, then (x → y) ↔ 1 ∈
{x ∧ y, y, 1} ⊆ F . If y ≤ f ≤ x then (x → y) ↔ (f → y) ∈ {f, 1} ⊆ F . If
x ≤ f ≤ y then (x → y) ↔ (x → f) ∈ {f, 1} ⊆ F . Therefore, it follows from
Proposition 4.9 that F is a congruent filter.

Notice, however, that it follows from Proposition 4.4 that there are l-
hemi-implicative semilattices whose order is total and in which not every
filter is a congruent filter.

On the other hand, it is not the case that every filter in a non totally
ordered algebra of the classes considered in previous corollary is a congruent
filter. Consider, for example, the boolean lattice of four elements, where x
and y are the atoms, and let F = {x, 1}. We write B for the universe of this
algebra. Let F be a filter of (B,∧,→, 1) ∈ Ki, for i = 1, . . . , 6. We write ti
for the ternary term t over the algebra (B,∧,→, 1) ∈ Ki. Since t1(x, y, x),
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t2(y, x, x), t3(0, y, x), t4(0, y, x), t5(y, x, x) and t6(x, y, x) are the bottom, F
is not a congruent filter.

5. Principal Congruences for Algebras of hIS

In this section we characterize the principal congruences in hIS.
Let A = (A,∧,→, 1) ∈ hIS and a, b ∈ A. We write F c(a) for the congruent

filter generated by {a}. In [19] it was proved that if θ(a, b) is the congruence
generated by (a, b), then (x, y) ∈ θ(a, b) if and only if x ↔ y ∈ F c(a ↔ b).
We will give an explicit description of F c(a).

For x, y ∈ A and Z ⊆ A we define t(x, y, Z) = {t(x, y, z) : z ∈ Z}.
Then we define t+(x, y, Z) as the the set of the elements z ∈ A such that
z ≥ t(x, y, w1)∧ . . . ∧ t(x, y, wk)∧ wk+1 ∧ . . . ∧ wk+t for some wi ∈ Z. In the
next step we define

t(Z) =
⋃

x,y∈A

t+(x, y, Z).

We also define T0(Z) = Z, Tn+1(Z) = t(Tn(Z)) and T (Z) =
⋃

n∈N
Tn(Z),

where N is the set of natural numbers. It is immediate that a ∈ T ({a}).
Proposition 5.1. Let A ∈ hIS and a ∈ A. Then F c(a) = T ({a}).
Proof. Straightforward computations based on induction show that

Tn({a}) ⊆ Tn+1({a}) (7)

for every n. We use this property throughout this proof.
We have that 1 ∈ T ({a}). It follows from the construction that T ({a}) is

an upset. In order to prove that this set is closed under ∧, let z, z′ ∈ T ({a}).
Then there are n and m such that z ∈ Tn({a}) and z′ ∈ Tm({a}). By (7) we
have that z, z′ ∈ Tp({a}), where p is the greatest of n and m. Straightforward
computations prove that z ∧ z′ ∈ Tp({a}), so z ∧ z′ ∈ T ({a}). Hence, T ({a})
is a filter.

In order to show that T ({a}) is a congruent filter, let z ∈ T ({a}) and
x, y ∈ A. Then, there is n such that z ∈ Tn({a}). Taking into account
that t(x, y, z) ≥ t(x, y, z) ∧ z, we have that t(x, y, z) ∈ t(Tn({a})), i.e.,
t(x, y, z) ∈ Tn+1({a}) ⊆ T ({a}). Thus, T ({a}) is a congruent filter.

Finally we show that F c(a) = T ({a}). Let F be a congruent filter such
that a ∈ F . We need to prove that T ({a}) ⊆ F , i.e., that Tn({a}) ⊆
T ({a}) for every n. It is immediate that T0({a}) ⊆ T ({a}). Suppose that
Tn({a}) ⊆ T ({a}) for some n. We shall prove that Tn+1({a}) ⊆ T ({a}). Let
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z ∈ Tn+1({a}). Then there are x, y ∈ A and w1, . . . , wk+t ∈ Tn({a}) such
that

z ≥ t(x, y, w1) ∧ . . . ∧ t(x, y, wk) ∧ wk+1 ∧ . . . ∧ wk+t.

But Tn({a}) ⊆ F , and F is a congruent filter. Thus,

t(x, y, w1) ∧ . . . ∧ t(x, y, wk) ∧ wk+1 ∧ . . . ∧ wk+t ∈ F.

Hence, z ∈ F . Therefore, Tn+1({a}) ⊆ F , which was our aim.

Corollary 5.2. Let A ∈ hIS and a, b ∈ A. Then (x, y) ∈ θ(a, b) if and
only if x ↔ y ∈ T ({a ↔ b}).
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