How DELLAs contribute to control potassium uptake under conditions of potassium scarcity? Hypotheses and uncertainties

Sonia Oliferuk, Reyes RGidenas, Adriana Peiez, Vicente Martinez, Francisco Rubio, and Guillermo E Santa Marin

QUERY SHEET

This page lists questions we have about your paper. The numbers displayed at left can be found in the text of the paper for reference. In addition, please review your paper as a whole for correctness.

Q1. Au: Please confirm you have submitted your publication costs form. PLEASE NOTE: You must provide the correct Billing Address as well as a Contact Email Address to ensure prompt and accurate delivery of your invoice.
Q2. Au: Please provide complete postal and e-mail address.
Q3. Au: Multiple reference elements are missing from [17]. Please supply information to complete it.
Q4. Au: Please provide missing [Page No] for [23].

TABLE OF CONTENTS LISTING

The table of contents for the journal will list your paper exactly as it appears below:
How DELLAs contribute to control potassium uptake under conditions of potassium scarcity? Hypotheses and uncertainties Sonia Oliferuk, Reyes R Falenas, Adriana Perez, Vicente Martinez, Francisco Rubio, and Guillermo E. Santa Mar

How DELLAs contribute to control potassium uptake under conditions of potassium scarcity？Hypotheses and uncertainties

 Segura（CBAS），Consejo Superior de Investigadiones đentliilas（CSC）．Campus Universitario de Espinardo．Espinardo．Murcia．E－30100．Espana

Abstract

Maintenance of the inward transport of potassium（K）by roots is a critical step to ensure K－nutrition for all plant tissues．When plants are grown at low external K concentrations a strong enhancement of the activity of the AtHAK5 transporter takes place．In a recent work，we observed that the gai－1 mutant of Arabidopsis thaliana，which bears an altered function version of a DELA regulatory protein，displays reduced accumulation of AtHAK5 transcripts and reduced uptake of Rubidium，an analog for K In this Addendum we discuss some hypotheses and uncertainties regarding how D日LAs could contribute to the control of K uptake under those conditions．We advance the idea that，following K－restriction，there is a zone and tissue specific regulation of D⿴⿱冂一⿱一一厶男As by gibberellins through a pathway that likely involves ethylene．According to this model in the epidermis of non－apical zones，DELAs repress transcription factors that promote AtHAK5 accumulation．

Abbreviations：AtHAK5，Arabidopsis thaliana high－affinity potassium transporter 5；GAI，GA－insensitive；RGA，Repres－ sor of GA1－3；Gas，gibberellins；AKT1，Arabidopsis potassium transporter 1；WT，wild type；gai－1，GA insensitive mutant 1；TFs，transcription factors

ARTICLEHISTORY
Received 18 July 2017
Revised 7 August 2017
Accepted 7 August 2017
KEYWORDS
AtHAK5 transporter；D⿴⿱冂一⿱一一厶年s
proteins；GAl；potassium； uptake；Athaliana

Higher plants need large quantities of potassium to fully accomplish their life cycles．As revealed by studies with Arabidopsis thaliana，the inward flux of this essential nutri－ ent to the root symplasm from moderate or low external
20 K concentrations requires the activity of 2 transport sys－ tems，the inward rectifier K－channel AKT1 ${ }^{1}$ and AtHAK5，${ }^{2}$ which is a member of the group I of the KT－HAK－KUP family of transporters．${ }^{3}$ While the first transport entity operates over a relatively wide range of external K concen－ trations，the second one is essentially involved in the trans－ port of K from diluted concentrations and dominates this process at K－concentrations below $10 \mathrm{mM} .^{4}$ Given that maintenance of K－inward flux is a critical step in ensuring K －acquisition，it should not surprise that plants evolved 30 admirable mechanisms that allow them to regulate the transport mediated by AKT1 and AtHAK5，whose activities increase following the perception of K scarcity．${ }^{2,5-7}$ Those regulatory mechanisms，to be effective in plant acclimation， need to be integrated within the complex network that con－ 35 nects the economy of carbon with that of all the elements necessary for plant growth．Current evidence indicates that a central point for the integration of signals is provided by the DELLAs proteins，${ }^{8}$ which are a group of plant regula－ tory elements modulated by gibberellins（GAs）．Recent find－ 40 ings unveiled that the shoot of Arabidopsis plants bearing
an altered function version of DELLA（gai－1）exhibits a major modification of its mineral composition ${ }^{9}$ in addition to display the well－known restriction of plant growth．${ }^{10}$

DELLAs proteins contain 2 main domains：a C－terminal GRAS domain and the N －terminal domain which plays a major role for the binding with the complex GAs／GAs－receptor which guides DELLAs to degradation at the proteasome，thus leading to reduced DELLAs accumulation．${ }^{8}$ Because of DELLAs are growth inhibitors，plants carrying versions of DELLAs contain－ ing either a deletion or specific amino acid substitutions in some motifs of the N terminus，display dwarf phenotypes，as mentioned to occur with the Arabidopsis gai－1 mutant which is insensitive to the DELLAs degradation driven by GAs．The new findings indicated that，among the major essential elements dif－ ferentially affected in gai－1 relative to wild type（WT）plants，K occupies a prominent position both when plants are grown with or without an adequate supply of K．${ }^{9}$ The low concentra－ tion of this element in gai－1 shoots proved to be associated with reduced K uptake by roots．A further analysis of the inward flux of the K－analog，Rubidium（Rb），showed that it was considerably lower in gai－1 than in WT plants，particularly under conditions of K－deficiency，thus suggesting that one or both systems involved in the transport of K from low K concen－ trations cannot be upregulated in gai－1 plants．Moreover，the induction of the expression of AtHAK5 by K－deficiency was
sharply diminished in gai-1, while no differential effects were evident on the expression of AKT1 between gai-1 and WT plants. These, and additional observations, along with knowledge already available on the action of DELLAs, led us to 70 consider here which is the precise role of these proteins in the control of K-uptake mediated by AtHAK5 from diluted K-concentrations. A first possible explanation is that the modification harboured by the gai-1 protein helps it to establish interactions with transcription factors (TFs) different to those that occur in
75 WT plants. As the N-terminal region of DELLAs is intrinsically disordered, ${ }^{11}$ this possibility should be not entirely ruled out. However, the ability to regulate a set of target genes appears to be a general property of DELLAs and not only of gai-1. ${ }^{12}$ Therefore, the above mentioned results would likely indicate 80 that when WT plants are grown under conditions of K-deficiency, DELLAs may be preferentially degraded, thus relieving the restriction imposed by them on the transport of Rb (or K) through the control of AtHAK5 transcription. As gai-1 is a DELLA stable variant, that degradation would not take place in 85 the plants harbouring the corresponding allele, and the transport of K is not further induced. However, this simple hypothesis does not take into account an additional observation: under conditions of K scarcity the accumulation of the DELLA protein RGA, which in vegetative tissues has functional similarity
90 to GAI, ${ }^{13-15}$ becomes increased in the Arabidopsis root apex of WT plants. ${ }^{9}$

How to reconcile these apparently opposite observations? A recent work by Wild et al ${ }^{16}$ on the role of DELLAs in the regulation of iron transport provides some possible clues.
95 According to the information collected by those authors, DELLAs have a spatially differential accumulation under conditions of Fe-deficiency and Fe-sufficiency. Remarkably, under conditions of Fe-deficiency they are excluded in the epidermis of the root differentiation zone but accumulated
100 in the root apex. We would like to advance the hypothesis that a conceptually similar pattern could be surgical under conditions of K-deficiency and that it plays a major role in the control of AtHAK5 transcription. It is then proposed that in WT plants grown under conditions of K-scarcity, the
105 DELLAs proteins predominantly acting on vegetative growth are accumulated in the root apex but not in the epidermis of non-apical root zones where they are degraded. Localized degradation of these DELLAs relieves their potential interaction with a specific subset of TFs. As one, or more, of these
110 TFs could positively modulate the accumulation of transcripts coding for AtHAK5, the relief of their interaction with DELLAs must enhance the transcription of AtHAK5 and thereby the amount of the AtHAK5 protein at the plasma-membrane. Therefore, the capacity of roots to medi-
115 ate K transport through AtHAK5 may increase. This model entails, as an initial step, identifying TFs acting on AtHAK5 that are also potentially subjected to interaction with DELLAs. A survey of TFs that probably interact with AtHAK5 ${ }^{17}$ showed that one of them is ALC, which is potentially able to
120 interact with DELLAs in some organs, ${ }^{18}$ while other TFs -such as DDF2- should be also considered possible candidates. ${ }^{17}$ In addition to this process, it is possible that DELLAs could also indirectly modify the accumulation and/or the activity of AtHAK5 (e.g. by controlling the membrane
potential or proteins regulating AtHAK5-mediated transport). The true establishment of any of these interactions in roots under conditions of variable K supply as well as the actual occurrence of spatially separated processes here advocated, need to be fully assessed.

This model, nevertheless, would remain non-entirely satisfactory. It seems worth to note that simultaneous studies with a multiple DELLA mutant unveiled that it displays a similar inward flux of Rb and AtHAK5 expression pattern to that observed in WT plants both when deprived of, and well supplied with, potassium. While these data are consistent with the notion that degradation of DELLAs are necessary for the induction of AtHAK5 expression, and thereby for K-influx mediated by this transporter under conditions of K-deficiency, they also suggest that additional components could act in the de-repression of K-uptake. This leads to consider that another signaling component is necessary for the induction of the $\mathrm{TF}(\mathrm{s})$ above mentioned. According to this, under conditions of K-deficiency -in WT plants- the induction of TFs that potentially could act on AtHAK5 is a consequence of the action of this second signal. The degree to which $\mathrm{TF}(\mathrm{s})$ are able to induce AtHAK5 transcription would depend on the degradation of DELLAs in the epidermis. When DELLAs are degraded or absent (as in WT and the multiple mutant, respectively) the TFs are able to act on AtHAK5. However, when DELLAs are non-degraded the positive influence of TFs on AtHAK5 cannot be fully exerted.

The speculative model above outlined (Fig. 1), if supported by further evidence, will necessarily pose additional questions. One of them relates to the nature of the signal(s) leading to the spatially localized degradation of DELLAs at the epidermis in non-apical root zones. A probable hypothesis is that it involves other elements of the GAs-GIDDELLAs module, namely the GAs and GAs-receptors (GID). In this regard, an early work suggested the possible involvement of GAs, when applied in shoots, in increasing Rb-uptake. ${ }^{19}$ In addition, movement of GAs among root tissues could also play a role in root responses. ${ }^{20}$ As DELLAs can be also modified through non-GAs routes ${ }^{21}$ alternative hypotheses should be not discarded. A second important question is the nature of the second signaling component. A likely candidate for this role is ethylene which increases under conditions of K-deficiency while genetic and pharmacological evidence indicates that it modulates AtHAK5 expression. ${ }^{22}$ Moreover, this hormone could also play a major function in determining GAs distribution, ${ }^{20}$ thus potentially affecting localized DELLAs degradation. Noticeably, other candidates could eventually contribute to the proposed second signaling component. In this regard it seems worth to mention that the working model here proposed must be considered just as a part of a complex signaling network induced by K-deficiency that includes several components already identified, ${ }^{4,23}$ including some involved in jasmonate signaling, ${ }^{24}$ and others -such as now DELLAs proteins- which await to be discovered. New knowledge will contribute to solve the uncertainties above outlined as well as to advance alternative models to that here discussed.

Figure 1．Hypothetical model for the regulation of AtHAK5 as influenced by DE \perp As in roots．（A）Proposed scheme for the spatial accumulation of DELAs in roots as affected by the supply of Kduring the growth of WT plants．In roots exposed to adequate K－supply，levels of DEDAs（green circles）are low in the endodermis of the elon－ gation zone；while they are accumulated to some extent in the epidermis of the differentiation zone．Under conditions of low Ksupply，DELAs are preferentially accumu－ lated in the endodermis of the root elongation zone while their accumulation diminished in the epidermis of the differentiation zone．（B）Hypothetical model for the action of DE \perp As on AtHAK5 in the epidermis of the differentiation zone at low K－supply．Perception of low K－supply leads to enhanced accumulation of ethylene，which leads to accumulation of transcription factors（TFs）with the capacity to enhance AtHAK5 transcription．In turn，ethylene or other unknown signals could decrease the movement of GAs toward the endodermis，thereby increasing GAs accumulation in the epidermal œlls．GAs in that zone，through their interaction with GAsreceptors （GD），promote DE」As degradation，thus relieving the restriction imposed by these proteins on the activity of the TFs acting on AtHAK5

Acknowledgments

887 as well as to CONICET for financial support．FR acknowledges to Ministerio de Econo－ m 氰y Competitividad，Spain，by grant AGL2012－33504．SO acknowledges CONICET for a post－doctoral fellowship．RR express gratitude to Minis－ terio de Educacibī y Ciencia，Spain，by a FPU fellowship．The authors

References

1．Hirsch RE，Lewis BD，Spalding EP，Sussman MR．A role for the AKT1 potassium channel in plant nutrition．Science．1998；280：918－21． doi：10．1126／science．280．5365．918
2．Gierth M，Mâser P，Schroeder J．The potassium transporter AtHAK5 functions in K^{C} deprivation－induced high－affinity K^{C} uptake and AKT1 K^{C} channel contribution to K^{C} uptake kinetics in Arabidopsis roots．Plant Physiol．2005；137：1105－14．doi：10．1104／pp．104．057216． PMID：15734909
3．Rubio F，Santa－Maria GE，Rodriguez－Navarro A．Cloning of Arabi－ dopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells．Physiol Plant．2000；109：34－43．doi：10．1034／ j．1399－3054．2000．100106．x
4．Nieves－Cordones M，Alem樆 F，Martinez V，Rubio F．K^{C} uptake in plant roots．The systems involved，their regulation and parallels in other organisms．J Plant Physiol．2014；171：688－95．doi：10．1016／j． jplph．2013．09．021．PMID：24810767
5．Li L，Kim BG，Cheong YH，Pandey GK，Luan S．A $\mathrm{Ca}^{2 \mathrm{C}}$－signaling pathway regulates a K－channel for low－K response in Arabidopsis． Proc Natl Acad Sci USA．2006；103：12625－30．doi：10．1073／ pnas．0605129103．PMID：16895985
 Cordones M，Rivero RM，Mart䀛ez V，Pardo JM，Quintero FJ，Rubio F．CIPK23 regulates HAK5－mediated high－affinity K^{C} uptake in Ara－ bidopsis roots．Plant Physiol．2015；169：2863－73．doi：10．1104／ pp． 15.01401
7．Xu J，Li JHD，Chen LQ，Liu LL，He L，Wu WH．A protein kinase， interacting with two calcineurin B－like proteins，regulates K trans－ porter AKT1 in Arabidopsis．Cell．2006；125：1347－60．doi：10．1016／j． cell．2006．06．011．PMID：16814720

8．Harberd NP，Belfield E，Yasumura Y．The angiosperm gibberellin－ GID1－DELLA growth regulatory mechanism：how an＂inhibitor of an inhibitor＂enables flexible response to fluctuating environments．Plant Cell．2009；21：1328－39．doi：10．1105／tpc．109．066969．PMID：19470587
9．Oliferuk S，Rodenas R，Perez A，Martinez V，Rubio F，SantaMar菢GE． DELLAs contribute to set the response of Arabidopsis thaliana plants to conditions of potassium deprivation．J Plant Growth Reg． 2017；36：487－501．doi：10．1007／s00344－016－9656－4
10．Koornneef M，Elgersma A，Hanhart CJ，van Loenen－Martinet EP，van Rijn L，Zeevaart JAD．A gibberellins insensitive mutant of Arabidopsis thaliana．Physiol Plant．1985；65：33－9．doi：10．1111／j．1399－3054．1985． tb02355．x
11．Hauvermale AL，Ariizumi T，Steber CM．Gibberellin signaling：A theme and variations on DELLA repression．Plant Physiology． 2012；160：83－92．doi：10．1104／pp．112．200956．PMID：22843665
12．Locascio A，Blanquez MA，Alabad 㗽D．Genomic analysis of DELLA protein activity．Plant Cell Physiol．2013；54：1229－37．doi：10．1093／pcp／ pct082．PMID：23784221
13．Dill A，Sun T．Synergistic derepression of gibberellin signalling by removing RGA and GAI function in Arabidopsis thaliana．Genet－ ics．2001；159：777－85．http：／／www．genetics．org／content／159／2／777． PMID：11606552
14．Gallego－BartolomEint，Minguet EG，Mar馬JA，Prat S，Blazquez MA， Alabad $\$$ ．Transcriptional diversification and functional conservation between Della proteins in Arabidopsis．Mol Biol Evol．2010；27：1247－ 56．doi：10．1093／molbev／msq012．PMID：20093430
15．King KE，Moritz T，Harberd NP．Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA．Genetics．2001；159：767－76．http：／／www．genetics．org／con tent／159／2／767．PMID：11606551
16．Wild M，DaviE歌 J－M，Regnault T，Sakvarelidze－Achard L，Carrera E， Lopez Diaz I，Cayrel A，Dubeaux G，Vert G，Achard P．Tissue－specific regulation of gibberellin signaling fine－tunes Arabidopsis iron－defi－ ciency responses．Dev Cell．2016；37：190－200．doi：10．1016／j． devcel．2016．03．022．PMID：27093087
17．HongJP，Takeshi Y，Kondou Y，SchachtmanDP，Matsui M，Shin R． Identification and characterization of transcription factors regulating Arabidopsis HAK5．Plant Cell Physiol．2013：doi：10．1093／pcp／pct094．
18．Arnaud N，Girin T，Sorefan K，Fuentes S，Wood TA，Lawrenson T， Sablowski R，Ǿrnaud NL．Gibberellins control fruit patterning in

Arabidopsis thaliana. Genes Dev. 2010;24:2127-32. doi:10.1101/ gad.593410. PMID:20889713
19. Benlloch M, Fournier JM, Diaz de la Guardia M. Effect of gibberellic acid on $\mathrm{KC}(\mathrm{Rb})$ uptake and transport in sunflower roots. Physiol Plant. 1983;57:79-84. doi:10.1111/j.1399-3054.1983. tb00733.x
20. Shani E, Weinstain R, Zhang Y, Castillejo C, Kaiserli E, Chory J, Tsien R, Estelle M. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc Natl Acad Sci USA. 2013;110:4834-9. doi:10.1073/pnas.1300436110. PMID:23382232
21. Conti L, Nelis S, Zhang C, Woodcock A, Swarup R, Galbiati M, Tonelli C, Napier R, Hedden P, Bennett M.. Small ubiquitin-like
modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin. Dev Cell. 2014;28:102-10. doi:10.1016/j.devcel.2013.12.004. PMID:24434138
22. Jung JY, Shin R, Schachtman DP. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell. 2009;21:607-21. doi:10.1105/tpc.108.063099. PMID:19190240
23. Schachtman DP. The role of ethylene in plant responses to KC deficiency. Front Plant Sci. 2015;6. doi:10.3389/fpls.2015.01153.
24. Armengaud P, Breitling R, Amtmann. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signalling. Plant Physiol. 2004;136:2556-76. http:// doi:10.1104/pp.104.046482.2556. doi:10.1104/pp.104.046482

