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Information propagation in a noisy gene cascade
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We use information theory to study the information transmission through a simple gene cascade where the
product of an unregulated gene regulates the expression activity of a cooperative genetic switch. While the
input signal is provided by the upstream gene with two states, we consider that the expression of downstream
gene is controlled by a cis-regulatory system with three binding sites for the regulator product, which can
bind cooperatively. By computing exactly the associated probability distributions, we estimate information
transmission thought the mutual information measure. We found that the mutual information associated with
unimodal input signal is lower than the associated with bimodal inputs. We also observe that mutual information
presents a maximum in the cooperativity intensity, and the position of this maximum depends on the kinetic
rates of the promoter. Furthermore, we found that the bursting dynamics of the input signal can enhance the
information transmission capacity.
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I. INTRODUCTION

The cells membranes are continuously bombarded by
external molecular signals. Signaling networks control the
flow of this information from cell membrane to the nucleus.
This control takes place through several covalent modification
cycles (kinase-phophatase cascades), which are able to filter
out noise, amplify weak signals, modulate the dynamic range,
or allow alternative regulatory entry points for information
flow [1]. Thus, the structure of the signal transduction network
is then of importance, giving account for how the external
stimuli is detected, processed, and transmitted to reach the
desired target. Several researchers have been addressing
quantitatively how much information can be transmitted in the
signal transduction networks [2–4]. The last step of signaling
pathways involves the gene expression regulation by some
transcription factors (TFs). The amount of gene product, i.e.,
the output, will depend on the information content of the
TF signal that reach the cis-regulatory system (CRS) of the
target gene, which must decode such information and generate
the response. In this sense, some gene has been reported to
respond with different expression patterns to distinct stimuli
[5–8]. The expression level of the target gene is controlled
by individual molecules interacting with regulatory regions of
the CRS. Thus, any mesoscopic description of gene expression
regulation must take into account the intrinsic noise associated
to the discreteness of the binding and unbinding events.
This noise, as well as the TF signal fluctuations, impact
in the information transmission capacity of the CRS [4].
There is a growing interest to understand the constraints to
downstream information propagation imposed by noisy input
signals [4,9–15], which goes beyond the noise propagation
in transcriptional cascades [16–19]. The information theory
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provides quantitative tools to deal with the information content
of a signal and its transmission through noise channels [20].
These measures have been recently used to study informa-
tion transmission in single-gene cascades both theoretically
[10,12–14], as well as experimentally [15]. While in Ref. [10]
the authors assume Gaussian models in the simplest gene
activation motif, Hu et al. consider a noisy input signal arising
from a simple birth-death process that regulates the transition
rates of a two-state promoter switch [12,13].

As the output expression level depends not only on the
input signal, but also on the architecture of the CRS, which
determines how the TF stimuli are transmitted, we found
it interesting to study the information transmission beyond
the naive two-state promoter switch. In this direction is also
the work of Rieckh and Tkačik, who proposed quantify the
information transmission by the mutual information measure
of a downstream gene with multiple internal states [14].
They found that internal states can reduce the information
transmission capacity of the CRS, but in the case of cooperative
regulation the system can outperform the channel capacity of
two-state models [14]. However, the approach used in Ref. [14]
is valid only for a small noise regime, when the probability
distributions needed to compute the mutual information can be
approximated by Gaussian distributions. Such approximation
restricts the study to unimodal inputs. On the other hand, it
has been shown that in the presence of cooperative binding the
output response can also be associated to bimodal distributions
[21].

Since cooperativity can play an important role in the
information transmission capacity of the CRS, we are in-
terested here to study the information transmission in a
system where unimodal or bimodal input signals regulate
cooperatively the many-state CRS of the downstream gene.
In this paper, we take advantage of the spectral method [9,22]
to exactly calculate the steady-state solution of the master
equation describing our model, which allows us to compute the
mutual information between input and output signal without
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FIG. 1. (a) Two-gene cascade model, where TFs (red proteins)
are synthesized at rate αU

1 by an upstream gene when it is in its ON
state. TFs can bind cooperatively to the regulatory binding sites (green
boxes) on the promoter of the downstream gene, whose expression
rates αD

r depend on the promoter state r . (b) Information transmission
is measured by the Mutual Information between the probability
distribution of TFs (input signal) and the probability distribution of
transcripts associated to the downstream gene (output response).

approximation. In Sec. V, we present some results giving
evidence that indeed cooperativity plays an important role
on the information transmission issue. Furthermore, we show
that when cooperativity is taken into account, its effects on
information transmission depend on the mechanisms involved
in the process of binding.

II. THE MODEL

We are interested in exploring the information transmission
in the elementary building block of any gene regulatory
network, that is, how the information encoded in the noisy
input signal is transmitted through a gene subject to intrinsic
chemical noise. In our model, the input signal arises from a
nonregulated gene with two states, labeled by s = 0, 1. This
gene is able to synthesize proteins at rate αU

s , which degrade
at rate γ U . For the sake of simplicity we will consider that
the inactive state, s = 0, is not able to synthesize proteins,
i.e., αU

0 = 0. Transitions between s states occur at rates tON

and tOFF as indicated on Fig. 1. The number of free proteins
generated by this gene is labeled by n. This protein plays
the role of the TF that regulates the gene response of the
downstream gene (see Fig. 1). Notice that, for simplicity,

we do not explicitly consider the intermediate mRNA of the
nonregulated gene. The CRS of the regulated gene possesses
a certain degree of complexity necessary to study the role of
cooperativity on the information transmission in the single
step gene cascade described above. In this sense, the CRS
includes three functionally identical binding sites for the same
TF, which renders into four states, denoted by r = 1, 2, 3,
and 4 representing CRS states with zero, one, two, and
three sites occupied, respectively, as illustrated in Fig. 1.
TFs can bind to regulatory sites with a probability which is
proportional to the TF concentration following the law of mass
action for elementary reactions tr,r+1 = nkr,r+1. TF unbinding
events depend only on the kinetic constants tr+1,r = kr+1,r .
We consider that only CRS states with one or more bounded
TFs are able to synthesize mRNAs at a state-dependent rate,
αD

r . The number of transcripts produced by the regulated gene
at time t will be denoted by m, and it degrades at a rate γ D .
Thus, our model is a cascade composed of two genes which
from now on we call upstream and downstream genes.

To model a Hill-type response curve due to a cooperative
binding process, we consider that the production rate of
transcripts increases linearly with the occupancy number. In
particular, we have set αD

r = (r − 1)α for r = 1, 2, 3, and 4.
The model above has many parameters. However, we can

show that the kinetic rates kr,r+1 and kr+1,r can be written in
terms of only three. To this end, let us consider first the same
model without cooperativity, where the principle of detailed
balance establishes

ko
r,r+1

ko
r+1,r

= e−�GDNA/RT , for r = 1, 2, 3, (1)

where �GDNA is the free energy of binding a TF to any
binding site, ko

r,r+1 represents the transition rate from state r

to state r + 1 when there is no interaction between TFs (ko
r+1,r

represents the rate of reverse transition), R is the gas constant,
and T is the absolute temperature. If there is cooperativity due
to interaction between TFs, the total free energy involved is
�GDNA + �GI , where �GI is the free energy of interaction
between two TF molecules. We found useful to define the
cooperativity intensity ε, as ε = e− �GI

RT . Thus, in presence of
interaction between TFs, we have

kr,r+1

kr+1,r

= e−�GDNA/RT e−zr�GI /RT , (2)

where zr represents the number of interactions. If we now
assume that each new bound TF interacts with all TFs already
bound to the DNA sites, then zr = r − 1 for r = 1, 2, 3:

kr,r+1

kr+1,r

= ε(r−1) k
o
r,r+1

ko
r+1,r

. (3)

As we assumed that the regulatory sites are identical, we can
now introduce the combinatorial effect of the three sites and
write ko

r,r+1 = (N − r + 1)p and ko
r+1,r = rq, where p defines

the probability per time unit that a single TF molecule binds
to a regulatory site, and q is the probability per time unit
that a single TF molecule unbinds from an occupied site. N
is the number of binding sites in the CRS, which here was
set to N = 3. This number of sites is enough to make the
cooperativity effects more apparent without adding unneeded
complexity.
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Relationship Eq. (3) leaves an extra degree of freedom,
because the interaction between TFs can increase the ability
for the recruitment of new TF for DNA binding, or it can
diminish the unbinding rate. As pointed out in a previous
work [23], cooperativity happens following two nonexclusive
mechanisms. One of them, the recruitment mechanism, takes
place when the already bounded TFs increase the ability for
new TF recruitment for DNA binding, increasing the binding
rates. In this case, the kinetic rates for the downstream gene
can be written as

kr,r+1 = ε(r−1)(4 − r)p, (4)

kr+1,r = rq. (5)

On the other hand, for the stabilization mechanism, which
occurs when TF interaction diminishes the unbinding rate
kr+1,r , we have

kr,r+1 = (4 − r)p, (6)

kr+1,r = ε(1−r)rq. (7)

Thus, these relationships allow us to write the kinetic rates
of the CRS in terms of solely three parameters: the binding
rate p, the unbinding rate q, and the cooperativity intensity ε.
This model was deposited in SBML format on the BioModels
database [24] and assigned the identifier MODEL1705160000.

We consider that all processes mentioned above are
stochastic and each is described by an independent Poisson
process. For this system, the state is specified by four stochastic
variables: the state s of the upstream gene, the number n of free
TFs, the state r of the CRS associated to the downstream gene,
and the resulting number m of transcripts. The probability to
find the system in state (s, n, r,m) at time t will be denoted by
P s,r

n,m(t). The temporal evolution of this probability is governed
by the following master equation:

Ṗ s,r
n,m = αU

s

(
P

s,r
n−1,m − P s,r

n,m

)
+γ U

[
(n + 1)P s,r

n+1,m − nP s,r
n,m

]
+αD

r

(
P

s,r
n,m−1 − P s,r

n,m

)
+γ D

[
(m + 1)P s,r

n,m+1 − mP s,r
n,m

]
+

∑
s ′r ′

KT
s ′,r ′P

s ′,r ′
n,m

+(n + 1)
∑
s ′r ′

KF
s ′,r ′P

s ′,r ′
n+1,m

+
∑
s ′r ′

KB
s ′,r ′P

s ′,r ′
n−1,m. (8)

The first two terms on the right-hand side of Eq. (8) describe
the production and degradation of proteins generated by the
upstream gene, while the third and fourth terms describe the
production and degradation of the products generated by
the downstream gene. The last three terms, with the matrices
KT , KF , and KB , take into account the transitions between
states of up or downstream genes. The first of these is the one

with matrix KT , defined by

KT =

⎛
⎜⎜⎜⎝

T − nKF
1 −KB

1 0 0

0 T − nKF
2 −KB

2 0

0 0 T − nKF
3 −KB

3

0 0 0 T

⎞
⎟⎟⎟⎠,

(9)

which has two parts. One describes the internal transitions of
the upstream gene through the matrix T , which is defined by

T =
(−tON tOFF

tON −tOFF

)
. (10)

The other part, which involves the matrices KF
r = kr,r+112x2

and KB
r = kr+1,r12x2 for r = 1, 2, 3, represents the binding

and unbinding of free TFs on the binding sites of the CRS
of the downstream gene through its transition rates kr+1,r and
kr+1,r for r = 1, 2, 3. All zeros in Eq. (9) represent 2 × 2
matrices with zero entries. The same is true for all other zero
entries on the following matrices. Finally, in the following two
last terms, with matrices KF and KB defined by

KF =

⎛
⎜⎜⎜⎝

0 0 0 0

KF
1 0 0 0

0 KF
2 0 0

0 0 KF
3 0

⎞
⎟⎟⎟⎠ (11)

and

KB =

⎛
⎜⎜⎜⎝

0 KB
1 0 0

0 0 KB
2 0

0 0 0 KB
3

0 0 0 0

⎞
⎟⎟⎟⎠ , (12)

are described transitions in the CRS of the downstream gene
which alter the the amount of free proteins n [25]. These two
terms of our master equation make it differ from that of Mugler
et al. (Eq. 138 in Ref. [22]), which do not take into account
this fact.

Alternatively, one could have considered the total number of
TFs as the stochastic variable ntot. However, such an approach
neglects the effect of bound molecules, which can affect the
downstream information transmission, because the promoter
is sensing only the free number of TFs.

Finally, time-dependent solutions for master equations are
very difficult to obtain even in simpler models. Neverthe-
less, we are here interested in the steady-state solution of
Eq. (8), denoted by P

∗s,r
n,m . From now on all quantities such

as probabilities, mean values, variances, etc., will be those
corresponding to the steady state. Thus, to avoid making our
notation cumbersome we drop the ∗ from it.

III. THE MUTUAL INFORMATION

The presence of noise constraints how precisely changes
in the TF level influence the information propagation to a
gene controlled by a complex CRS. A way to quantify this
transference is through the mutual information M between
probability distributions associated with the input signal and
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the response, P (n) and P (m), respectively, which is defined
as [20]

M(n; m) =
∑
n,m

P (n,m) logb

[
P (n,m)

P (n)P (m)

]
, (13)

where P (n,m) = ∑
s,r P̂ s,r

n,m is the probability to find the
system with n regulatory proteins and m transcripts, regardless
of the internal states of each promoter, whereas P (n) and
P (m) are the marginal probabilities P (n) = ∑

m,s,r P̂ s,r
n,m and

P (m) = ∑
n,s,r P̂ s,r

n,m. When the base b = 2, the units of the
M measure is given in bits. Thus, M is the Kullback-Leibler
divergence between two particular probability distributions:
the joint probability P (n,m) and the one obtained under the
assumption of independence P (n) × P (m) [26,27]. The mu-
tual information can be equivalently defined by: M(n; m) =
S[n] + S[m] − S[n,m], where S[X] is the entropy associated
to the random variable X.

In the following section, we present the spectral method we
used to compute P s,r

n,m and the marginal probabilities, following
Ref. [22] so as to render the present paper as self contained as
possible.

IV. THE SPECTRAL METHOD

We begin by defining a generating function Gs,r (x,y) =∑
n,m P s,r

n,mxnym over the complex variables x and y. As
in Ref. [22], we use a representation that proves more
convenient, writing the generating function with states indexed
by |n,m〉, |Gs,r〉 = ∑

n,m P s,r
n,m|n,m〉, with inverse transform

P s,r
n,m = 〈n,m|Gs,r〉, and resorting to an operator formalism

as in the quantum harmonic oscillator, a+
n |n〉 = |n + 1〉 and

a−
n |n〉 = n|n − 1〉, with adjoint operators 〈n|a+

n = 〈n − 1| and
〈n|a−

n = (n + 1)〈n + 1| for protein number n and similar
relations for m. The more familiar form for the generating
function is recovered by projecting the position space 〈x| onto
|Gs,r〉, taking into account that 〈x|n〉 = xn with conjugate state
〈n|x〉 = 1/xn+1 and inner product 〈f |f ′〉 = ∮

dx
2πi

〈f |x〉〈x|f ′〉
ensuring orthogonality of |n〉 states as can be verified using
Cauchy’s Theorem [22]. The same relations hold for y space.
With these definitions, master Eq. (8) can be written as

˙|Gs,r〉 = −Ĥs,r |Gs,r〉 +
∑
s ′,r ′

�̂s ′,r ′ |Gs ′,r ′ 〉, (14)

with

Ĥs,r = b+
n b−

n,s + ρ b+
mb−

m,r (15)

playing the role of a Hamiltonian operator and the operator
matrix

�̂s,r = K̂D + K̂B + K̂F (16)

comprising all the CRS transitions. Operators b+
n and b−

n,s are
shifted forms of the raising and lower protein number oper-
ators, b+

n = a+
n − 1, b−

n,s = a−
n − αU

s /γ U , b+
m = a+

m − 1 and
b−

m,r = a−
m − αD

r /γ D , while ρ = γ D/γ U . As in the operator
treatment of the harmonic oscillator in quantum mechanics,
the raising and lower operators satisfy the commutation
relation [a−

n ,a+
n ] = 1 and a+

n a−
n is a number operator, i.e.,

a+
n a−

n |n〉 = n|n〉. The same holds for a+
m and a−

m . For details
about this operator formalism, see Refs. [9,22]. Operator K̂D

was obtained from the corresponding matrix by replacing n

by a+
n a−

n in KD , while operators K̂B and K̂F were defined as
K̂B = a+

n KB and K̂F = a−
n KF . The whole advantage of the

method resides in the possibility to separate a diagonal part
of the Hamiltonian operator Ĥs,r and use its eigenvectors to
expand the generating function |Gs,r 〉. Introducing the constant
production rates αU and αD , and defining b−

n = a−
n − αU/γ U

and b−
m = a−

m − αD/γ D , we can split the Hamiltonian as
Ĥs,r = Ĥ0 + Ĥ1,s,r , with

Ĥ0 = b†nb
−
n + ρ b+

mb−
m (17)

an operator that can be diagonalized, i.e.,

Ĥ0|j,k〉 = (j + ρk)|j,k〉, (18)

where the |j,k〉 are its eigenvectors, and

Ĥ1,sr = b+
n 	s + ρ b†m	r (19)

captures the deviations 	s = b−
n,s − b−

n = αU − αU
s and 	r =

b−
m,r − b−

m = αD − αD
r of the constant production rates αU and

αD we have introduced from the state-dependent production
rates αU

s and αD
r of our model.

Expanding the generating function in the eigenvectors of
Ĥ0,

|Gs,r〉 =
∑
j,k

G
s,r
j,k |j,k〉, (20)

Eq. (14) takes the form

Ġ
s,r
j,k = −(j + ρk)Gs,r

j,k − 	sG
s,r
j−1,k − ρ	rG

s,r
j,k−1

+
∑
s ′,r ′

∑
j ′

〈j |�̂s,r
s ′,r ′ |j ′〉Gs ′,r ′

j ′,k . (21)

As transition rates depend on n, not m [see master Eq. (8)], the
matrix elements of operator �̂

s,r
s ′,r ′ need to be calculated only

in j space, not in k. Equation (21) is subdiagonal in k and thus
more efficient than master Eq. (8). Its steady-state solutions
are constructed beginning with the null space of the resulting
matrix equation for k = 0,∑
s ′,r ′,j ′

〈j |�̂s,r
s ′,r ′ − (jδj ′,j + 	sδj ′,j−1)δs ′,sδr ′,r |j ′〉Gs ′,r ′

j ′,0 = 0,

and then solved at each subsequent k using the result for k − 1.
Notice that the solution involves only matrix multiplication
and the inversion of a 8J × 8J matrix K times, where
J and K are cutoffs in the eigenmode numbers j and k,
respectively. Normalization is needed and comes from the fact
that probability must be unity (see Ref. [22] for a detailed
derivation). The decomposition of the master Eq. (8) into linear
algebraic equations results in huge gains in efficiency over its
direct solution.

The probability P s,r
n,m is found from the G

s,r
j,k with the inverse

transform

P s,r
n,m =

∑
j,k

〈n|j 〉Gs,r
j,k〈m|k〉, (22)

where the mixed products are calculated from the recurrence
relations

(n + 1)〈n + 1|j 〉 = (αU + n − j )〈n|j 〉 − αU 〈n − 1|j 〉,
αU 〈j |n + 1〉 = (αU + n − j )〈j |n〉 − n〈j |n − 1〉, (23)
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initialized with 〈0|j 〉 = (−1)j e−αU

and 〈1|j 〉 = (−1)j e−αU

(αU − j ) and 〈j |0〉 = (−αU )j /j ! and 〈j |1〉 = (−αU )j

(1 − j/αU )/j !, respectively, and updated recursively in n.
Similar relations hold for 〈m|k〉. The constant production rates
αU and αD introduced to define our diagonal Hamiltonian
Ĥ0 are parameters that can be tuned so as to facilitate
numerical stability and convergence of the calculations [22].
Our calculations were robust for different values of the cutoffs
J , K for eigenmodes j and k, and cutoffs N and M for n

and m, and also for different values of parameters αU and
αD , but the convergence proved faster when they were set to
the mean values of the production rates for each gene; i.e.,
we set αU = 1

2

∑
s αU

s and αD = 1
4

∑
r αD

r . In no case the
cutoffs were greater than N = 70, M = 30, J = 65, K = 25
for all situations here studied, and for most N = 30 − 40 and
J = 25 − 35 proved sufficient.

V. RESULTS

Our goal is to gain insight into the role of cooperativity
on the (downstream) information transmission through a
single-step gene cascade. In order to meet this goal, we
have studied the behavior of the mutual information M in
different scenarios combining the following conditions: (i) the
regulatory input signal has associated an unimodal or bimodal
probability distribution; (ii) different relationships between
the kinetic rates associated with the CRS and the rates of
production and degradation of the transcript of the downstream
gene; (iii) the CRS of the downstream gene is operating under
recruitment or stabilization mechanisms; (iv) different noise
levels associated with the input signal.

To consider the effects of different input probability
distribution features on M, we have selected two sets of
parameter values for the kinetics of the upstream gene in such
a way that the regulatory input signals associated with the
unimodal and bimodal distributions have the same mean value
n̄ and noise level (measured as the Fano Factor Fn = σ 2

n

n̄
). This

is accomplished by setting adequately the kinetics rates tON,
tOFF and the TF production and degradation rates αU

1 and γ U

as the ones obtained for the isolated upstream gene, which can
be analytically studied, as indicated in Appendix A. In this
way, one can investigate how differently the features of the
input signal affect the information transmission. Figure 2(a)
depicts a unimodal (blue squares) and a bimodal (red disks)
probability distribution associated with the regulatory input
signals used as stimuli of the downstream gene. These
probability distributions where obtained with the parameter
values αU

1 = 3.5, tON = 0.2087, and tOFF = 0.5218 (unimodal
distribution), and αU

1 = 1.5, tON = 0.044, and tOFF = 0.022
(bimodal distribution); γ U = 0.1 in both cases. With these
parameter values, the mean value and noise of the input signal
are the same for both the unimodal and bimodal cases (n̄ = 10
and Fn = 4). Table I lists the values of the model parameters
used in this study.

As done for the upstream gene, parameter values of the
downstream gene were set considering it isolated. Thus, as for
a fixed number of binding sites the steepness of the response
curve is determined by the cooperativity intensity ε, we have
studied the mutual information varying ε. However, ε also
affects the dissociation constant Kd of the response curve.

(a) (b)

FIG. 2. (a) Unimodal and bimodal probability distributions for
the isolated upstream gene product obtained using the parameters val-
ues αU

1 = 3.5, γ U = 0.1, tON = 0.2087, and tOFF = 0.5218 (unimodal
distribution, blue squares), and αU

1 = 1.5, γ U = 0.1 for tON = 0.044
and tOFF = 0.022 (bimodal distribution, red disks). In both cases
Fn = 4, while n̄ = 10, the same as the Kd of the curves response. (b)
Regulatory function for the isolated downstream gene when parame-
ters are q = 0.75, γ D = 0.25, αD

r = (r − 1)α with α = 1; the value
of the dissociation constant is fixed at Kd = 10. The response curves
with different steepness (nH = 1, 1.55, 2.46, and 2.95) correspond
to different pairs of values (ε,p) = (1, 0.075),(3, 0.025),(15, 0.005),
and (200, 0.000375).

To isolate the effect of cooperativity, we have chosen to vary
parameters of the CRS in such a way that its dissociation
constant is fixed at a particular value, taken to be the same as
the mean value n̄ of TFs, so that Kd = 10. This is accomplished
by adjusting p simultaneously with ε as indicated in Appendix
B, where we have also included the expression of the
mean response. Parameters q, γ D , and αD

r stay unchanged.
Figure 2(b) shows four response curves for the downstream
gene with different Hill coefficients or steepnesses: nH = 1.0
(with ε = 1 and p = 0.075, dotted line), nH = 1.55 (obtained
with ε = 3 and p = 0.025, dashed line), nH = 2.46 (obtained
with ε = 15 and p = 0.005 dot-dashed line), and nH = 2.95
(obtained with ε = 200 and p = 0.000375, solid line), when
q = 0.75, γ D = 0.25, αD

1 = 0, αD
2 = 1, αD

3 = 2, and αD
4 = 3.

All these curves have the same dissociation constant Kd = 10
and the same Vmax = 12. Notice that cooperative mechanisms
(stabilization or recruitment) do not alter these response curves
but only the fluctuation level [23]. Besides considering the
effect of steepness of the response curve on information
transmission, we are also interested in the role played by

TABLE I. Range of parameter values used in the study.

Gene Parameter Value [range] Units

tON [0.00013, 333.3] min−1

Up- tOFF [0.000067, 166.6] min−1

stream αU
1 1.5,3.5 min−1

γ U 0.1 min−1

f [0.01–10000] dimensionless
p [0.000375–0.075] min−1

Down- q 0.75 min−1

stream ε [1.0–200] dimensionless
α 1.0 min−1

γ D 0.25 min−1
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FIG. 3. Output probability distributions for the unimodal input
signal depicted in Fig. 2(a). These distributions correspond to
downstream-CRS with the same dose-response curve, but whose
kinetic rates have been multiplied by a factor: f = 0.1 (red disks),
f = 1 (green circles), f = 10 (orange filled triangles), f = 100 (blue
open triangles), and f = 10 000 (cyan squares). The CRS works with
the stabilization (a) and the recruitment (b) cooperative mechanisms,
using the parameters values ε = 42, p = 0.001786, while other
parameters have the same values as those used in Fig. 2(b).

the kinetic rates of the CRS. By multiplying by a factor f

the binding and unbinding rates p and q, one can explore
the effects of slow to fast CRS dynamics on the information
transmission. Notice that for the downtream gene factor f

alters the fluctuation level of the output, but not the mean
value of signal response, because the latter depends only on
ratios rather than on individual kinetic rates [see Eq. (B2) in
Appendix B].

We are now in a condition to study separately how
different features of the downstream-CRS such as its kinetics,
the associated nH , the different mechanisms of underlying
cooperativity on the one hand, and the different probability
distributions of the input signal and its noise level on the
other, may affect the information transmission characterized
by the mutual information M. Figure 3(a) illustrates ten
different output distributions, associated with the transcript
response level, in response to the unimodal input signal
depicted in Fig. 2(a) (blue square symbols). These distributions
correspond to a CRS that uses stabilization mechanism with
ε = 42, p = 0.001786, while other parameters have the same
values as those used in Fig. 2(b), but with the kinetic rates
multiplied by a different factor: f = 0.1 (red disks), f = 1
(green circles), f = 10 (orange filled triangles), f = 100 (blue
open triangles), and f = 10 000 (cyan squares) [Fig. 3(a)]. In
Fig. 3(b) the output distributions for the same unimodal input
signal correspond to a CRS that use recruitment mechanism
with the same parameter values as those used in the Fig. 3(a).
Figure 4 illustrates the same corresponding output distributions
but in response to the bimodal input signal depicted in Fig. 2(a)
(red disk symbols). All output probability distributions have
been computed with the spectral method as described on
Sec. IV. In all cases illustrated in Figs. 3 and 4, the CRS mean
response curves for the isolated downstream gene are the same.
These examples illustrate that the overall output response (i.e.,
mean values and fluctuations) is not only determined by the
input signal and the response curve of the downstream gene
but also by the fluctuations associated with its CRS dynamics.
This fact is a distinctive feature of the approach devised here in

FIG. 4. Output probability distributions for the bimodal input
signal depicted in Fig. 2(a). These distributions correspond to
downstream-CRS with the same dose-response curve, but whose
kinetic rates have been multiplied by a factor: f = 0.1 (red disks),
f = 1 (green circles), f = 10 (orange filled triangles), f = 100 (blue
open triangles), and f = 10 000 (cyan squares). The CRS works with
the stabilization (a) and the recruitment (b) cooperative mechanisms,
using the parameters values ε = 42, p = 0.001786, while other
parameters have the same values as those used in Fig. 2(b).

contrast with Ref. [14], where only response curves are taken
into account. Furthermore, while the authors only consider
Gaussian input signals, our approach extends to general input
distributions.

In Fig. 5, we show the behavior of the mutual information
when the cooperativity intensity ε changes keeping Kd of the
curve response fixed, for the recruitment mechanism case,
when the input signal has associated an unimodal (left panel)
and bimodal (right panel) distribution. The different curves
correspond to different values of factor f , which range from
f = 0.1, for slow CRS dynamics, to f = 10 000 for fast
ones. Figure 6 illustrates the behavior of M versus ε for the
stabilization mechanism case.

First, these figures show a different behavior for the mutual
information M on ε when the downstream-CRS dynamics is
slow compared to that of fast dynamics. For slow dynamics
the information transference is remarkably small and its

FIG. 5. Mutual information M vs. ε for the recruitment mecha-
nism of the CRS when the input signal is the unimodal distribution
depicted on Fig. 2 (left panel) and bimodal (right panel). Different
symbols label different values of parameter f , ranging from slow
dynamics of the downstream gene to very fast ones: f = 0.1 (red
disks), f = 1 (green circles), f = 10 (orange filled triangles), f =
100 (blue open triangles), and f = 10 000 (cyan squares). Dotted
lines are drawn to help the eye.
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FIG. 6. Mutual information M vs. ε for the stabilization mecha-
nism of the CRS when the input signal is the unimodal distribution
depicted on Fig. 2 (left panel) and bimodal (right panel). Different
symbols label different values of parameter f , ranging from slow
dynamics of the downstream gene to very fast ones: f = 0.1 (red
disks), f = 1 (green circles), f = 10 (orange filled triangles), f =
100 (blue open triangles), and f = 10 000 (cyan squares). Asterisks
correspond to the M computed using stochastic simulations with
f = 10. Dotted lines are drawn to help the eye.

dependence on ε is that of a monotonous decreasing function
(bottom curve). The same holds true for smaller values of
f (not shown on the figures). For faster dynamics it first
increases for low values of ε reaching a maximum and then
decreases monotonously as a function of ε. This maximum
happens at a larger value of ε as the CRS dynamics is faster,
indicating that the relation of CRS kinetics to the kinetics of the
upstream gene plays an import role. The decrease of the mutual
information observed after reaching the maximum is due to
the bimodal character of the output distribution promoted by
the cooperative binding. This bimodal character is associated
with the low entropy of the output distribution S[m] at high
cooperativity, see Fig. 7, but also to lower correlation between
input and output signals. In this sense, Fig. 8 depicts three
P (n,m) histograms, computed from Gillespies simulations,
for the stabilization cooperative mechanism for three different
values of cooperative intensity: ε = 1 (a), ε = 3 (b), and
ε = 10 (c), using f = 10 [orange filled triangles in Fig. 6(a)].
One can observe that the P (n,m) corresponding to ε = 1 is
wider than the one corresponding to ε = 3 where maximum on
M occurs, while for ε = 10 and higher values the associated
P (n,m) has a higher skewness with a poor correlation with
the input signal. Figure 9 illustrates the time courses of
the stochastic simulations of the system in the same three
parameter sets than those on Fig. 8.

Furthermore, for a fixed value of f this maximum occurs
for a larger value of ε for recruitment mechanism of the
downstream gene than for the stabilization mechanism inde-
pendently of the distribution associated with of the input signal.
By comparison of Figs. 5 and 6, we also notice that while
the recruitment and stabilization cooperative mechanisms
have a similar performance for low cooperativity (ε < 3),
stronger differences are evident at higher values of ε. One
can observe that, independently of the type of input signal,
promoters operating with recruitment mechanism have higher
information transmission capacity than those operating with
stabilization mechanism. For example, M for the recruitment
mechanism at ε = 42 and f = 10 is sixfold greater than M

FIG. 7. Entropy of the output probability distributions S[m] vs.
ε for the recruitment mechanism when the input is unimodal (a) and
bimodal (b), and for the stabilization mechanism when the input is
unimodal (c) and bimodal (d). Different colors indicates different
values of parameter f , ranging from slow dynamics of the regulated
gene to very fast ones: f = 0.1 (red curves), f = 1 (green curves),
f = 10 (orange curves), f = 100 (blue curves), and f = 10 000
(cyan curves).

for the stabilization mechanism. This is due to the fact that
the stabilization cooperative mechanism promotes a stronger
bimodal response than the recruitment mechanism [21]. Thus,
the existence of a maximum in the information transmission
can be understood in terms of two contributions: (i) the
cooperative binding affects the kinetics of the CRS through
the Eqs. (4)–(7), increasing the M for low value of ε; (ii)
the cooperative binding affects the output distribution, which
goes from having an unimodal character to a bimodal one
when ε increases, rendering a lower information transmission
capacity. These are remarkable features if one is interested in
promoters that maximize the information transmission.

There is also a striking difference between the behavior of
M when the input signal is bimodal [Figs. 5(b) and 6(b)],
compared to that corresponding to an unimodal input signal
[Figs. 5(a) and 6(a)], even though both input signals have
the same mean and Fano factor values. First of all, for the
same set of parameters of the downstream gene, the M
associated to a bimodal input signal is always higher than
the one corresponding to an unimodal one. The difference
of behavior for slow and fast dynamics remains similar, in the
sense that for slow dynamics the mutual information decreases
monotonically with ε, whereas for moderate and fast ones
M reaches a maximum value, and this occurs for both input
signals for the same value of ε, after which M decreases once
again monotonously but in the case of bimodal input signal it
remains always well above the value reached for the same ε

for the unimodal input signal. This illustrates what we have
pointed out above, that is, all the features of the output response
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FIG. 8. Probability distributions P (n,m) for the stabilization mechanism of the CRS, when the input signal is unimodally distributed around
a mean value n̄ = Kd = 10 and with Fn = 4, and for three different values of the cooperativity intensity ε = 1 (a), ε = 3 (b), and ε = 10 (c).
Other parameters values are those of the orange curve (f = 10) on Fig. 6(a).

play a role on the information transference, and not only the
mean response, for if this last were the case, there would have
been no difference among left and right panels on Figs. 5
and 6.

Until now we have considered only two input signals with
the same noise level, as measured by the Fano factor (Fn = 4).
Figure 10 depicts the mutual informationM versus the entropy
associated with the input signal, S[n] = −∑

n P (n) log P (n),
when the level of noise of the input signal is varied. The
mean value is set at the value of the dissociation constant
of the downstream gene, i.e., n̄ = Kd = 10, which is kept
fixed. The different curves correspond to different values
of ε, ranging from no cooperativity ε = 1 to ε = 50. The
parameters of the downstream gene q, γ D , and αD

r are those
of Fig. 2 and for the upstream gene we have set γ U = 0.1
and αU

1 = 1.5, which fixes the maximum value for Fn to 6. In
order to keep constant the mean value of the input signal when

Fn increases from 1 (unimodal distribution) to 6 (bimodal
distribution), the rates tON and tOFF are decreasing according
to Eq. (A1), as detailed in Appendix A. These plots show that
the entropy associated with the input signal S[n] has a biphasic
behavior: it first increases until 4.5, due to an increase of
the second moment of the distribution, but when the bursting
nature of the expression and bimodality of the distribution
become prominent, the entropy associated with the input signal
begins to decrease. On the other hand, M increases almost
linearly with the Fano factor, with the exception of the case
with high cooperativity and the stabilization mechanism. In
this sense, it is interesting to note the low performance of
promoters operating stabilization mechanism at high ε values.
The increment of the information transmission when S[n]
decreases can be understood in terms of the bursting character
of the input, which enhances the information transmission.
This is apparent in Fig. 11, which depicts the time course

FIG. 9. Time courses of n (number of TFs) and m (transcript) corresponding to the histograms displayed in Fig. 8 obtained by Gillespies
simulations.
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FIG. 10. Relationship between the Mutual information and the
entropy of the input signal S[n] for both cooperative mechanisms
of the downstream gene: recruitment (a) and stabilization (b). The
Fano factor Fn associated with the input signal increases from 1 to
its maximum value for the selected parameters of the upstream gene
(black arrow indicates the direction of increase), while its mean value
is kept constant (n̄ = Kd = 10). The parameters of the downstream
gene q, γ D , and αD

r are those of Fig. 2 and for the upstream gene
we have set γ U = 0.1 and αU

1 = 1.5, which fixes the maximum value
for Fn to 6. The different curves correspond to different values of ε,
ranging from ε = 1 to ε = 50. Parameter p changes accordingly so
as to keep Kd fixed.

of the stochastic simulations of the system when the noise
of the input signal is increased. Again, promoters operating
with the recruitment cooperative mechanism have higher
information transmission capacity that those operating with
the stabilization mechanism, independently on the noise level
of the input signal.

VI. DISCUSSION AND CONCLUSION

Expression levels are the output of any regulatory network.
This output depends on the topology of such regulatory
network but also on the input signals. The passing on of the
message through the gene regulation process can be severely
affected by the chemical noise due the low copy number
of players involved in the transcription processes. Despite
the growing interest to understand how noisy input signals
can regulate downstream switches, there are few theoretical
approaches in the specialized literature addressing this issue.
Among them we can mention the work of Hu et al., which, by
considering input signals arising from a birth-death process,
explores the switching dynamics of the two-state downstream
gene [12,13]. They found that increasing the fluctuation level
in the input signal does not necessarily imply an increase
in the output variation, as one could expect from the static
approaches that consider correlations between input and output
signals [11,17,28]. On the other hand, and from a static point
of view, the seminal work of Rieckh and Tkačik considers the
mutual information computation in the case of downstream
genes with a three-state CRS [14]. They found that adding extra
internal states can reduce the channel capacity of the CRS in
relation to the two-state model. However, in the case of coop-
erative regulation, the system can outperform the information
transmission of a two-state CRS [14]. This approach, which
uses an analytic but approximated treatment, may not correctly
capture the impact of noise on the information transmission
process beyond the small-noise regime [14]. In any case, even
when most studies support the idea of gene expression as
a bursting dynamical process [29–31], very little is known
about the information transmission of bursting input signals.

FIG. 11. Time courses of n (number of TFs) and m (transcript) for the gene cascade operating with the recruitment mechanism, ε = 3 and
f = 10 [green curve of Fig. 10(b)] obtained by Gillespies simulations. Top panel corresponds to low value of S[n] and F=1.1 (tON = 3.267,
tOFF = 1.633), middle value of S[n] and F=3.5 (tON = 0.0667, tOFF = 0.0333), Bottom panel low value of S[n] and F=5.5. (tON = 0.0074,
tOFF = 0.0037). The parameters of the downstream gene q, γ D , and αD

r are those of Fig. 2 and for the upstream gene we have set γ U = 0.1
and αU

1 = 1.5. Parameter p changes accordingly so as to keep Kd = n̄ = 10 fixed.
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Furthermore, the effect of cooperative binding, which has
been associated to bursting responses [21], on information
transmission has not been addressed in previous studies. In
this paper, taking advantage of the spectral method formalism,
we computed exactly the probability distribution associated
with both the input signal and the output response of the
basic building block of any gene regulatory pathway, and
we evaluated the associated mutual information. Our model
allows us to explore not only a broad range of bursting
kinetics inputs but also bursting outputs facilitated by the
cooperative binding. We found that the recruitment cooperative
mechanism has associated higher information transmission
than the stabilization mechanism. The mutual information
increases when the kinetic rates of the promoter increases,
which becomes thus able to follow the change of the input
signal. We also found that an increment on the noise level of
the input signal does not necessarily imply a decrement on the
information transmission. In the example depicted in Fig. 10,
we show evidence supporting that input noise (quantified
by the Fano factor) can increase the mutual information.
Furthermore, our results indicate that the mutual information
presents a maximum as function of the cooperativity intensity.
This is an interesting feature, because this parameter, linked
with the interaction energy between TFs, could be tuned in
order to optimize the information transmission. In fact, these
maximums occur within the physiological range of ε, taking
into account that ε = 6 corresponds to around �GI = 1.0
kcal/mol [32,33].

Even though the method used here provides more accurate
results than previous ones, it is important to remark on the
limitations of the present approach to quantify the information
transmission. The more evident limitation is that we are
considering a static relationship between input and output
PDs, and many aspects of the switching dynamics (e.g., dwell
time statistics) have been overlooked. Other aspect of the
present approach is that we are quantifying the information
transmission with the mutual information measure M(n; m),
which basically quantify how the random variables n and m are
independent. Unfortunately, this measure is symmetric under
the exchange of n and m and consequently does not provide the
directional sense of transmitted information. Other measures,
as the proposed by Ref. [26], could be more suitable for the
purpose of quantifying the information transmission; however,
their computation poses a challenge for future works.
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APPENDIX A

It is our desire to tune parameters of the upstream gene so as
to have different probability distributions features (unimodal
or bimodal) for the input signal and different levels of noise
as measured by the Fano factor of its distribution, keeping its
mean value fixed. With this in mind, we have analyzed the
upstream gene separately. Thus, from the master equation of

the isolated gene,

Ṗ s
n = αU

s

(
P s

n−1 − P s
n

) + γ U
[
(n + 1)P s

n+1 − nP s
n

]
+

∑
s ′

Ts,s ′P s ′
n ,

we can compute the mean n̄ and Fano factor Fn at steady state
in terms of its parameters αU

s , γ U and the kinetics rates tON

and tOFF. We can then invert the obtained relations to solve tON

and tOFF as a function of the production and degradation rates
and the values of the mean and Fano factor:

tON = αU
0 αU

1 − γ U n̄
(
αU

0 + αU
1 − γ U (n̄ − 1)

) + γ U n̄Fn

γ U n̄
(
αU

0 − αU
1

)
(1 − Fn)

,

tOFF = −γ U − αU
1

γ U − αU
0

tON, (A1)

which hold whenever

1 < Fn < 1 −
(
αU

0 − γ U n̄
)(

αU
1 − γ U n̄

)
n̄(γ U )2

,

(A2)
αU

1 �= αU
0 .

Notice that by fixing the mean and Fano factor values of the
upstream gene, we are still free to fix arbitrarily production and
degradation rates so as to hold relations Eq. (A2); i.e., there
is a whole range of parameters possible for the upstream gene
that satisfy constraints imposed by fixing n̄ and Fn. So, we
take advantage of this freedom with the purpose of analyzing
the effects on M of input signals with (i) the same mean and
noise but different probability distributions features (unimodal
or bimodal) or (ii) different levels of noise for a fixed mean
value.

Case (i): We fix the mean to n̄ = 10 and the noise to
Fn = 4 for the isolated upstream gene. Thus, when αU

1 = 3.5,
γ U = 0.1, the kinetic rates obtained from Eqs. (A1) are tON =
0.2087 and tOFF = 0.5218, yielding the unimodal distribution
depicted in blue on Fig. 2(a), whereas if αU

1 = 1.5, γ U = 0.1
the resulting rates are tON = 0.044 and tOFF = 0.022 with a
bimodal distribution depicted in red on the same figure.

Case (ii): We fix the mean to n̄ = 10 and the production
and degradation rates to αU

1 = 1.5 and γ U = 0.1, so Eq. (A2)
yields the range of variation allowed for the Fano factor
for this parameter, i.e., 1 < Fn < 6. The kinetic rates tON,
tOFF will decrease accordingly with increasing Fano factor, as
established by Eqs. (A1).

In Figs. 3–8, parameters of the upstream gene when in the
cascade were set as the ones obtained for the isolated gene in
case (i), as they study the behavior ofM for two different input
signals with the same mean and noise while varying parameters
of the downstream gene as proposed on Appendix B, while in
Fig. 10, parameters of the upstream gene when in the cascade
were set as the ones obtained for the isolated gene on case (ii),
as they study the behavior ofM for input signals with the same
mean, while varying its noise, for a fixed set of parameters of
the downstream gene.

APPENDIX B

For the downstream gene, our purpose is to tune its
parameters so as to set the CRS, when isolated, to have
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response curves with different steepness nH , but with the same
Kd and maximum rate Vmax. Thus, we analyze the isolated
downstream gene separately. From the corresponding master
equation,

Ṗ r
m = αD

r

(
P r

m−1 − P r
m

) + γ D
[
(m + 1)P r

m+1 − mP r
m

]
+

∑
r ′

�r,r ′P r ′
m , (B1)

with � comprising all the CRS transitions for this isolated
gene,

� =

⎛
⎜⎜⎜⎝

−nk12 k21 0 0

nk12 −nk23 − k21 k32 0

0 nk23 −nk34 − k32 k43

0 0 nk34 −k43

⎞
⎟⎟⎟⎠,

(B2)

where n is the number of TF molecules, and kij are determined
through p, q, and ε, as indicated above by Eqs. (4) or (6),
depending on the cooperative mechanism involved.

The mean response of the downstream gene to n molecules
at steady state can be obtained from Eq. (B1), yielding

m̄(n) = 1

γ D

∑
r

αD
r P̄ r , (B3)

where αD
r = (r − 1)α for r = 1, 2, 3, and 4, with α = 1, and

P̄ r is the marginal probability at steady state P̄ r = ∑
m P̄ r

m

given by

P̄ 1 = 1

n3K1K2K3 + n2K1K2 + nK1 + 1
,

P̄ 2 = n

n3K2K3 + n2K2 + n + (K1)−1
,

P̄ 3 = n2

n3K3 + n2 + n(K2)−1 + (K1K2)−1
,

P̄ 4 = n3

n3 + n2(K3)−1 + n(K2K3)−1 + (K1K2K3)−1
,

where Kr are the equilibrium constants Kr = kr,r+1

kr+1,r
. Thus,

m̄ is a sigmoidal function of n. In the limit ε → ∞, this
function converges to the well-known Hill function. However,
in any other case the sigmoidal response Eq. (B3) can be
characterized by three parameters: (i) the saturation value
Vmax, which is defined as limn→∞ m̄(n); (ii) the half-maximum
concentration, also known as the dissociation constant Kd ,
defined as the n value at which m̄(n = Kd ) = Vmax/2; and
(iii) the steepness nH , which in the general case can be defined
as

nH = 4

Vmax

dm̄(n)

d(ln n)
|n=Kd

. (B4)

We choose to vary parameters of the downstream gene
in such a way that its dissociation constant Kd is fixed at a
particular value of n, taken to be the mean value of the upstream
one, n̄. Thus, we adjust p while varying the cooperativity
intensity ε so as to keep this selected value of Kd fixed while
changing the steepness of the regulation function steadily.
Parameters q, γ D , and αD

r stay unchanged.
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