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Abstract
The ascending colon of most rodent species shows a longitudinal colonic groove that works as a

retrograde transport pathway for a mixture of bacteria and mucus toward the cecum. We describe

the morphology and glycosylation pattern of the colonic groove of Lagostomus maximus to analyze

the role of mucins in this anatomical feature. We also studied the distribution pattern of the inter-

stitial cells of Cajal (ICC) to evaluate their regulatory influence on gut motility. The groove

originated near the cecocolic junction and extended along the mesenteric side of the ascending

colon, limited at both ends by nonpapillated ridges. These ridges divided the lumen of the ascend-

ing colon into two compartments: a narrow channel and a large channel, called the groove lumen

and the main lumen, respectively. The histochemical analysis showed differences in the glycosyla-

tion pattern of the goblet cells inside and outside the groove. Unlike the mucosa lining the main

lumen of the colon, the groove was rich in goblet cells that secrete sulfomucins. The PA/Bh/KOH/

PAS technique evidenced an abrupt change in the histochemical profile of goblet cells, which

presented a negative reaction in the groove and a strongly positive one in the rest of the colonic

mucosa. The anti-c-kit immunohistochemical analysis showed different ICC subpopulations in the

ascending colon of L. maximus. Of all types identified, the ICC-SM were the only cells located

solely within the colonic groove.
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1 | INTRODUCTION

Cecotrophy is a physiological mechanism described in small herbivore

species and it consists of the production and ingestion of a special type

of feces derived from caecal contents (Bj€ornhag & Snipes, 1999;

Sakaguchi, 2003). Diverse studies have demonstrated that ingested

feces have a larger content of proteins, vitamins and bacteria as well as

a lesser proportion of fibers than the nonswallowed feces (Takahashi &

Sakaguchi, 1998, 2000). The formation of two types of feces, one with

high protein content (soft feces or cecotrophs) and another fiber-rich

(hard feces), is possible in different species of herbivore mammals due

to the existence of a colonic separation mechanism (CSM). Even

though the identification of both types is evident in lagomorphs

(rabbits and hares) the formation of cecotrophs has also been

demonstrated in caviomorph rodents (Martino, Zenuto, & Busch, 2007;

Mess & Ade, 2005; Takahashi & Sakaguchi, 1998, 2000).

Unlike lagomorphs, which possess a “particle dependent” CSM,

most rodents have “mucus dependent” CSM; that is, bacteria are

trapped by mucus and transferred through the colonic groove by anti-

peristalic movements into the cecum (Kotz�e, van der Merwe, Ndou,

O’Riain, & Bennett, 2009; Takahashi & Sakaguchi, 2000). As a result of

the CSM, the bacteria do not release with feces but they accumulate in
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the cecum, the site of bacterial fermentation. The material separated

by CSM is excreted because of the cecum contraction, and then

reingested.

In general, the main method to demonstrate cecotrophy is the

direct observation of certain positions and movements characteristic of

this behavior (the majority of rodents bend the head to bring the

mouth to the anus), as well as the differential analysis of soft and hard

feces. However, this behavior is difficult to observe in some wild

rodents with fossorial and nocturnal habits such as in the case of the

plains viscacha (Lagostomus maximus) (Clauss, Besselmann, Schwarm,

Ortmann, & Hatt, 2007). The plains viscacha (Desmarest, 1817) is a

caviomorph rodent belonging to the Chinchilidae that lives in arid,

semiarid and humid regions of Argentina, Bolivia, and Paraguay. It is a

gregarious animal that presents fossorial habits and lives in communal

cave systems known as vizcacheras (Jackson, Branch, & Villarreal,

1996). At twilight they leave their caves in search of food, especially

grasses and dicotyledons (Bontti, Boo, Lindstr€om, & Elia, 1999; Branch,

Villarreal, Sbriller, & Sosa, 1994; Puig, Videla, Cona, Monge, & Roig,

1998). Recent studies using markers for digestibility assays have shown

that L. maximus, like other hystricomorph rodents has a longitudinal

colonic groove and re-ingests its own feces (Clauss et al., 2007; Hagen

et al., 2015). Also, studies based on passage of ingest have shown the

existence of “mucus dependent” CSM in L. maximus (Hagen et al.,

2015). The available information on the digestive physiology of

L. maximus makes it an interesting species for the study of this

morphological adaptation to herbivory.

The mucus is a permeable gel layer, mainly composed of water and

mucins; it covers the mucosa of the vertebrate gastrointestinal tract.

Mucins are highly glycosylated proteins Bansil and Turner, 2006 syn-

thesized chiefly by goblet cells of the intestinal epithelium. It was dem-

onstrated that among their functions they enable nutrient interchange

with the underlying epithelium, protect the mucosa against proteolytic

injury and are the main attachment site of commensal and pathogenic

bacteria (Hansson, 2012; Kim & Ho, 2010).

In vertebrates, mucins exhibit different glycosylation patterns due to

the diverse length, branching and acetylation of the oligosaccharide

chains (Forstner, Oliver, & Sylvester, 1995). According to the glycans’

chemical characteristics, mucins can be classified into neutral and acidic.

In turn, acidic mucins can be subdivided into sulfomucins or sulfated

mucins, and sialomucins (glycoproteins with sialic acid residues) (Beyaz &

Liman, 2009). The physicochemical characteristics of mucins are deter-

mined mainly by their composition and their content of glycans (Liquori

et al., 2012). Consequently, the analysis of the glycosylation pattern of

mucins has been widely used in diverse studies to infer its physiological

role (Mastrodonato, Mentino, Liquori, & Ferri, 2013; Scillitani & Mentino,

2015; Tano de la Hoz, Flamini, & Díaz, 2014, 2016).

Although it has been suggested that mucus play a key role in bac-

teria transport through the longitudinal colonic groove, there is paucity

in the literature of studies determining the histochemical characteristics

of mucins in that region. Moreover, no exhaustive research on the

rodents’ histochemical profile of the colonic groove has been reported

(Kotz�e et al., 2009; Snipes, H€ornicke, Bj€ornhag, & Stahl, 1988). In this

article, we aim to study the morphological and histochemical character-

istics of the colonic groove of L. maximus to analyze the role of mucins

in this anatomical feature. In addition, we described the pattern of dis-

tribution of the interstitial cells of Cajal (ICC), that is, cellular pace-

makers in close contact with nerve cells in the muscular layer, to

determine a possible implication between their distribution and the

regulation of the motility of the colonic groove. These cells are a critical

component in enteric neuromuscular transmission. Advances in the last

decades have shown that ICC play an important role in coordinating

intestinal motility (Mazzone & Farrugia, 2007).

2 | MATERIALS AND METHODS

2.1 | Animals

Adult viscachas, Lagostomus maximus (Desmarest, 1817) of both sexes

(n514, 8 females and 6 males) weighing between 4 and 5.5 kg were

obtained from the Estaci�on de Cría de Animales Silvestres (ECAS; Wild

Animals Breeding Station), Ministry of Agro Industry of the Province of

Buenos Aires (Argentina). The captured animals were anesthetized with

a dose of xylacine (8 mg/kg body weight) followed by ketamine

(50 mg/kg body weight) by intramuscular injection (Ketanest, Labora-

torio Scott Cassara). Once deep anesthesia was reached, intracardiac

perfusion with physiological saline solution and then with 4% parafor-

maldehyde in 0.1 mol L-1 phosphate buffer was performed. The proto-

col was approved by the Institutional Committee for the Care and Use

of Laboratory Animals at the National University of La Plata (52–4-

15T) and was in compliance with the international recommendations

for experimental animals (Commission on Life Sciences National

Research Council, 1996; Zu~niga, Tur Marí, Milocco, & Pineiro, 2001).

2.2 | Sampling and morphological study

The necropsy was performed immediately after euthanasia by isolating

the ascending colon. The inner mucosa was exposed with a cut along

the antimesenterial border. Once the colonic mucosa was exposed,

photographs were taken of the colonic groove along its entire length.

The shape of the grooves was recorded. Transverse sections of the cra-

nial portion, the medial third, and the terminal portion of the ascending

colon were taken for histological and histochemical analysis. Samples

were routinely processed and embedded in paraffin wax. Histological

sections of 4 mm thickness were stained with hematoxylin-eosin (H-E).

Microphotographs were taken with an Olympus microscope, CH30

(Olympus; www.olympus.com).

2.3 | Histochemistry

For the characterization of glycoconjugates (GCs) the histological sec-

tions were also subjected to the following histochemical techniques:

1. Periodic acid Schiff (PAS) to demonstrate GCs with oxidizable vici-

nal diols and glycogen (Mc Manus, 1948).
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2. a-amylase-PAS. Before the PAS technique, sections were sub-

jected to an enzymatic digestion with a-amylase for glycogen

identification (Pearse, 1985).

3. KOH/PA*S (saponification- selective periodic acid- Schiff’s

reactive) for characterization of GCs with sialic acid residues. The

saponification reaction (KOH) was performed with 0.5% sodium

hydroxide in 70% ethanol for 30’ at room temperature. Before the

Schiff’s reactive, sections were subjected to a selective oxidation

with 0.4 mmol L-1 periodic acid in 1.0 mmol L-1 hydrochloric acid

at 48C (Culling, Reid, & Dunn, 1976).

4. PA/Bh/KOH/PAS (periodic acid - reduction with borohydride -

saponification- periodic acid- Schiff’s reactive) for presence of

GCs with sialic acid residues with O-acyl substitutions in 7C, 8C

o 9C, and O-acyl sugars. This method was carried out using a 2

hr oxidation at room temperature with 1% periodic acid. The

aldehydes generated by the initial oxidation were reduced to

primary alcohols with sodium borohydride. After saponification

(KOH) the PAS technique (Reid, Culling, & Dunn, 1973) was

applied.

5. KOH/PA*/Bh/PAS (saponification- selective periodic acid- reduc-

tion with borohydride- periodic acid- Schiff’s reactive) to identify

neutral sugars. Sections were treated with 0.5% potassium

hydroxide in 70% ethanol for 15 min at ambient temperature.

Previous to the PAS technique a selective periodic oxidation at

48C for 1 hr followed by a reduction with sodium borohydride was

performed (Volz, Reid, Park, Owen, & Dunn, 1987).

6. AB (Alcian Blue) is a basic dye that has affinity for tissue compo-

nents that possess anionic groups such as acidic GCs. AB solutions

at different pH were used to selectively stain subgroups of acidic

mucins. A staining solution (pH 2.8) was used to evidence GCs with

carboxylic groups and O-sulfated esters; sulfated GCs were identi-

fied with a pH 1.0 solution and GCs highly sulfated with a pH 0.5

(Lev & Spicer, 1964).

7. AB/PAS (Alcian Blue - periodic acid Schiff). This combined tech-

nique allows the identification of acid (AB positive), neutral (PAS-

positive), and mixed (AB/PAS positive) GCs in one section Mowry,

1963. The AB solution was used at pHs 2.8 and 1.0 to identify

carboxylated and sulfated GCs, and GCs with O-sulfated esters,

respectively (Mowry, 1963).

8. TB (toluidine blue). This basic dye has affinity for acidic compo-

nents of tissues, such as chromatin. Glycoconjugates with carbox-

ylic groups and O-sulfated esters were evidenced with an TB

solution at pH 5.6 and sulfated GCs at pH 4.2 (orthochromatia).

Moreover, this dye can stain polyanionic polymers of high molecu-

lar weight with a color different from the original tint (metachro-

matia) (Lison, 1953).

The results were evaluated by four independent observers using a

semi-quantitative scale to determinate the intensity of the reactions

(0, negative; 1, light; 2, moderate; 3, strong). These scores were

established according to previous histochemical studies (Scillitani &

Mentino, 2015; Tano de la Hoz et al., 2014, 2016).

2.4 | Lectin-histochemistry

A battery of seven biotinylated lectins (Vector Laboratories, Inc.

Burlingame, CA) was used to identify specific sugar residues (Table

1). The paraffin sections were mounted on slides treated with poly-

L-lysine (Sigma Diagnostics, St Louis, MO), deparaffinated with xylol

and incubated in a 0.3% H2O2 solution in methanol for 30 min at

room temperature to inhibit the endogenous peroxidase activity.

Then, the sections were hydrated, washed with 0.01 mol L21, pH

7.6 saline phosphate buffer (SPB) and incubated with a bovine

serum albumin in SPB for 20 min to block specific bindings. After

rinsing, sections were incubated with each of the biotinylated lectins

for 30 min at room temperature and treated with avidine–biotine–

peroxidase complex (ABC) during 45 min (Vector Laboratories, Inc).

The peroxidase was activated through 4–10 min incubation with a

Tris-HCl 0.05 mol L21, pH 7.6 tamponed solution containing 0.02%

diaminobenzine (DAB; Dako, Carpinteria, CA, EE.UU.), and 0.05% H2O2.

All lectins were employed in a 30 mg ml-1 in SPB, except for PNA that

was applied at concentration 10 mg ml-1.

The results were semi-quantitatively evaluated, using the same

scale as the one used for the histochemical study. Two types of con-

trols were made: (1) the lectin solution was replaced by SPB and (2) lec-

tins were preincubated at ambient temperature for 1 hr in presence of

adequate haptens.

2.5 | Immunohistochemical detection of

interstitial cells of Cajal

For the immunohistochemical analysis of immunohistochemical detec-

tion of interstitial cells of Cajal we used the Envision (Dako Corp.,Car-

pinteria, CA) method. A rabbit polyclonal antibody anti-c-kit (CD117;

Dako, Japan A4502) was used as a primary antibody to detect ICC. The

paraffin sections were mounted on Starfrost glass slides (Knittel,

Braunschweig, Germany), deparaffinated with xylol and incubated in

0.3% H2O2 in methanol for 30 min at room temperature. Then they

were hydrated, washed with 0.01 mol L-1, pH 7.6 SPB, and microwave

antigen retrieval was applied at 800w twice for 5 min each using

0.01 mol L-1, pH 6.0 buffer citrate. After rinsing, sections were incu-

bated with 1% bovine seric albumin for 30 min to block unspecific

bindings. The sections were incubated with the primary antibody (1:50

dilution) for 1 hr at 258C; negative controls were incubated with SPB

under the same conditions. After incubation with the polymer, 3’,3’-dia-

minobenzidine (DAB) and 0.05% H2O2 were used. Finally, sections

were counterstained with hematoxylin (BIOPUR), dehydrated and

mounted.

3 | RESULTS

3.1 | Morphological study

The ascending colon of Lagostomus maximus exhibited a longitudinal

colonic groove along the mesenteric side. The groove originated near

the cecocolic junction and it was formed by two nonpapillated ridges

(Figure 1a,b). These ridges divided the lumen of the ascending colon
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TABLE 1 Lectins used and their carbohydrate specificities

Lectin Acronym Specificity Haptene

GROUP I Glc/Man

Canavalia ensiformisagglutinin Con-A a-D-Man; a-D-Glc a-D-Methyl-Man

GROUP II GlcNAc

Triticum vulgaris
(wheatgerm) agglutinin

WGA b-D-GlcNAc; NeuNAc NeuNAc

GROUP III GalNAc/Gal

Dolichos biflorusagglutinin DBA a-D-GalNAc D-GalNAc

Glycine maximusagglutinin SBA a-D-GalNAc; b-D-GalNAc D-GalNAc

Ricinus communis
Agglutinin-I

RCA-I b-Gal Lactose

Arachis hypogaeaagglutinin PNA b-D-Gal (b1–3)> D-GalNAc Lactose

GROUP IV L-Fuc

Ulex europaeus
Agglutinin-I

UEA-I a-L-Fuc L-Fuc

Gal, galactose; GalNAc, N-acetylgalactosamine; Glc, glucose; GlcNAc, N-acetylglucosamine; L-Fuc, L-fucose; Man, mannose; a-D-Methyl-Man,
a-D-Methyl-mannose; NeuNAc, acetyl-neuraminic acid (sialic acid).

FIGURE 1 Lagostomus maximus, histological characterization of the longitudinal colonic groove. (a) Cross section of the ascending colon.
(b) Macroscopic anatomy of the groove’s origin. (c) Macroscopic view of the inner surface of the ascending colon. (d) Macroscopic view of
the caudal region of the ascending colon. Arrow head, caudal region of the ascending colon where the groove disappeared; asterisk,
cecocolic junction; Ce, cecum; G, groove; MLu, main lumen; R, ridge. Scale bar: 1 cm (a); 1.5 cm (b, c, d)
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into two compartments: a narrow channel and a large channel, called

the groove lumen and the main lumen, respectively (Figure 1a). The

space separating the ridges gradually diminished along the colon

producing a narrowing of the groove toward the distal region of the

ascending colon, where it finally disappeared (Figure 1c,d). Every

ridge showed two lateral edges: one that lines the main lumen and

another that limits with the colonic groove named colonic luminal

side (CLS) and groove side (GS), respectively (Figures 2a and 3). The

center of the ridge consisted of an extension of the tunica submu-

cosa characterized by large caliber veins (Figure 2b). The morphol-

ogy of the tunica muscularis of the ascending colon abruptly

changed at the height of the ridges. Instead of being formed by an

inner circular layer and an outer longitudinal layer, as in most regions

of the digestive tract, the tunica muscularis of the groove exhibited

numerous bundles of circularly arranged smooth muscular fibers

separated by abundant connective tissue (Figure 2a,c). Instead, the

longitudinal outer layer gradually diminished its width until it finally

disappeared within the groove (Figure 2d). Although the tunica mus-

cularis of the groove presented only an inner circular layer, it was

characterized by being thicker than the outer muscular layer of the

ascending colon.

3.2 | Histochemical study

The analysis of glycoconjugates (GCs) revealed evident differences

between the glycosylation patterns of goblet cells in and out of the

colonic groove all along the ascending colon (Table 2). The change in

histochemical profile of this cell type occurred with most techniques at

the height of the colonic ridges. In all the specimens studied the

mucosa lining the colonic luminal side of the ridge (CLS) showed a gly-

cosylation pattern different to the one lateral to the ridge limiting the

groove (GS; Figure 4).

The AB pH 2.8/PAS method allowed the identification of goblet

cells containing neutral, acidic and mixed mucins, both in the groove and

the main lumen of the organ (Figure 4a–d). However, the distribution

pattern of these unicellular glands differed noticeably between both sec-

tors (Figure 4c,d). Goblet cells out of the groove showed a decreasing

gradient of neutral GCs from the upper to the lower region of the crypts,

and PAS and AB/PAS positive cells were found in the upper third of the

gland. Goblet cells from the basal zone showed a histochemical pattern

different to the rest of the cells, exhibiting mainly carboxylated GCs (Fig-

ure 4c). In the groove, instead, all three cell types were identified,

although distributed along all the axis of the intestinal gland (Figure 4d).

FIGURE 2 Lagostomus maximus, histological characterization of the longitudinal colonic groove, H-E. (a) Microphotography of the groove.
(b) Nonpapillated ridge. (c) Detail of the abrupt change of the tunica muscularis morphology. (d) Detail of the tunica muscularis. Arrow head,
large caliber vein; block arrow, morphological change of the tunica muscularis; CLS, lateral border of the ridge limiting with the main lumen;
G, groove; GS, lateral border of the ridge limiting the groove; M, tunica mucosa; MLu, main lumen; R, ridge; SubM, tunica submucosa; TM,
tunica muscularis; TMC, inner circular layer of the tunica muscularis; TML, outer longitudinal layer of the tunica muscularis. Scale bar: 800
mm (a); 400 mm (b); 250 mm (c); 100 mm (d)
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Unlike the mucosa which lines the main lumen of the colon, the

groove was characterized by secreting a high proportion of sulfomucins

and GCs with polyanionic complexes (Figures 4e,f and 5a). Even though

goblet cells from the main lumen also showed metachromatia with TB,

at pHs both 5.6 and 4.2, this reaction was only observed in cells from

the upper and medium region of the intestinal crypts (Figure 5b).

Goblet cells from both regions showed a moderate staining with

the KOH/PA*S technique evidencing GCs with sialic acid residues (Fig-

ure 5c–e). However, the PA/Bh/KOH/PAS method showed an abrupt

change in the histochemical profile of the cells, which presented a neg-

ative reaction in the groove and a strongly positive reaction in the rest

of the colonic mucosa. These results demonstrated that only goblet

FIGURE 3 Scheme of general histological characteristics of the colonic groove. Asterisk, folds; CSL, lateral border of the ridge limiting the
main lumen; CT, connective tissue; M, tunica mucosa; MLu, main lumen; G, groove; GS, lateral border of the ridge limiting the groove;
SubM, tunica submucosa; TMC, inner circular layer of the tunica muscularis; TML, outer longitudinal layer of the tunica muscularis; v, large
caliber vein. Scale bar: 2000 mm

TABLE 2 Histochemical analysis of the ascending colon of Lagostomus maximus

Ascending colon

Groove Main lumen

Goblet cells Goblet cells

Techniques Glycocalyx Uppercrypt Medialcrypt Lowercrypt Glycocalyx Upper crypt Medialcrypt Lowercrypt

PAS 0 3 3 3 0 3 3 1

AB pH 2,8 0 3 3 3 0 3 3 3

AB pH 1,0 2 3 3 3 1 1 1 1

AB pH 0,5 2 3 3 3 1 1 1 1

AB pH 2,8/PAS 0 3M-3P-3Ba 3M-3P-3Ba 3M-3P-3Ba 0 3M-3Pa 3P 3B

AB pH 1,0/PAS 1 3M-3P-3Ba 3M-3P-3Ba 3M-3P-3Ba 1 2P-2Ma 2P 1P

TB pH 5,6 0 3m 3m 3m 0 3m 3m 1or

TB pH 4,2 0 3m 3m 3m 0 3m 3m 1or

KOH/PAaS 0 2 2 2 0 2 2 2

PA/Bh/KOH/PAS 0 0 0 0 0 2 2 2

KOH/PAa/Bh/PAS 0 3 3 3 0 3 3 3

m, metachromasia; M, magenta; or, ortochromasia; P, purple.
Staining intensity: 0, negative; 1, slightly positive; 2, moderate; 3, strong.
aGoblet cells with different histochemical profiles were differentiated.
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cells from the main lumen secrete GCs with sialic acid O-acyl substi-

tuted at C7, C8, or C9 (Figure 5f,g).

3.3 | Lectin histochemical study

The lectin histochemical method revealed different specific sugar resi-

dues in the groove and the main lumen of the ascending colon (Table

3). The Con-A, WGA, RCA-I, and PNA lectins showed the same binding

pattern in both sectors, exhibiting an intense labeling both in the glyco-

calyx and the goblet cells (Figures 6a–d and 7c–f). However, the colo-

nic groove showed a lectin histochemical profile that differs from the

rest of the ascending colon in all the studied regions. The DBA lectin

gave a negative reaction in the groove but a positive in the main lumen

intensively labeling the glycocalyx and the goblet cells of the upper and

medium regions of the intestinal glands (Figure 6e,f). Although the SBA

lectin strongly labeled the glycocalyx of both sectors, it only showed

affinity for goblet cells outside the groove (Figure 7a,b). Conversely,

UEA-I evidenced L-fucose residues in goblet cells of the whole organ,

except in cells in the base of the intestinal glands of the main lumen

(Figure 7g,h).

3.4 | Immune histochemical study to detect

interstitial cells of Cajal

The ascending colon wall lining the main lumen presented cells strongly

immunolabeled in the myenteric plexus and throughout the thickness

FIGURE 4 Lagostomus maximus, in situ characterization of the glycosylation pattern of the ascending colon. (a) Microphotography of a colonic
ridge, AB pH 2.8/PAS. (b) Detail of figure (a) showing the abrupt change in the histochemical profile of goblet cells (see dotted line), AB pH 2.8/
PAS. (c) Microphotography of the lateral ridge limiting the main lumen of the colon (CLS), AB pH 2.8/PAS. (d) Microphotography of a intestinal
crypt in the side of the ridge limiting the colonic groove (GS), AB pH 2.8/PAS. (e) Nonpapillated ridge showing an abrupt change in the
histochemical pattern of goblet cells (see dotted line), AB pH 1.0/PAS. (f) Detail of figure e, AB pH 1.0/PAS. Arrow head, large caliber vein; CLS,
lateral border of the ridge limiting the main lumen; G, groove; GoA, goblet cell AB/PAS positive; GoB, goblet cell PAS positive; GoC, goblet cell AB
positive; GS, lateral border of the ridge limiting the groove; MLu, main lumen; R, ridge. Scale bar: 500 mm (a, e); 250 mm (b, f); 75 mm (c); 50 mm (d)
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of the inner circular layer and the outer longitudinal layer of the tunica

muscularis (Figure 8). Because of their location and morphology these

cells are classified as myenteric ICC (ICC-MY) and intramuscular ICC

(ICC-IM), respectively. The ICC-MY showed a multipolar morphology

(Figure 8b) whereas the ICC-IM presented a fusiform body with few

branched processes orientated according to the direction of the major

axis of the muscle fiber (Figure 8a,c).

In the colonic groove ICC-IM were identified only in the inner cir-

cular layer (this region of the ascending colon lacks a longitudinal layer).

Moreover, numerous c-kit positive cells were detected in the submuco-

sal surface of the circular muscle (ICC-SM; Figure 9). This ICC-

subpopulation extended from ridge to ridge, forming a continuous

band of multipolar cells with thin, long, and interdigitated processes

(Figure 10).

4 | DISCUSSION

4.1 | Comparison of the colonic groove morphology

within hystricomorph rodents

The colonic separation mechanism (CSM) has been studied in differ-

ent species of lagomorphs and rodents (Bj€ornhag & Snipes, 1999;

Hagen et al., 2015; Takahashi & Sakaguchi, 2000). However, the his-

tological characteristics of this adaptation to herbivory have been

described only in few studies (Kotz�e et al., 2009; Snipes et al., 1988).

Our results show that although the anatomical and histological orga-

nization of the colonic groove of Lagostomus maximus is similar to

that of other hystricomorph rodents, this species also possesses its

own distinctive features. The colonic ridges of L. maximus has a cen-

ter of connective tissue with irregular large caliber veins (Kotz�e et al.,

2009; Snipes et al., 1988). It is possible, as proposed by Kotz�e et al.

(2009) as seen in all rodent species that have been studied. These

large veins supposedly generate the swelling of the ridges as a con-

sequence of the high blood irrigation, and thus compartmentalize the

lumen. Because the existence of these large veins has been

described in every studied species, the groove closure mechanism

may be common to all rodents. In some species of the African mole

rats (Rodentia, Bathyergidae) the presence of projections at the end

of the ridges that would further facilitate the closure of the groove

(Kotz�e et al., 2009). In contrast, no additional structures have been

found in the ridges of L. maximus and Myocastor coypus to contribute

to the separation of the main lumen of the groove.

Differences among species have also been observed in the struc-

tural organization of the tunica muscularis. Contrary to the description

made by Kotz�e et al. (2009) on the six species of Bathyergidae, in our

study the tunica muscularis of L. maximus showed significant variations

in both muscle layers in the colonic groove. It showed an inner circular

layer formed by bundles of smooth muscle fibers separated by abun-

dant connective tissue whereas the longitudinal outer layer gradually

decreased in thickness and disappeared at the height of the ridges.

FIGURE 5 Lagostomus maximus, in situ characterization of the
glycosylation pattern of the ascending colon. (a) Mucosa and
submucosa of a colonic ridge, TB pH 5.6. (a) Detail of the goblet
cells at the basal region of the intestinal glands, TB pH 5.6. (b)
Mucosa lining the main lumen of the colon, TB pH 5.6. (c) Ridge of
the colonic groove, KOH/PA*S. (d) Mucosa lining the main lumen,
KOH/PA*S. (e) Mucosa lining the colonic groove, KOH/PA*S. (f)
Microphotography of a colonic ridge showing an abrupt change in
the histochemical pattern of goblet cells (see dotted lines), PA/Bh/
KOH/PAS. (g) Detail of figure f. arrow head, large caliber vein;
black arrow, goblet cells with orthochromatic reaction; CSL, lateral
border of the ridge limiting the main lumen; Go, goblet cells; GS,
lateral border of the ridge limiting with the groove; R, ridge; white
arrow, goblet cells with metachromatic reaction. Scale bar: 100 mm
(a); 50 mm (b); 40 mm (d, e); 250 mm (c, f, g)

TABLE 3 Lectin histochemical analysis of the ascending colon of
Lagostomus maximus

Ascending colon

Lectin Groove Main lumen

Glycocalyx Goblet cells Glycocalyx Goblet cells

Con-A 2 2 2 2

WGA 3 2 3 2

DBA 0 0 3 3a

SBA 3 0 3 3

RCA-I 3 2 3 2

PNA 3 2 3 2

UEA-I 1 2 1 2a

Staining intensity: 0, negative; 1, slightly positive; 2, moderate; 3, strong.
aOnly the cells of the upper and middle region of the intestinal crypts
presented positive reaction.
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Similar histological characteristics were described for M. coypus

although the organization of the bundles of the inner circular layer dif-

fered from that of L. maximus (Snipes et al., 1988). In contrast, an

increase in thickness of the outer longitudinal layer exactly beneath the

ridges that limit the groove was observed in six species of naked mole-

rats (Kotz�e et al., 2009). Although noticeable differences among species

were observed, rodents show changes in the histological characteristics

of the tunica muscularis at the height of the ridges. The high structural

specialization of the muscle tissue is probably linked to the antiperistal-

tic movements in the colonic groove that transport the luminal content

in a retrograde way (Takahashi & Sakaguchi, 2006). It is likely that each

muscle bundles of the inner circular layer of the tunica muscularis of

L. maximus may act as an individual functional unit that works together

to carry out specific functions.

4.2 | Glycosylation pattern of L. maximus colonic

groove: Functional implications

Several studies have demonstrated that rodents transport through the

CSM a mixture of bacteria and mucus from the ascending colon to the

cecum to maintain the bacterial fermentation process (Snipes et al.,

FIGURE 7 Lagostomus maximus, lectin histochemistry of the
longitudinal colonic groove (a, c, e, g) and of the ascending colon
wall lining the main lumen (b, d, f, h). (a, b) SBA. (c, d) RCA-I. (e, f)
PNA. (g, h) UEA-I. Arrow, glycocalyx; Go, goblet cell. Scale bar: 30
mm (a–c); 25 mm (d–g); 50 mm (h)

FIGURE 6 Lagostomus maximus, lectin histochemistry of the
longitudinal colonic groove (a, c, e) and of the ascending colon wall
lining the main lumen (b, d, f). (a, b) Con- A. (c, d) WGA. (e, f) DBA.
Arrow, glycocalyx; Go, goblet cell; mm, muscular mucosa. Scale bar:
20 mm (a); 30 mm (b); 60 mm (c); 40 mm (d–f)
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1988; Takahashi & Sakaguchi, 2000). Because the selective transport

of bacteria to the cecum is produced by mucins secreted in the colonic

groove the mechanism is considered mucus dependent (Sakaguchi,

2003). Although the CSM largely depends on the mucus synthesized

by the groove goblet cells, no exhaustive study on the histochemical

characteristics has been done until now. This is the first complete anal-

ysis on the glycosylation pattern of mucins secreted in and out of the

colonic groove, since so far, most research has focused mainly on the

morphological and physiological characteristics of this anatomic adap-

tation (Kotz�e, van der Merwe, & O’Riain, 2006; Kotz�e et al., 2009;

Snipes et al., 1988; Takahashi & Sakaguchi, 2000, 2006).

The GCs analysis showed differences among goblet cells in and

out of the colonic groove, this being the first time an abrupt change

in the glycosylation pattern of the intestinal tract of L. maximus is

described (Tano de la Hoz et al., 2014, 2016). The observed varia-

tion of the ascending colon histochemical profile at the ridges level

suggests that the glycosylation pattern of mucus plays a key role in

the functioning of the groove of L. maximus. As described by Hans-

son (2012), mucus can trap bacteria in the intestinal tract lumen in

many ways. First, bacteria can get trapped into the mucin polymeric

network or they may bind to the great variety of mucus glycans

through fimbrial and afimbrial adhesins which specifically recognize

different types of carbohydrate residues. Because of the signifi-

cance of mucus composition in bacterial aggregation, it is possible

that the distinct histochemical profile of the colonic groove gener-

ate specific anchorage sites for the high density of bacteria in the

region. In addition, as it has been demonstrated in other research,

the presence of highly glycosylated mucins may limit the access of

pathogenic bacteria to the cell surface by steric hindrance

(McGuckin, Lind�en, Sutton, & Florin, 2011).

Published evidence shows that mucins interact with the intesti-

nal microflora dynamically and adaptively (Corfield, 2015). Freitas,

Axelsson, Cayuela, Midtvedt, & Trugnan (2002) have shown that the

microbiota induces modifications of the intestinal mucin glycosyla-

tion to produce an increase secretion of sulfated mucins. Similarly,

our results documented that the mucus secreted by goblet cells of

the colonic groove displays a greater proportion of sulfomucins than

that produced by the rest of the goblet cells from the ascending

colon. Diverse studies have demonstrated that sulfate groups confer

mucus a greater resistance to degradation by bacterial glycosidases

and host proteases (McGuckin et al., 2011; Roberton & Wright,

1997). Moreover, studies on the ontogenetic development of the

mammalian intestinal tract have demonstrated an increase in acidic

mucin secretion during the fetal stages that would probably contrib-

ute to improve the innate immunological response in the prenatal

stages (Beyaz & Liman, 2009). In view of the foregoing background

and because the colonic groove lumen transports more bacteria than

the main lumen of the ascending colon (Takahashi & Sakaguchi,

2006), it is possible that the sulfomucins secreted in the L. maximus

colonic groove may be implicated in the protection of mucosa to pre-

vent the proliferation of pathogenic bacteria.

As for the different types of sialomucins secreted by goblet cells,

the histochemical analysis also revealed variations between the colo-

nic groove and the main lumen. Although the presence of GCs with

sialic acid residues was evidenced in all goblet cells from the ascend-

ing colon, our results demonstrated that only in the main lumen of L.

FIGURE 8 Lagostomus maximus, immunohistochemistry anti-c-kit
of the ascending colon wall lining the main lumen. (a) Positive cells
in the circular layer of the tunica muscularis. (b) Positive cells at
the myenteric plexus level. (c) Positive cells in the longitudinal
layer of the tunica muscularis. Arrow, cytoplasmic prolongation;
arrow head, ICC; TMC, inner circular layer of the tunica muscularis;
TML, outer longitudinal layer of the tunica muscularis. Scale bar:
30 mm

10 | TANO DE LA HOZ ET AL.



maximus GCs with sialic acid O-acyl substituted at C7, C8, or C9 are

secreted. Similarly, other studies have described a high proportion of

O-acetylated sialomucins in the colon of humans and rodents

(Accili, Menghi, & Gabrielli, 2008; Mastrodonato et al., 2013). As

previously proposed, the acetylation of sialic acid residues can

substantially modify its functional role in the diverse biological proc-

esses (Angata & Varki, 2002). The higher degree of acetylation of

sialic acid residues secreted by goblet cells from the main lumen alter

the viscoelastic and protective properties of the mucus, and thus

improving the resistance to bacterial neuraminidases (Mastrodonato

et al., 2013).

The lectin binding pattern also presented some variations between

the colonic groove and the main lumen of the ascending colon of L.

maximus, in the glycocalyx as well as in the goblet cells. Freitas et al.

(2002) showed that the lectin histochemical pattern of the secreted

mucins. We suggest that the differences found in the present study

may be also the result of the interaction between mucins and bacteria

transported through the colonic groove.

4.3 | Distribution pattern of the interstitial

cells of Cajal

The motor activity of the gastrointestinal tract (GIT) is a complex physi-

ological process that implies the interaction of three cell types: the

enteric neurons, the interstitial cells of Cajal (ICC) and the smooth mus-

cle cells (Mazet, 2015). Advances in the last decades have improved

the comprehension of the ICC role in the GIT, and shown that they are

an integral part of the gastrointestinal motor apparatus (Mazzone &

Farrugia, 2007). However, to the present there are no studies on the

ICC-distribution pattern in the colonic groove of rodents. According to

the classification made by Sanders, €Ord€og, Koh, Torihashi, & Ward

(1999), the immunohistochemical detection of ICC demonstrated the

existence of different subpopulations in the ascending colon of L. maxi-

mus. Considering the numerous physiological studies performed on the

ICC functional role (Mazzone and Farrugia, 2007; Sanders, Kito,

Hwang, & Ward, 2016; Sanders et al., 1999), we can infer that the

diverse subtypes found would participate in the intestinal motility of L.

maximus acting as mechanosensors, mediating in neurotransmission,

facilitating the propagation of electrical events or acting as pacemaker

cells. Even though the ICC from the submucosal surface of the circular

muscle (ICC-SM) have been described as slow wave generating cells in

other mammal’s colon (Mazzone & Farrugia, 2007), our results demon-

strated that this subcellular type is within the ascending colon,

restricted just to the colonic groove of L. maximus. Since Takahashi &

Sakaguchi (2000) have determined that the groove transports mainly

bacteria in a retrograde way by antiperistaltic mechanisms, it is possible

that the motor activity of this region may be related to the ICC-SM

singular distribution pattern.

FIGURE 9 Lagostomus maximus, immunohistochemistry anti-c-kit of the colonic groove. (a) Microphotography of a ridge showing a contin-

uous band of c-kit positive cells in the submucosa region limiting the tunica muscularis. (b, c) Detail of the tunica submucosa with c-kit pos-
itive cells. Arrow, ICC-SM; arrow head, large caliber vein; CLS, lateral border of the ridge limiting the main lumen; G, groove; Gs, lateral
border of the ridge limiting the groove; MLu, main lumen; mm, muscular mucosa; R, ridge; SubM, tunica submucosa; TM, tunica muscularis.
Scale bar: 500 mm (a); 100 mm (b, c)
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