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REVIEW

The application of molecular topology for ulcerative colitis drug discovery
Carolina L. Bellera, Mauricio E. Di Ianni and Alan Talevi

Medicinal Chemistry/Laboratory of Bioactive Research and Development, Department of Biological Sciences, Faculty of Exact Sciences, University
of La Plata (UNLP), La Plata, Buenos Aires, Argentina

ABSTRACT
Introduction: Although the therapeutic arsenal against ulcerative colitis has greatly expanded (includ-
ing the revolutionary advent of biologics), there remain patients who are refractory to current medica-
tions while the safety of the available therapeutics could also be improved. Molecular topology
provides a theoretic framework for the discovery of new therapeutic agents in a very efficient manner,
and its applications in the field of ulcerative colitis have slowly begun to flourish.
Areas covered: After discussing the basics of molecular topology, the authors review QSAR models
focusing on validated targets for the treatment of ulcerative colitis, entirely or partially based on
topological descriptors.
Expert opinion: The application of molecular topology to ulcerative colitis drug discovery is still very
limited, and many of the existing reports seem to be strictly theoretic, with no experimental validation
or practical applications. Interestingly, mechanism-independent models based on phenotypic responses
have recently been reported. Such models are in agreement with the recent interest raised by network
pharmacology as a potential solution for complex disorders. These and other similar studies applying
molecular topology suggest that some therapeutic categories may present a ‘topological pattern’ that
goes beyond a specific mechanism of action.
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1. Introduction

Ulcerative colitis (UC) is a type of inflammatory bowel disease.
It is a chronic condition that affects the colonic mucosa, start-
ing in the rectum and extending to part of, or the entire, colon
[1]. The disease is frequently characterized by alternating
cycles of exacerbation and remission. Patients with UC suffer
from rectal bleeding and bloody stools, diarrhea, urgency, and
abdominal pain. It can be regarded as a complex disorder,
with environmental [2–4] and constitutive [4,5] components.
The complex and not fully understood physiopathology com-
prises the interplay between the dysregulated immune sys-
tem, the intestinal flora, and the epithelial barrier function. A
summary of the immunopathogenic mechanisms known to be
involved in UC is presented in Figure 1. The diagram has been
produced from information in the works of Danese et al. [6],
Hindryckx et al. [7], and Fuss and Strober [8].

There exists a wide array of currently approved therapies
for the treatment of UC, comprising a diversity of mechanisms
of action and both small molecules and biologics. The choice
of the therapeutic approach depends on a number of factors
such as disease severity, treatment goal (to induce or maintain
remission), response to treatment, and tolerability [9,10].

The first-line therapy for mild-to-moderate UC is based on
administration of aminosalicylates, in particular, 5-aminosaly-
cilic acid (5-ASA) or 5-ASA prodrugs (e.g. balsalazide, sulfasa-
lazine). Their mechanisms of action are diverse and not
entirely understood. 5-ASA elicits a potent inhibitory effect
on a number of pro-inflammatory mediators, such as

leukotrienes, interleukin-1 (IL-1), and tumor necrosis factor
alpha (TNF-α) [11]. It has been observed that 5-ASA is an
agonist for the peroxisome proliferator activated receptor
gamma, which plays a key role in the regulation of inflamma-
tory signaling pathways [12,13]. While rectal administration of
5-ASA or its prodrugs allows effective treatment of distal UC,
acceptance of such route varies significantly from country to
country, which relates to psychosocial issues but also, in some
cases, medical staff attitudes, and beliefs [14]. In order to
exploit the less invasive oral route of administration,
delayed-release dosage forms have been designed that allow
building up effective levels of the drug in the colon simulta-
neously alleviating the high burden of daily dosage units that
would be required otherwise.

Glucocorticosteroids are the first choice for patients refrac-
tory to 5-ASA, and to induce remission in moderate-to-severe
UC, though they seem to have no benefit as maintenance
therapy [7,9,15]. What is more, they present risk of steroid
dependency [16], steroid-induced metabolic disturbances
[15], and opportunistic infections [17]. The oral or rectal routes
are preferred for mild-to-moderate cases; second-generation
corticosteroids as budesonide and beclomethasone dipropio-
nate display high first-pass effect and thus reduced systemic
activity [10,15]. Intravenous corticosteroid rescue therapy is
also used for acute severe UC cases.

Immunomodulators (e.g. thiopurines) are administered to
patients with moderate UC who are refractory or do not
tolerate steroids. Although they have shown efficacy for both
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induction and maintenance of remission [10], they are prefer-
ably used for the later [9,15]. They present a number of
deleterious effects (in around 20% of the patients) that limit
their application, including bone marrow suppression, pan-
creatitis, hepatotoxicity, and increase risk of opportunistic
infections (synergic with that of steroids), among others
[9,10,15].

A diversity of biologics targeting specific immunological
pathways comprise the last generation UC treatments [17],
including anti-TNF agents (infliximab, adalimumab, golimu-
mab) and anti-adhesion therapies (vedolizumab), though
other emerging therapies are presently at clinical trials.
Biologics are used in moderate-to-severe UC, and in patients
that have shown inadequate response or that have medical
contraindications to conventional therapies. A drawback of
biologics used to treat UC is their risk of severe adverse
events, such as acute infusion reaction, severe serum sick-
ness, opportunistic infections, or lymphoma [7,9,18,19],
although at least some of these complications appear to be
solved or reduced with the most recently approved medica-
tions. In some cases (anti-TNF agents), diminished efficacy
after repeated treatment has been observed [10,18]. Other
aspects to be considered are that biologics must be adminis-
tered parenterally and that they are significantly more expen-
sive than conventional therapies [20], which may limit their
accessibility in some scenarios.

Article highlights

● Currently approved treatments against ulcerative colitis have been
discovered through immunological studies. The number of studies
addressing the discovery of drug candidates using computer-aided
methodologies is still scarce. Molecular Topology might be the domi-
nant approach for ligand-based approximations in the field of ulcera-
tive colitis computer-aided drug discovery.

● Molecular Topology, jointly with QSAR, can be applied to explore the
ever growing chemical space in a very efficient manner.

● Topological indices are graph-invariant descriptors obtained from
chemical graphs by algebraic operations. They are, in general, con-
formation- and orientation-independent (thus, no geometry optimi-
zation of any sort is required to obtain their values). Generally
speaking, they are insensitive to geometric and space isomers.

● Applications of Molecular Topology in different fields of drug discov-
ery suggest that, independently of their particular mechanisms of
action, drugs that belong to a given therapeutic category tend to
share similar topologies.

● Among the many QSAR studies that use molecular topology to
identify novel drug candidates for ulcerative colitis, a considerable
number of articles report models that include topological autocorre-
lations weighted by different atomic properties (e.g. electronegativ-
ity, Van der Waals volumes). Interestingly, those descriptors are
strongly related with the pharmacophore concept, but from a topo-
logical perspective instead of a space geometric one.

● Being a complex disease, ulcerative colitis should be approached
from network based pharmacology perspective. QSAR models that
model phenotypic responses (e.g. activity in an in vivo model of
colitis) could prove very useful to find novel effective treatments.

This box summarizes key points contained in the article.

Figure 1. Simplified diagram of the immunopathogenic mechanisms involved in UC. Mucosal barrier abnormalities in UC may be developed by many issues, namely:
genetic abnormalities resulting in the reduced production of mucus components and thus compromise to the initial barrier to microbial access to epithelial cells;
release of glycolipids from epithelial cells and bacteria and subsequent stimulation of NK T cells that cause epithelial cell barrier abnormalities via direct cytotoxicity
or production of IL-13, which in turn leads to enhanced absorption of bacterial products and the generation of antibacterial antibodies; infiltration of neutrophils
between epithelial cells and into the gut lumen; tight junction defects. Increased absorption of bacterial products stimulates dendritic cells and macrophages,
resulting in the production of proinflammatory cytokines.
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Whereas great advance has been made in the last decade
regarding UC management, there are still research goals to be
met in the development of novel drugs and dosage forms [9,21],
among them improved efficacy on refractory patients, improved
safety and development of formulations capable of delivering
effective levels of the therapeutic agent in the colon with
reduced systemic absorption (in particular, for local treatments).

Molecular topology (MT) is an area ofmathematical chemistry
consisting of the topological description of molecular structures
[22–24]. Starting from mathematical graph theory and integrat-
ing it with chemical notions, MT studies the connectivity of the
atoms forming a molecule. From appropriate graph representa-
tions, MT most frequently derives matrixes and, by algebraically
operating on such matrixes, yields a great diversity of molecular
descriptors (topological indices or topological descriptors) that
can be used both in the frame of Quantitative Structure-Activity
Relationships (QSAR) theory and for descriptive statistical pur-
poses (i.e. to rationally explore the chemical space). By far, the
most common application of topological descriptors involves
finding a quantitative correlation between the molecular struc-
ture and one or more biological responses (expressed as a con-
tinue output or as a discrete class label output). In spite of years
of strong dominance by the structure-basedmethods in the drug
discovery arena, the QSAR field seems healthy and even expand-
ing [25,26]. The use of MT in QSAR (either as purely topological
models or by combining topological indexes with other sort of
molecular descriptors) has exponentially grown in the later years:
today, MT covers more than 20% of all articles dealing with QSAR
[22]. As we will review in the following sections, it is the domi-
nant approach for ligand-based approximations in the field of UC
drug discovery [27–30].

Here, we will first present a brief introduction to MT, after
which we will discuss the existing reports on MT applications
for UC drug discovery, either reporting ‘pure’ topological
models or combinations of topological indexes with other
classes of molecular descriptors. The authors would like to
state that they are not experts on UC, but have years of
experience on ligand-based drug discovery approximations
and MT applications. Accordingly, the article is focused on
the computational aspects of the reviewed studies.

2. Virtual screening, QSAR, and molecular topology

The accessible chemical space is growing fast and exponen-
tially. Back in 2012, the number of compounds indexed in the
Chemical Abstract Service accounted to about 70 million.
Today, that number totals more than 130 million, which
speaks of an astonishing average expansion of 12 million
new chemical entities per year during the last 5-year period.
Judging from the current numbers in PubChem Compound (at
present more than 93 million entries) and ZINC database
(today over 35 million entries), a quite considerable proportion
of the accessible chemical space comprises small, drug-like
molecules. This portrays an encouraging picture, since it
speaks of an impressive chemical diversity to seek for new
lead compounds which in turn will be submitted to lead
optimization programs. However, it also poses a valid ques-
tion: can we explore such a vast chemical space in an efficient
manner?

Efficient screening tools have been developed to address
this challenge, including wet approaches such as high-through-
put screening and ultrahigh-throughput screening, which cou-
ple miniaturization and automated screening platforms [31,32].
Alternatively, in silico tools, i.e. virtual screening (VS), can be
applied. In VS campaigns, a wide spectrum of computational
methods is used to rank digital chemical collections or libraries
to establish which compounds (the top-ranked ones) are more
likely to obtain positive results when subjected to in vitro and/
or in vivo models. VS has been conceived to minimize the
volume of experimental testing and optimize the results at
such stage, thus being advantageous in terms of cost-efficiency,
bioethics, and environmental impact. Some versions of it can be
performed with very accessible technology, especially ligand-
based approximations, with many valuable resources to imple-
ment VS campaigns (from specialized software to online che-
mical repositories) being freely available.

Whereas the advent of high-performance computing and
low-cost parallel computing has allowed the use of complex,
computational demanding approaches such as structure-
based approximations to explore large chemical databases
[33,34], it is debatable if the increment in computing power
will cope with the exponential, continuing expansion of the
chemical space to make possible large-scale exploration of the
known small molecule space (or, furthermore, biologics).
Possibly, efficient ligand-based approaches will persist as inde-
pendent approaches, and also as initial screening or prescre-
ening tools to reduce the number of candidates submitted to
structure-based methods to a manageable size. Undoubtedly,
among the most efficient ligand-based approximations to
explore large chemical collections are two-dimensional (2D)
similarity-based methods [35,36] and MT-based QSAR [22,24].
An additional advantage of both 2D similarity and MT is that,
being conformation-independent approaches, they require lit-
tle or no molecular pre-processing (besides inevitable chemi-
cal structures curation). This feature renders these methods
highly reproducible and less dependent on user choices. VS is
the most frequent application of MT, but it is also possible to
approach drug design through the inverse QSAR paradigm
[22,23,37,38] (designing novel compounds with the
topological requirements needed to elicit a given biological
activity).

Interestingly, 2D similarity searches and MT are extensively
related, especially if we take into consideration that circular
molecular fingerprints (for example, extended connectivity
fingerprints) are being increasingly applied in chemical search
engines and similarity-based VS. In fact, the top-ranked com-
pounds in most similarity searches are compounds with a very
close topology to the query molecules. It has been stated that
the discovery of phenytoin, more than a century ago, was the
result of what we would now call a 2D similarity method [39]:
phenytoin was the product of a search among nonsedative
structural relatives of phenobarbital for agents capable of
suppressing electroshock convulsions in laboratory animals
(Figure 2). There are many successful stories regarding VS
campaigns based on MT that have helped prioritizing com-
pounds to the preclinical stage of development. For instance,
Talevi et al. used a topological model to screen the Merck
Index 13th database and discovered the anticonvulsant effects
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of propylparaben and methylparaben, which were presumed
to act by blocking voltage-operated sodium channels [40]. The
blocking effects of propylparaben on sodium channels was
later confirmed [41], which could explain its effects against
the epileptiform activity induced by 4-aminopyridine in hipoc-
campal CA1 pyramidal cells [42]. Moreover, propylparaben in
combination with diazepam showed neuroprotective effects in
the pilocarpine-induced status epilepticus model in rats [43].
In another successful MT application, Bellera and co-workers
used a topological model in a drug repurposing campaign and
found that the antibiotic clofazimine and the antihypertensive
benidipine display trypanocidal effects against Trypanosoma
cruzi (etiologic agent of Chagas disease). The trypanocidal
effects of these drugs were later confirmed in acute and
chronic mice models of Chagas [44,45]. Besides hit identifica-
tion, MT has found many other interesting applications within
the drug discovery field: for instance, it has been applied to
explain the differences between approved drugs, clinical can-
didates, and bioactive compounds [46] and even to estimate
the safe starting dose in phase I clinical trials [47].

But what is MT? MT is intrinsically related to mathematical
graph theory [48]. Graphs are mathematical structures used to
describe pairwise relations between objects. A graph is made
up of vertices or nodes, which are connected by edges. In the
realm of Chemistry, graph theory produces chemical graph
theory. Atoms are thus represented as vertices whereas che-
mical bonds become edges. Such molecular graph (and graph-
derived elements such as topological matrixes and topological
indices) can prove valuable to describe the interconnectivity
between atoms in a molecule and, therefore, its topology (e.g.
linearity, branching, presence and distribution of rings). What
is more, vertices and edges can be embedded with additional
chemical information, expanding the descriptive power of
graph-derived mathematical entities. This later possibility is
extremely relevant to model bioactivities, since heteroatoms
come to play in almost any ligand-target binding event.

At the core of the chemical graph theory lies the adjacency
matrix. From a hydrogen-suppressed molecular representa-
tion, a N × N symmetric matrix can be obtained whose

elements Aij equal 1 if vertices i and j are directly connected
through a covalent chemical bond, and 0 otherwise. The sum
of all entries in the ith row or the jth column provides the
degree or topological valence δ of vertex i or j, respectively.
Professor Milan Randić defined the first connectivity index
(now known as Randić index) back in 1975 [49]. It was defined
as the sum of the degrees of the two vertices adjacent to each
edge, extended to all edges of the graph. Another very rele-
vant topological matrix is the distance matrix, whose elements
Dij equal the number of edges joining two vertices i and j by
the shortest path, provided that i and j are different, or 0
otherwise. The first topological index ever defined, the
Wiener index, equals one half of the sum of all entries in the
distance matrix [50]. These two examples (the simpler at hand,
illustrated in Figure 3) depict the general procedure to obtain
topological descriptors. It is interesting to note that the num-
bering of the vertices of the graph does not influence the
value of the graph-derived descriptors: they are graph invar-
iants. In principle, the molecular graph is not influenced by
any deformation introduced to the molecule: topological
indices are conformation-independent unless deliberately pur-
sued otherwise. Reproducibility and ease of calculation are
thus two of the important (and interrelated) virtues of topo-
logical descriptors. No conformational analysis, no geometry
optimization, no orientation, or conformation-related deci-
sions are required to compute topological descriptor. The
modeler is released from the burden of answering the difficult
question ‘What conformation should be used to compute a
molecular descriptor?’, and from the noise that defining a
conformer could introduce to the QSAR model [51,52]. Note
that the former question is particularly difficult to answer if, in
the frame of a VS campaign, one pretends to apply a QSAR
model to a large chemical database. At the other side of the
coin, the values of the topological descriptors are usually
insensitive to space or even geometry isomers, with some
very specific exceptions (see, for instance, [53]).

Frequently, informative and more complex topological
descriptors are derived through modified adjacency or distance
matrixes. For instance, the valence topological charge indices

phenytoin phenobarbital

Figure 2. Chemical structures of anticonvulsants phenytoin and phenobarbital.
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are obtained from the ‘electronegativity-modified adjacency
matrix,’ which is similar to the adjacency matrix, but with the
elements of the main diagonal replaced by the corresponding
Pauling electronegativity value of the ith atom, weighted by two
for each non-carbon, non-hydrogen atom [23]. Such modified
matrix is multiplied by the inverse square distance matrix and
only then the values of the descriptors are calculated.

The reader may probably capture, from the previous
paragraphs, that chemical interpretation of topological
descriptors can be a challenging task that requires a com-
bination of chemical and mathematical skills. Such process
could be even more complicated if one considers more
complex topological descriptors such as eigenvalues of a
topological matrix or spectral moments [22]. In contrast,
understanding the chemical meaning of strictly physico-
chemical descriptors such as the log transformation of octa-
nol–water partition coefficient (log P) or the polar surface
area is more immediate for someone with a strong chemical
background.

A comprehensive review of the existing topological
descriptors is out of the scope of this article and almost
impossible due to the large number of such indices reported
in literature. Nevertheless, the curious reader is directed to the
essential handbook on molecular descriptors by Todeschini
and Consonni [54].

Once the topological descriptors have been calculated,
statistical correlations can be explored between a subset of
descriptors (independent variables) from a descriptor pool,
and the observed values of a biological response of interest
(dependent variables). The QSAR approach will seek mathe-
matical functions or algorithms that respond to the general
from:

Y ¼ f x1; x2; x3; . . . ; xnð Þ
where Y represents the dependent variable (model output or
response) and xi represents the ith molecular descriptor
allowed into the model. The response may well be a contin-
uous response (in the case of regression models) or a discrete

one or class label (in the case of classifiers). The form of the
mathematical function correlating Y with a set of descriptors
will depend on the modeling technique (e.g. it will be linear in
multi-linear regression, and nonlinear in the case of neural
networks). There are also a variety of feature selection techni-
ques available (e.g. stepwise procedures, genetic algorithms,
replacement method, among many others). Discussing the
details of such approaches and the steps to be followed to
build a QSAR model is out of scope. In general terms, however,
the procedure comprises the following steps [22,51]: compila-
tion of a data set of compounds for which the response of
interest has been experimentally assessed; computing a pool
of molecular descriptors; partitioning of the data set into
representative training and test sets; using the training set to
calibrate the model (selecting a subset of relevant descriptors
from the pool and weighting their contribution to explain the
variability in the response); validating the model (internally,
externally and sometimes experimentally). Any application of
the model will require careful applicability domain assessment
[55,56], that is, estimating the response- and chemical struc-
ture-spaces where the model makes reliable predictions.

3. Molecular targets in UC

In the following section, we will discuss MT applications to the
discovery of potential new treatments for UC. We have con-
sidered reports on QSAR models purely based on topological
descriptors, but also studies that combined topological
descriptors with non-topological ones.

We have reviewed those (rather few) reports specifically
addressing the discovery of novel treatments for UC through
MT, but also reports that, using the QSAR approximation
jointly with topological descriptors, sought to identify com-
pounds acting on validated targets for UC (even if the authors
of the later were not seeking UC treatments specifically).

To identify validated targets of UC, we searched the
Therapeutic Target Database (TTD) [57]. Twenty-two different
targets were found whose activity, according to TTD records, is

Figure 3. From a molecular representation, a hydrogen-depleted graph is obtained and its vertices arbitrarily numbered. The adjacency matrix (up) and the distance
matrix (down) are obtained from such graph.
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regulated by known or potential UC treatments. Always
according to TTD records, 4 of them are known targets of
approved UC treatments, while 14 are targets of drug candi-
dates that reached clinical trials. The information retrieved
from TTD is summarized in Table 1. The research (alphanu-
meric) code provided by TTD was replaced by the common
name of the drug whenever available (e.g. eldelumab instead
of Anti-IP-10 or BMS-936557; andecaliximab instead of GS-
5745). It is worth noticing that, while valuable, TTD seems to
be incomplete. For example, tofacitinib, a new class of Janus
kinase (JAK) inhibitor that blocks JAK1, JAK2 and JAK3, to
modulate the signaling of a variety of IL receptors [18], has
been omitted despite recent positive results in Phase III trials
[58]. The IL-23/Th17 axis and IL-12/23 are also absent among
TTD results [59–61]. Such missing targets have been added to
our search.

For each identified target, we performed literature searches
in Scopus including the target name plus ‘QSAR’ or ‘molecular
topology.’ Additionally, we have included in the search all
documents containing the expressions ‘ulcerative colitis’ or
‘inflammatory bowel disease’ and ‘QSAR’ or ‘molecular
topology.’

4. Molecular topology in ulcerative colitis drug
discovery

4.1. Nuclear factor kappa B

Nuclear factor kappa B consists of a family of transcription
factors involved in proinflammatory signaling pathways
[62,63]. Upon activation by microbial products and proinflam-
matory cytokines such as IL-1 and TNF-α, nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) exerts a reg-
ulatory role in the transcription of an extensive number of
genes, including cytokines, chemokines, cell adhesion mole-
cules, factors of the complement cascade, and acute phase
proteins.

Back in 2011, Gálvez-Llompart et al. reported the first MT-
based VS campaign specifically focused in the discovery of
new treatments for UC [28]. They compiled a 121-compound
data set including 67 known NF-κB inhibitors and 54 presum-
ably inactive compounds retrieved from Merck Index, without
previous reports of activity on NF-κB. They used in-house
software (DESMOL11) and a commercial software (Dragon)
for calculation of topological descriptors, which were used to
build linear discriminant functions (classification models). The
obtained model included a topological charge index and sev-
eral connectivity indices, and achieved an overall accuracy of
84% on the training set. While the classification accuracy
decreased significantly for a small 26-compound test set, the
false positive rate remained very low, suggesting a high spe-
cificity model.

Interestingly, the authors reported, in the same article, a
second topological discriminant function derived from a train-
ing set of 15 compounds active at UC (with no regard to their
mechanism of action) and 16 presumably inactive compounds.
In other words, a phenotypic response and not a definite mole-
cular event was used to define the dependent variable of the
discriminant function. The model calibrated with such training
set achieved more than 80% accuracy on a 22-compound
external test set. It included four topological indices: the
eigenvalue sum from electronegativity weighted distance
matrix, a Geary autocorrelation weighted by atomic polariz-
abilities, a connectivity index and a distance/detour index
encoding information on fuse rings, and molecules’ cyclicity.
Both the NF-κB and the mechanism-independent model were
later applied in a VS campaign of the Merck index database
and the Microsource Pure Natural Product Collections.

The authors have used this same strategy (implementing
UC drug discovery campaigns that combine the simultaneous
application of mechanism-oriented models with mechanism-
independent models) in other studies, as the reader will
observe later in the text. Obtaining a model from a set of
active compounds that do not share a mechanism of action is

Table 1. List of targets of UC drugs retrieved from TTD (a drug targeting each target is included as example).

Target Drug Status

Alpha 4 beta 7 integrin Vedolizumab Approved
Prostaglandin G/H synthase 1 Mezalazine Approved
Oxidoreductase Olsalazine Approved
Tumor necrosis factor Infliximab Approved
Alkaline phosphatase Recombinant human alkaline phosphatase Research target
Prostaglandin E2 receptor, EP4 subtype KAG-308 Research target
Serine/threonine-protein kinase mTOR P-2281 Research target
Gastrin/cholecystokinin type B receptor S-0509 Phase II
Guanylate cyclase receptor SP-333 Phase II
Melanocortin receptor ASP-3291 Phase II
mRNA of Intercellular adhesion molecule-1 Alicaforsen Phase II
Mucosal addressin cell adhesion molecule 1 PF-00547659 Phase II
Small inducible cytokine B10 Eldelumab Phase II
92 kDa type IV collagenase Andecaliximab Phase II
Interleukin-13 receptor Tralokinumab Phase III
mRNA of Nuclear factor kappa B (TLR9 agonist) Cobitolimod Phase III
Guanylyl cyclase C Guanilib Phase III
5-lipoxigenase Zileuton Phase III
Antithrombin III Sulodexide Research target
Potassium-transporting ATPase alpha chain 1 S-pantoprazole Phase III
IL-1 and IL-6 TAK-114 Phase III
Integrin beta 7 Etrolizumab Phase III
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a bold and controversial decision that deserves some
discussion.

Traditionally, the idea that all the training examples used to
infer a QSAR model should share the same mechanism of
action (and the same binding mode) seemed rooted within
the QSAR community. It appeared to be a reasonable condi-
tion in the light of certain three-dimensional (3D) QSAR meth-
ods meant to establish, in an indirect way, the necessary
features for the ligand-target recognition event to occur [61–
64]. It was argued that 3D QSAR methods were conceived to
describe only one interaction step in the lifetime of ligands
[61], a statement supported by the fact that many 3D QSAR
methods are highly alignment-dependent. QSAR models
would try to encode molecular features favorable and non-
favorable to the pursued activity on the basis of some struc-
tural commonality (not necessarily an obvious one) across the
calibration examples. After all, at the core of QSAR theory lies
pattern recognition. The shared features, presumably, arose
from the fact that all the considered ligands could bind the
same target.

What is more, it was believed that only in vitro biological
data should be considered, since in vivo data (and for that
matter, phenotypic responses) reflect parallel processes (e.g.
transport, metabolism, binding to multiple targets) and by
definition is not possible to reach equilibrium in an in vivo
system [61,62]. In vitro data is ‘cleaner’ than in vivo data, in the
sense that interpretation of an in vitro assay is more straight-
forward and less affected by confounding factors or time-
dependent changes. However, reductionist approaches could
be dangerous when dealing with complex disorders (for
instance UC).

There are many good reasons to take orthodox QSAR prac-
tices with caution.

First, very frequently biological data emerging from pheno-
typic models (e.g. in vivo or cellular models) are used to obtain
QSAR models and even so the models achieve considerable
explanatory and predictive power (see, for instance [65–75], or
the study of Galvez-Llompart et al. under discussion).

Second, it is now understood that complex disorders (e.g.
mood disorders, neurodegenerative conditions, epilepsy) are
usually better addressed with drugs with complex pharmacol-
ogy [76–78]. Some authors believe that the ‘one target, one
drug’ paradigm has been disappointing in terms of innovative
treatments [79–81]. Note that many of the conventional and
last-generation treatments (biologics) for UC, including inves-
tigational drugs, are in agreement with the notion that some
health conditions should be approached from a holistic per-
spective to reestablish a healthy state. From corticosteroids to
monoclonal antibodies directly or indirectly targeting tran-
scription factors (e.g. NF-κB), effective drugs in UC trigger a
cascade of complex events that regulate several inflammatory
mediators simultaneously. Some recent examples of applica-
tions of the systems pharmacology philosophy in the field of
UC can be quoted. Muraro and Simmons developed an evolu-
tionary optimization algorithm integrating known molecular
interactions with gene expression data [82], which enable
identification of differentially regulated network modules.
The algorithm was applied to study experimental data derived

from microarray analysis of Crohn’s disease and UC biopsies
and human interactome databases. The analysis allowed the
extraction of dys-regulated subnetworks under different
experimental conditions (inflamed and non-inflamed tissues
in both diseases). The selected subnetworks included genes
and pathways of known relevance for inflammatory bowel
disease and revealed cross-talk among enriched pathways,
mainly the Janus kinase/signal transducer (JAK/STAT) signaling
pathway and the epidermal growth factor (EGF) receptor sig-
naling pathway. Furthermore, integration of gene expression
with molecular interaction data highlighted nodes that,
although not being differentially expressed, interact with dif-
ferentially expressed nodes and are part of pathways relevant
to inflammatory bowel disease. Emig et al. have used a net-
work-based approximation to propose new drug targets for 30
conditions, among them Crohn’s disease and UC [83]; they
demonstrated that their approach could possibly be used to
detect new drug repurposing opportunities. Under this per-
spective, going against the doctrine and using phenotypic
data might be in fact a better approach toward VS for novel
agents against UC.

Third, most topological indices are conformation- and
alignment-independent, and they are capable of describing
more general properties than those relevant for single binding
event. A substantial body of literature reporting successful
developing of mechanism-independent topological models
(using active training instances classified according to pheno-
typic responses) to identify drugs from a wide diversity of
therapeutic categories (antivirals, anticonvulsants, bronchodi-
lators, cytostatic drugs, antibacterials, antifungals, hypoglyce-
mic, to mention just a few examples), suggest that, no matter
the mechanism of action, drugs belonging to a particular
therapeutic category tend to share common topological fea-
tures [84–93].

Finally, QSAR theory has greatly evolved in the last years;
multitasking QSAR models are suitable to predict multiple
features, exploiting latent commonalities across tasks [94]. All
in all, there seems to be no good reason to exclude a model
where the mechanism is not known or when there are multi-
ple mechanisms operating [95], especially taking into consid-
eration the cumulative empirical evidence on MT ability to
predict therapeutic class without mechanistic insight.

4.2. Interleukins 6 and 8

Matsumoto et al. have described the role of the inflammatory
cytokine IL-6 in the establishment of chronic colitis [96] and
elevated levels of IL-6 have been observed in patients suffer-
ing from inflammatory bowel disease [97]. The small molecule
TAK-114, which downregulates TNF-α, IL-1, and IL-6, has
reached clinical trials as potential treatment for UC. The huma-
nized monoclonal antibody tocilizumab, which targets the IL-6
receptor, has been proposed as a potential new treatment for
Crohn’s disease [98]; recently, an anecdotical case of a patient
with UC and rheumatoid arthritis that received tocilizumab
and showed improvement was reported [99], although exacer-
bation after salvage therapy has also been reported [100].
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A similar approach to the one described in Section 4.1 has
been applied to find novel inhibitors of IL-6 [29].

The topological QSAR model was developed from 53 com-
pounds (25 actives and 28 inactives). It included only 3
descriptors but achieved an impressive 96% accuracy on the
training set, and around an 80% of accuracy on a 108-com-
pound test set. The selected independent variables were the
spectral moment 15 from edge adjacency matrix weighted by
resonance integrals, and the eigenvalue sums from Van der
Waals and electronegativity weighted distance matrixes. The
model was applied in a small VS campaigns on 28 compounds
with hypothetical activity against UC. Four of the compounds
(alizarin-3-methyliminodiacetic acid, calcein, (+)-dibenzyl-l-tar-
trate, and Ro 41–0960) (Figure 4) were selected by the model
and submitted to cellular models (Caco-2 cells and RAW 264.7
macrophages) where three of them inhibited IL-6 production
(the most potent, in the high nanomolar to low micromolar
range).

Other QSAR models related to different ILs, including topo-
logical descriptors but not specifically focused on UC treat-
ments, have been reported. For example, Pourbasheer et al.
reported a QSAR model for the prediction of IL-1 receptor-
associated kinase 4 (IRAK-4) [101]. IRAKs are a family of serine/
threonine kinases involved in cellular signaling downstream of
IL-1, IL-18, and Toll-like receptors [102]. They are critical for the
activation of signaling cascades such as NF-κB. The reported
model was built and validated from a reasonably diverse 65-
compound data set, which was split into a 53-compound
training set and a 12-compound test set. CODESSA and
Dragon descriptors were used as independent variables; a
combination of genetic algorithms and multi-linear regression
was applied to infer the model. The model included some
topological descriptors, such as Randić shape index path/
walk 5 and molecular walk count of order 9, in combination
with other non-topological features. Whereas the model dis-
played good performance in both training and test sets, no
practical applications of it have been reported. Similarly,
Assadolahi et al. used a combination of genetic algorithms

and partial least squares to predict inhibition of IL-8 receptor,
beta [103]. One hundred and thirty structurally heterogenous
antagonist of such receptor were compiled from literature,
and this dataset was representatively split in a 108-compound
training set and a 22-compound test set using the Kennard–
Stones algorithm. It showed good performance at the internal
and external validations, and clearly outperformed linear mod-
els (stepwise multilinear regression and partial least squares)
without the genetic algorithm-feature selection step. The
latent variables of the model included several topological
descriptors, among them a number of connectivity indexes,
Galvez topological charge indices, and topological autocorre-
lations. Molecular modifications were then introduced in the
data set compounds and the best model was applied in the
prediction of the IL-8 receptor inhibitory activity of the newly
designed compounds, though no experimental confirmation
was performed. A similar, simpler QSAR modeling study
focused on IL-8 receptor antagonists had previously been
reported by the same group [104] and, once again, the best
model included a topological autocorrelation (Geary autocor-
relation-lag 5 weighted by atomic Van der Waals volume) in
combination with non-topological molecular descriptors.

4.3. Tumor necrosis factor alpha

TNF-α is a validated target in UC; as described in Section 1,
infliximab, adalimunab, and golimunab are three approved
biologics for the treatment of UC that target TNF-α.

Very recently, the development of a discriminant function
to identify TNF-α inhibitors was reported [30]. Using a 189-
compound training set including 27 active compounds and
162 inactive ones and a pool of Dragon and DESMOL descrip-
tors, the authors obtained a 5-descriptor classifier exclusively
based on topological indices. Four of these descriptors were
topological autocorrelations (Broto–Moreau, Moran, and Geary
autocorrelations), which seem to confirm the ability of this
type of descriptors to correlate with different biological activ-
ities (note that the same type of descriptors has once and

alizarin-3-methyliminodiacetic acid calcein

RO-410960(+)-dibenzyl-l-tartrate

Figure 4. Potential UC treatments selected by molecular topology.
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again appeared in other previously reviewed models). The
reported discriminant function was validated with a 53-com-
pound test set. The classificatory accuracy in both the training
and test sets showed that the model has better performance
on the inactive than on the active category, suggesting better
specificity than sensitivity. In the same article, the authors
reported discriminant and multi-linear regression models for
inducible nitric oxide synthase (iNOS) inhibitory activity and,
interestingly, a discriminant function capable of identifying
compounds with activity in the dextran sulfate sodium (DSS)-
induced colitis model, that is, a phenotypic response (in line
with the previous discussion in Section 4.1). Also interesting is
the fact that the authors provided in vitro and in vivo valida-
tion to their models’ predictions, a step that is often omitted
in studies from other groups that have been reviewed here.
First, they conducted a small VS campaign on the four drug
candidates previously selected and tested in vitro as suppres-
sors of IL-6 production (Figure 4) [29], as previously stated in
Section 4.2. All four candidates were predicted as active by all
the models (TNF-α, iNOS and DSS-induced colitis). Three of the
compounds inhibited NO production in a concentration-
dependent manner. The four compounds inhibited TNF-α pro-
duction in RAW264.7 cells (three of them in a concentration-
dependent manner). Regarding the DSS-induced colitis model,
three of the candidates were able to prevent colon shortening
and had a positive impact on the Disease Activity Index. One
of them also prevented DSS-induced weight loss.

Remarkably, the authors, through their successive and
interconnected studies, are studying multiple cooperative
mechanisms of action of the same four compounds plus
their effects in a rodent model of colitis, which is in line with
the previous discussion on the need of an integrative, holistic
therapeutic approach to drug discovery for complex health
conditions (e.g. inflammatory bowel disease). Complex dis-
eases probably require simultaneous interventions at multiple
points for effective treatment [80].

Some other QSAR models related to TNF-α inhibition and
including topological descriptors have been reported, though
they were obtained from a much less chemically diverse train-
ing set. Jain and Agrawal reported three linear models entirely
based on topological descriptors and functional group counts
[105]. The model that best performed at the validation step
included two topological autocorrelations (Moran and Geary
autocorrelations). The explanatory power of the obtained
models was rather modest if we take into account that they
were inferred from a training set consisting in only 22 com-
pounds. Zhang et al. reported two QSAR models to explain the
effects of 32 curcumin analogs with anti-inflammatory activity
on TNF-α and IL-6 [106]; the performance of both models was
modest (r2 = 0.73 and 0.81, respectively) but, remarkably, the
TNF-α model included two topological autocorrelations
(Broto–Moreau and Geary autocorrelations) and the authors
concluded that ‘the inhibition rate is highly related to the
skeleton structure’ (i.e. the MT).

4.4. Other targets

α4β7 integrins expressed on lymphocytes adhere to ligands
on the endothelial surface, allowing for migration of

lymphocytes to inflammation sites. Antiintegrin antibodies
(e.g. vedolizumab) inhibit the migration of lymphocytes across
the mucosal barrier by targeting the α4β7 integrin [10]. Back
in 2012, Jalali-Heravi and Mani-Varnosfaderani reported two
Bayesian regularized genetic neural network to model the
inhibition activity of 141 biphenylalanine derivatives as α4β7
and α4β1 integrin antagonists [107]. Both models achieved
good performance on the training and test sets. Among sev-
eral 3D descriptors and group counts, the α4β7 model
included a topological autocorrelation. In the case of α4β1
inhibitory activity, the Randic shape index, the lowest eigen-
value of the Burden matrix, and the number of rotatable
bonds were the most relevant model parameters. Soon later,
Pourbasheer et al. reported linear and non-linear models of
α1β4 inhibitory activity incorporating Dragon descriptors
[108]. They used 41 moderately diverse compounds as training
instances. The best results were observed using genetic algo-
rithms as feature selection approach in combination with
support vector machine, and the best model combined a
topological descriptor (mean square distance index) among
molecular descriptors from other categories.

Finally, QSAR modeling studies using MT have also been
performed to search for mTOR inhibitors. mTOR is a serine-
threonine kinase that regulates protein synthesis, cell growth,
and proliferation in response to nutrients and growth factors; it is
well established that mTOR plays a crucial role in tumorigenesis
and accumulating evidence causally links increased mTOR activ-
ity to inflammatory responses [109]. mTOR inhibitors have shown
positive effects in mice models of colitis [109,110]. Lakhlili et al.
applied partial least squares to infer linear models from a data set
of 364 molecules with inhibitory activity against mTOR in com-
petition with ATP, extracted from PubChem Compound [111].
The data set was split into training (70%) and test (30%) sets. The
model showed adequate performance on the training and test
sets, and included topological descriptors such as Zagreb or
Balaban indices. An in silico screening campaign was performed
on a subset of around 2K compounds from ZINC database and a
1K-compound library from FDA fragment database. The study
was complemented with docking simulations, but no experi-
mental validation was performed.

5. Conclusion

To the moment, computer-aided drug discovery has provided
very limited results in the field of UC, where drug discovery is
centered on immunological studies. Whereas the number of
computational studies addressing UC or validated drug targets
in UC is quite scarce, most of the ligand-based approximations
reported so far have resulted in QSAR models that include
topological descriptors. Interestingly, some of the reviewed
studies have included mechanism-blind models obtained
from phenotypic data. A significant proportion of the
reviewed reports include no experimental testing of drug
candidates at all. In many cases, a narrow chemical diversity
of the training sample is observed.

Various hits have emerged from in silico screening cam-
paigns applying some of the reviewed models, and they have
shown positive effects at the in vitro and in vivo level (DSS-
induced colitis in mice).
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6. Expert opinion

Considering the burden of the disease and the large number
of ongoing clinical trials for potential new treatments (that
reflect the interest in the discovery of novel therapeutics),
relatively few applications of MT in combination with QSAR
methods have been reported. In fact, the use of computer-
aided approximations to identify new drug candidates for this
disorder is very limited. What is more, a significant fraction of
the reviewed studies does not include any kind of practical
application or experimental validation of the reported models.
This represents a general issue within the QSAR field. It should
be noted that applications of QSAR models outside the
research group in which they have been developed are extre-
mely rare, with the exception of those included in commercial
packages or freely available in public online resources. Having
that in mind, it is important that QSAR modelers engage in
practical applications of their models; otherwise, their work
will likely remain strictly theoretic. The ultimate goal of the
QSAR approach is to assist drug discovery campaigns, either
explaining experimental observations or predicting them.
Another caveat of some of the reviewed applications is that
the reported QSAR models have been inferred from a training
sample of limited size and/or chemical diversity, which
severely limits the regions of the chemical space covered
and the applicability of the resulting algorithms. As very
often stated within the field, extrapolation should be avoided
and predictions are reliable, at best, within the chemical space
covered by the training data. A QSAR model derived from a
single scaffold or chemotype will be reliably applicable to the
activity prediction of drugs with such chemotype. Accordingly,
the design of diverse training samples are crucial to obtain
drug candidates with some degree of structural novelty.

The most consistent and comprehensive efforts in the field,
in our opinion, come from the Molecular Connectivity and
Drug Design Research Unit from the University of Valencia.
Such statement is based in several observations. First, this
research team has developed their models from molecular
diverse training sets, which assures a wide applicability
domain compatible with VS campaigns on large chemical
libraries. Second, their models are exclusively based on topo-
logical descriptors, thus fully exploiting the advantages of
topological descriptors (efficiency, conformation-indepen-
dency, ease of calculation). Third, their contributions are the
only ones among the reviewed articles that, to our knowledge,
include some level of experimental validations of their models’
predictions. Their work is not only theoretic and they have
indeed contributed with novel lead compounds that have
shown potential at the in vitro and in vivo level.

Some of the reviewed studies are in line with the network
pharmacology philosophy, since the authors have combined
in silico campaigns focused on different targets with models
built on the basis of phenotypic responses. The integration of
models using training data obtained from phenotypic,
mechanism-independent experimental models of disease in
combination with target-focused models is in agreement
with the recent trend in the drug discovery arena to comple-
ment target-driven campaigns with classic phenotypic
screening.

New active compounds have been found with multiple
simultaneous effects (e.g. suppression of TNF-α and IL-6,
inhibition of the NF-κB) and positive effects in the DSS-
induced colitis model. It would be very interesting to see
their efficacy assessed in other in vivo models of UC in the
near future, in order to better judge their therapeutic poten-
tial. The multiple mechanisms of action of these candidates
and their efficacy in the DSS-induced colitis models might
not be casual. Due to the complexity of inflammation,
known and investigational drugs for the treatment of UC
target complex pathways, and even extremely selective
therapies (e.g. monoclonal antibodies) exert their effects by
targeting key nodes of inflammatory pathways that, indir-
ectly, regulate the expression and activity of a diversity of
biomolecules. Accordingly, we believe a rational approach to
the discovery of novel therapeutics for UC should embrace
the systems biology paradigm, either choosing highly selec-
tive agents that target key nodes of a metabolic pathway, or
searching for multi-target agents that regulate multiple
nodes simultaneously (e.g. bridging nodes). In agreement
with this opinion, there are already some bioinformatics
studies in the field of UC that have applied the networks
perspective to identify dys-regulated network modules and
potential new targets (e.g. hidden nodes responsible for
maintenance of network connectivity). The future of the
therapeutics against UC and any other complex disease
probably lies in very selective treatments targeting highly
connected nodes with the appropriate potency, or complex
therapeutic solutions attacking multiple nodes, either as
combined therapies or as multi-target agents (the later
would perhaps be less prone to drug resistance issues).
Microarrays technologies and bioinformatics will certainly
be crucial to map and understand complex biological net-
works and restore health in multifactorial conditions.

An interesting (and, a prior, possibly counterintuitive) obser-
vation that emerges from a diversity of successful MT-based VS
campaigns, including some of the efforts in the field of UC, is that
MT seems to able to select new lead compounds for a specified
therapeutic category without predefining a mechanism of action
or narrowing the training samples of the model to those sharing
a commonmechanism of action. Such observation suggests that
at least some therapeutic categories comprise drugs of similar
topology (a therapeutic class topological pattern) independently
of the mechanisms of action of each drug.

Finally, it can be highlighted that many of the reviewed
models, no matter the pursued target, included topological
autocorrelations as model features. This may reflect the impor-
tance of the molecular features to model UC-relevant effects, or
more likely (taking into consideration the close relationship
between this type of descriptors and the pharmacophore con-
cept), the power of topological autocorrelations to capture rele-
vant structural features for an efficient ligand-target interaction.
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